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Oxidation of Gold Clusters by Thiols
Brian M. Barngrover and Christine M. Aikens*

Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States

ABSTRACT: The formation of gold−thiolate nanoparticles
via oxidation of gold clusters by thiols is examined in this work.
Using the BP86 density functional with a triple ζ basis set, the
adsorption of methylthiol onto various gold clusters Aun

Z (n =
1−8, 12, 13, 20; Z = 0, −1, +1) and Au384+ is investigated. The
rate-limiting step for the reaction of one thiol with the gold
cluster is the dissociation of the thiol proton; the resulting
hydrogen atom can move around the gold cluster relatively freely. The addition of a second thiol can lead to H2 formation and
the generation of a gold−thiolate staple motif.

■ INTRODUCTION

Gold−thiolate nanoparticles and self-assembled monolayers
(SAMs) are important for a variety of applications.1−3 Recent
structural studies using X-ray crystallography, scanning
tunneling microscopy (STM), or density functional theory
(DFT) on nanoparticles and SAMs have demonstrated that
these systems have a core−shell-like arrangement in which
gold−thiolate oligomers −SR−(Au−SR−)n− (where the gold
atom is formally considered to be in the +1 oxidation state) can
cover a gold core or surface (which primarily contains Au(0)).
For example, oligomeric motifs (often called “staples”) are seen
on a wide variety of nanoparticles such as Au25(SR)18

−/0,4−7

Au36(SR)24,
8 Au38(SR)24,

9,10 and Au102(SR)44,
11 although

recent work suggests that other binding motifs may be possible
for sterically demanding thiolates.12,13 These staples are also
present on SAMs.14−17

The growth of gold−thiolate nanoparticles is often
accomplished by the Brust−Schiffrin synthesis, in which a
gold(III) salt reacts with thiol (HSR) and NaBH4 and is
consequently reduced to form Aun(SR)m nanoparticles.18 An
alternative method of formation is through the use of solvated
metal atom dispersion (SMAD), in which atoms from a metal
vapor are trapped in frozen solvent such as tetrahydrofuran
(THF) at 77 K, warmed to yield clusters and colloids, and
subsequently reacted with thiol.19 These two synthetic methods
can yield different sizes of gold−thiolate nanoparticles.20

Because the properties of a gold nanoparticle depend on its
size and morphology, understanding its growth mechanism is of
interest because this can potentially lead to control over these
aspects. Several experimental21−23 and theoretical24,25 studies
have begun to examine the Brust−Schiffrin synthesis and
determine whether thiols are able to play a role in reducing the
Au(III) salt to a nanoparticle containing Au(0) and Au(I).
However, little is known about the oxidative synthesis in which
thiols oxidize bare gold clusters to yield Aun(SR)m nano-
particles. Two experimental studies have shown that H2 is
released in this process.26,27 A very recent theoretical study
used ab initio molecular dynamics with DFT to examine the
interaction of two thiols with an Au4 cluster; they found that H2

is produced in the reaction and a staple is formed on the gold
cluster.28 Methylthiolates adsorbed on bare Au38 clusters have
also been observed by Jiang et al. to form staple motifs in
dynamic simulations.29 In this work, we examine reaction
pathways for the interaction of small gold clusters Aun (n = 1−
8, 12, 13, 20, 38) with one and two thiols to determine the
preferred adsorption sites for thiols, the rate-limiting step of
hydrogen atom dissociation and transfer, and the thermody-
namics of H2 production and staple formation to provide a
greater understanding of the oxidative growth mechanism of
gold nanoparticles.

■ COMPUTATIONAL DETAILS

All calculations are performed with the Amsterdam density
functional (ADF)30 package, using density functional theory
with the Becke Perdew (BP86)31,32 functional and a frozen-
core polarized triple-ζ (TZP) basis set. We include scalar
relativistic effects by employing the zero-order regular
approximation (ZORA).33 We incorporate the THF solvent
using the conductor-like screening model (COSMO), which
represents the solvent by its dielectric constant.34−36

Initial structures for the small gold clusters Aun (n = 1−8, 12,
13, 20, 38) are obtained from the literature;37−42 both 2D and
3D structures for Au12 and Au13 are considered because these
sizes are near the 2D−3D crossover point for gold.41,42 Neutral,
anionic, and cationic charge states for the gold clusters are
examined, as discussed in the following section. Calculations
described in this work employ the methyl group on the thiol or
thiolate ligand. All intermediates and transition states are fully
optimized; Hessian calculations have been performed to verify
the existence of one imaginary frequency for the transition
states.
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■ RESULTS AND DISCUSSION

One Thiol Adsorption. Adsorption energies for one thiol
on various gold clusters can be found in Table 1, and
adsorption structures are shown in Figure 1. Binding of thiols
to all unique gold coordinates were considered; only the lowest
energy thiol adsorption sites are presented here. In almost all
cases, thiol adsorption is exothermic. The first exception is the
Au1 anion, which is the only gold system examined here on
which thiol adsorption is endothermic. Thiol adsorption on the
neutral Au atom is exothermic with an adsorption energy (Eads)
of −0.68 eV, and adsorption on the Au1

+ cation is the most
favored with an adsorption energy of −2.52 eV. Thiol

adsorption on all larger clusters is exothermic with the
exception of Au2

− and Au3
− for which the thiol did not bind,

which is in agreement with Varganov et al., who observed the
same phenomenon with hydrogen on these clusters.43 Because
the thiol binds via lone pair donation to the gold cluster, it
appears that the Aun

− (n = 1−3) anions are too small to
favorably accommodate this binding (possibly due to a high
electron density). For Au1 through Au3, all of the charge states
have the same lowest energy structure for a given cluster size.
Au4 has two different low-energy structures depending on
charge: the neutral and anion share the same Y-shaped
structure, whereas the cation has a diamond shape. As observed

Table 1. Thiol Adsorption Energies for Aun
(0,−,+) (n = 1−8, 12, 13, 20) and Au38

4+

neutral clusters energy (eV) anion clusters energy (eV) cation clusters energy (eV)

Au1 −0.68 Au1 0.04 Au1 −2.52
Au2 −1.34 Au2 NA Au2 −1.97
Au3 −1.43 Au3 NA Au3 −1.66
Au4 −1.43 Au4 −0.68 Au4 −1.50
Au5 −0.96 Au5 −0.90 Au5 −1.66
Au6 −0.89 Au6 −0.67 Au6 −1.46
Au7 −0.97 Au7 −0.87 Au7 −1.27
Au8 −1.03 Au8 −0.64 Au8 −1.36
Au12 2D −0.90 Au12 2D −0.62 Au12 2D −1.21
Au12 3D −0.88 Au12 3D −0.55 Au12 3D −1.17
Au13 2D −0.98 Au13 2D −0.61 Au13 2D −1.40
Au13 3D −1.02 Au13 3D −0.63 Au13 3D −1.37
Au20 −0.77 Au20 −0.73 Au20 −1.16

Au38
4+ −1.07

Figure 1. Lowest energy adsorption of methylthiol onto Aun
(0,−,+) (n = 1−8, 12, 13, 20) and Au384+. Gold = black, sulfur = yellow, carbon = gray, and

hydrogen = white.
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Chart 1. Reaction Pathway of Thiol Adsorption on Au3 and Subsequent Hydrogen Movement on the Gold Clustera

aGold = black, sulfur = yellow, carbon = gray, and hydrogen = white.

Chart 2. Reaction Pathway of Thiol Adsorption on Au12 3D and Subsequent Hydrogen Movement on the Gold Clustera

aGold = black, sulfur = yellow, carbon = gray, and hydrogen = white.
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for Au1, the cation is the charge state for which thiol adsorption
is the most favored, followed by the neutral state, and last the
anionic charge state. Au5 also has two different low-energy
structures: Au5

0 and Au5
+ share the same W-shaped structure,

whereas Au5
− has a branched Y-shaped structure for its low-

energy structure. The lowest energy structures for Au1−Au8 are
indicated in Figure 1 with their corresponding charge states.
The gold clusters with one thiol adsorbed have the same core
structures as the bare systems. Even though various charge
states have different lowest energy structures, the trend for
favored adsorption continues with |Eads(cation)| > |
Eads(neutral)| > |Eads(anion)|.
For Au12, both 2D and 3D structures were considered with

three different charge states because this cluster size is
approximately where the 2D to 3D crossover occurs. At the
BP86/TZP level of theory, the 2D structure is lower in energy
than the 3D structure. The adsorption energy trend as a
function of charge state continues even with the change in
dimension. Au13 2D and 3D structures have also been
examined. For this system, we have investigated the
cuboctahedral structure, which is not the lowest energy 3D
structure but is of interest due to its high symmetry. Previous
studies have examined binding of the thiolate ion to the
cuboctahedral Au13 cluster.

44,45 It should be noted that the Au13
2D structure is lower in energy than this cuboctahedral
structure. For Au20, the tetrahedral structure is the lowest
energy structure.38 Again, the adsorption energy of the cation is
the greatest, followed by the neutral and then the anion. The
last cluster we examined was octahedral Au38

4+. The +4 charge
state was examined because the neutral cuboctahedral cluster
distorts due to a Jahn−Teller distortion.46,47 This +4 charge
leads to a cluster with an electronic magic number of 34
electrons. The octahedral cluster has two unique gold
coordination sites: one is an edge atom joining two hexagonal
faces and one square face and the other is the face site in the
center of each hexagonal face. The edge site is the more favored
thiol adsorption site compared with the face site, which is
logical because it has a lower coordination number.
Reaction Pathway. Next, we investigated the reaction

pathway from the adsorption of one thiol on Au3 and Au12 3D
to the formation of HAux(SCH3) to determine which step is
the rate-limiting step. The reaction pathways for Au3 and Au12
are shown in Charts 1 and 2. The first transition state is
calculated for the dissociation of the thiol proton onto the gold
cluster. For Au3, this transition state lies 0.83 eV above the
adsorbed complex; for Au12 3D, the barrier height is 0.78 eV.
When the thiol proton dissociates it gains partial charge from
the gold cluster and behaves more like a hydrogen atom. Once
the hydrogen is on the gold surface, it is free to move around
the gold surface with relative ease, as shown by the barrier
heights for the subsequent steps; for Au3, the next largest
barrier height is 0.03 eV. This ease of movement has been
observed by other groups.43,48 Au12 has a stable second
intermediate, with the stability possibly due to the hydrogen
bridging the two gold atoms, making the subsequent barrier
height rather high at 0.71 eV; however, this barrier height is still
smaller than the previously mentioned one for the thiol proton
dissociation.
In Charts 1 and 2, the first transition state lies significantly

below the energy of the separated reactants; in consequence, if
energy transfer to metal vibrational modes or to solvent is slow
enough, then this reaction will proceed easily. Because the gold
clusters are not bare under experimental conditions, we have

considered the effects of solvent (in this case, THF) adsorption
on the reaction energies. THF binds to the Au3 and Au12 3D
clusters with Eads of −0.69 and −0.28, respectively. The
reaction for the replacement of THF by a thiol (leading to the
first intermediates shown in Charts 1 and 2) yields reaction
energies of −0.74 and −0.60, respectively; the energy released
in these reactions is not quite enough to overcome the thiol
dissociation barrier, so an effective activation energy barrier
should be observed under experimental conditions.
Because the proton removal step is the rate-limiting step for

Au3 and Au12 3D, a further investigation into this barrier height
for all of the neutral gold−thiol clusters has been performed.
Proton removal barrier heights are presented in Table 2. Thiol

proton dissociation on Au1 through Au8 is found to have barrier
heights of 0.87, 1.26, 0.83, 1.18, 1.10, 1.61, 0.86, and 1.38 eV,
respectively. An overall odd−even effect is observed, which we
believe is due to the unpaired electron in the odd size clusters,
which more easily allows the cluster to provide an electron to
the incoming hydrogen, thus lowering the barrier height. On
closer examination, the barrier height on Au7 is significantly
lower than clusters of neighboring sizes; this is because Au7
undergoes an isomer change (Figure 2). For the remaining

larger clusters the pattern appears to hold true. Au12 3D is also
an interesting case to examine closer. The Au12 3D structure
forms a thiolate bridge between two gold atoms when the thiol
proton is removed. This is only observed in this structure and
Au7.

Second Thiol Addition. The crux of this investigation is to
develop an understanding of the formation of gold thiolate
nanoclusters and hydrogen gas. To explore this, a second thiol
is required. Structures resulting from the addition of a second

Table 2. Barrier Heights for the Dissociation of the Thiol
Proton on Aun

0 (n = 1−8, 12, 13, 20) and Au38
4+

cluster size energy (eV)

Au1 0.87
Au2 1.26
Au3 0.83
Au4 1.18
Au5 1.10
Au6 1.61
Au7 0.86
Au8 1.38
Au12 2D 1.06
Au12 3D 0.78
Au13 2D 1.28
Au20 1.56
Au38

4+ 1.55

Figure 2. Isomer shift of Au7 after the removal of the thiol proton and
the formation of thiolate and hydrogen. Gold = black, sulfur = yellow,
carbon = gray, and hydrogen = white.
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thiol to HAu3(SCH3) and HAu12(SCH3) 3D have been
optimized. There are three sites for the incoming thiol to
bind to on the Au3 complex: where the thiolate is coordinated,
where the hydrogen is coordinated, or on the uncoordinated
gold (Figure 3). The favored adsorption site for the incoming
thiol is the uncoordinated site (1) with an adsorption energy of
−0.84 eV. The next favored adsorption site (2) is where the
first hydrogen is coordinated with an adsorption energy of
−0.41 eV. The least favored adsorption site (3) is where the
first thiolate is coordinated with an adsorption energy of −0.14
eV. This trend makes sense because the incoming thiol would
not have to compete with any other molecule or atom to bind

to the uncoordinated site. The reaction energy for the
production of hydrogen gas and a gold cluster with thiolates
on different gold atoms (structure 4) is −0.02 eV from
structure 2 or 0.41 eV from structure 1; the reaction energy is
endothermic for the latter reaction because the initial structure
has a high binding energy for the thiol. The least favored
reaction is the production of H2 from structure 3, where the
thiol and thiolate are coordinated to the same gold; this process
has a reaction energy of 0.83 eV.
Compared to Au3, Au12 3D has many additional sites that the

second thiol could adsorb to; in this work, we focus on the low-
energy sites that are the other vertices. Unlike the Au3 case, the

Figure 3. Second thiol adsorption to the vertices of Au3. Structure 1: Second thiol binding to uncoordinated gold site. Structure 2: Second thiol
coordinated to hydrogen site. Structure 3: Second thiol coordinated to thiolate site. Structure 4: Evolution of hydrogen gas and thiolate formation
from structures 1 and 2. Structure 5: Evolution of hydrogen gas and thiolate formation from structure 3. Gold = black, sulfur = yellow, carbon = gray,
and hydrogen = white.

Figure 4. Second thiol adsorption to the vertices of Au12. Structure 1: Second thiol binding to uncoordinated gold site. Structure 2: Second thiol
coordinated to hydrogen site. Structure 3: Second thiol coordinated to thiolate site. Structure 4: Evolution of hydrogen gas and thiolate formation
from structures 1. Structure 5: Evolution of hydrogen gas and thiolate formation from structure 2. Structure 6: Evolution of hydrogen gas and
thiolate formation from structure 3. Gold = black, sulfur = yellow, carbon = gray, and hydrogen = white.
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thiol adsorbing to the vertex that was not coordinated to the
thiolate or hydrogen (structure 1 in Figure 4) is not the most
favored structure for Au12 3D (Eads = −1.02 eV). Instead, the
lowest energy structure is structure 2, in which the incoming
thiol adsorbs to the gold atom where the hydrogen is
coordinated (Eads = −1.27 eV). The least favored adsorption
site is structure 3, where the thiolate is already adsorbed (Eads =
−0.81 eV). For both structures 1 and 2, evolution of hydrogen
gas is thermodynamically unfavorable; reaction energies to
produce H2 and structures 4 and 5 are 0.62 and 0.95 eV,
respectively. In contrast, evolution of hydrogen gas from
structure 3 is favorable with a reaction energy of −0.68 eV. The
resulting structure 6 is also an interesting cluster because it is
the first time formation of a staple motif is observed in this
investigation. Structure 6 is lower in energy than isomers 4 and
5, which underscores the importance of the staple motif in
nanoparticle and SAM structure. Thus, although the most
favorable adsorption geometries for thiols at low coverage
involve low-coordinated gold atoms, these structures are not as
likely to lead to the formation of staples and hydrogen gas. We
expect that at higher coverages, such as those needed for full
passivation of the nanoparticle surface, gold−thiolate staples
will form.
A further investigation into the formation of structure 6 from

structure 3 is examined (Chart 3). The removal of the thiol
proton has a barrier height of 0.38 eV. An intermediate with a
three-fold binding site for one of the hydrogens forms; this type
of structure has not been seen in any of the previous pathways.
The three-fold binding site is particularly stable with an energy
of −1.72 eV. The transition state between the three-fold
intermediate and the final evolution of hydrogen gas has a
barrier height of 0.67 eV. During this potential energy surface
investigation another interesting intermediate was found. This

structure has two hydrogens that bridge the gold much like a
staple motif (Figure 5). It is 0.02 eV more stable than the three-

fold binding site with an energy of −1.74 eV relative to starting
reactants. Although the barriers to form this intermediate are
not known at this point, the staple-like motifs could be an
interesting target for future experimental and theoretical
investigations.

■ CONCLUSIONS
We investigated the adsorption of methylthiol onto various
sizes of gold clusters (n = 1−8, 12, 13, 20, 38) with neutral,
anionic, and cationic charge states (for Au38, only the 4+ state
was considered). We found that all adsorptions are predicted to
be exothermic with the exceptions of Au1

−, which is
endothermic, and Au2

− and Au3
−, to which the thiol did not

adsorb. We also determined that the rate-limiting step for the

Chart 3. Reaction Pathway of Thiol Adsorption on HAu12SCH3 3D and Subsequent Hydrogen Movement on the Gold Clustera

aGold = black, sulfur = yellow, carbon = gray, and hydrogen = white.

Figure 5. Bridging hydrogen motif structure. Gold = black, sulfur =
yellow, carbon = gray, and hydrogen = white.
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formation of hydrogen gas and the gold thiolate staple motifs is
the removal of the thiol proton. An odd−even effect on the
formation of the thiolate and hydrogen is present; we conclude
that the odd size clusters have a lower barrier height because
they do not have to undergo drastic electronic rearrangement
to accommodate the new additions to the cluster, whereas the
even clusters would have to rearrange. The movement of the
hydrogen atom on two specific gold clusters, Au3 and Au12 3D,
was examined. The hydrogen moves easily around the clusters
compared with the energy required to dissociate the hydrogen
and form the thiolate on the cluster. One final step investigated
was the formation of hydrogen gas. The adsorption of a second
thiol to the vertices of Au3 and Au12 3D was considered. H2
formation is thermodynamically favored relative to the energy
of separated thiol and gold cluster but is not always exothermic
once the second thiol has adsorbed to the gold cluster. Au3 did
not form a staple motif due to its small size, but a staple did
form on Au12 3D when the first and second thiol adsorbed to
the same vertex. The most favorable adsorption geometries for
thiols at low coverage involve nonadjacent gold atoms, but
these structures are not likely to lead to the formation of staples
and hydrogen gas. However at higher coverages, such as those
present under most experimental conditions, gold−thiolate
staples can form.
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