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The growth of gold thiolate nanoparticles can be affected by the solvent and the R group on the 

ligand. In this work, the difference between methanol and benzene solvents as well as the effect 

of alkyl (methyl) and aromatic (phenyl) thiols on the reaction energies and barrier heights is 

investigated theoretically. Density functional theory (DFT) calculations using the BP86 

functional and a triple ζ polarized basis set show that the overall reaction favors methylthiol over 

phenylthiol with reaction energies of −0.54 and −0.39 eV in methanol, respectively. At the same 

level of theory, the methanol solvent is favored over the benzene solvent for reactions forming 

ions; in benzene, the overall reaction energies for methylthiol and phenylthiol reacting with 

AuCl4
− to form Au(HSR)2

+ are 0.37 eV and 0.44 eV, respectively. Methylthiol in methanol also 

has the lowest barrier heights at about 0.3 eV, whereas phenylthiol has barrier heights around 0.4 

eV. Barrier heights in benzene are significantly larger than those in methanol. 

 

Introduction 

Gold thiolate nanoparticles can be utilized in a number of applications, such as catalysis,1 the 

treatment of cancer,2 DNA tagging,3,4 solar cells,5 and water purification.6 Certain morphologies 

are ideal for different applications. Gold nanorods have a particular plasmon resonance 

depending on their aspect ratio and this can be particularly useful in the treatment of cancer.7 In 
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contrast, small gold nanospheres are commonly utilized in catalysis due to their affinity to bind 

oxygen.8 Nanostars of gold are becoming promising structures for solar cell technology due to 

the high ratio of energy converted to power.5 An understanding of the growth mechanisms of 

these systems will lead to better control over the formation of particular morphologies.  

The most well-known gold thiolate complexes are the ‘magic clusters’.9 The most famous 

clusters are Au25(SR)18
−,10–12 Au38(SR)24,

13,14 Au102(SR)44,
15 and Au144(SR)60,

16 although other 

stoichiometries have also been observed, such as Au36(SR)24
17,18 and Au99(SR)42.

19 Aliphatic 

ligands have typically been used in the synthesis of Au25(SR)18
−, Au38(SR)24, and Au144(SR)60, 

whereas aromatic ligands have been employed in the synthesis of Au36(SR)24, Au99(SR)42, 

Au102(SR)44, and other systems.17–22 Thus, the choice of ligand appears to affect the stoichiometry 

of the final product. The ligands, which coat the exterior of the molecule, are made up of AumSRn 

subunits that protect the gold core. 

Gold thiolate nanoparticles are often synthesized by the Brust–Schiffrin (B–S) method23 or 

variations of this method.24 The B–S method is a two solvent phase reduction of tetrachloroaurate 

(AuCl4
−) using sodium borohydride (NaBH4) with a thiol (HSR), in a one-to-ten-to-four ratio, 

which results in 1–3 nm gold particles. In one of the variations of the method, Yee et al. 

recognized that the two-phase method did not fit well for ω-substituted thiols due to the 

difficulty in purification of the product and thus looked into a one-phase method.25 They used 

tetrahydrofuran (THF) because it does not have solubility issues with ω-substituted thiols unlike 

the two-phase system. A phase-transfer reagent was not required in the single-phase method 

unlike the two-phase method. Even though the starting materials are the same, both syntheses 

yielded different particles sizes; the single-phase particles are approximately 2.5 nm in diameter 

and the two-phase particles are 2.1 nm. Sun et al. demonstrated that when synthesizing 

decanethiolate gold nanoparticles in single- and two-phase approaches, the dimensions of the 

particles and thiol grafting density are different, which is in agreement with Yee et al.26 

In another modification to the original B–S synthesis, Goulet et al. observed that a two-to-one 

ratio of the thiol ligand and Au(III) is enough to cause reduction of Au(III) to Au(I) and form a 

disulfide.24 Barngrover and Aikens performed density functional theory (DFT) calculations and 

also found that the two-to-one ratio is enough to cause reduction of Au(III).27 

We modeled the one-phase method with a four-to-one ratio of phenyl thiol ligand to gold salt 

in methanol and benzene. The aromatic ligand is of interest to compare with aliphatic thiol 
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ligands that were previously studied by our group.27 Pathway B from the previous body of work, 

which was the most thermodynamically stable pathway found, is the pathway we modeled in this 

study; this pathway involves the reduction of Au(III) to Au(I) by two equivalents of thiol ligand 

and the subsequent reaction with two more thiol ligands. 

Computational details 

The Amsterdam Density Functional (ADF)28 program was used to find the reaction energies and 

transition states. All the geometries were visualized using MacMolPlt version 7.4.4 and figure 

images were created using Jmol version 13.0.14.29,30 The chemical structures were optimized 

using the Becke–Perdew (BP86)31,32 functional and a triple-ζ with polarization functions (TZP) 

basis set. Scalar relativistic effects were accounted for using the Zero Order Regular 

Approximation (ZORA).33 Solvation was taken into account through the Conductor-like 

Screening Model (COSMO), which represents the solvent by its dielectric constant.34–37  

All calculations in this work have the phenyl group on the thiol ligand unless stated 

otherwise. Intermediates and transition states reported are fully optimized. Hessian calculations 

were performed analytically for the transition states. All transition states have an imaginary 

frequency corresponding to the expected nuclear motion. In the second and fourth transition 

states in methanol and benzene, a second imaginary frequency with zero intensity and a value 

<20i cm−1 was obtained. The energies reported in this work include zero-point energy 

corrections. 

Results and discussion 

First thiol reaction 

We investigated the overall pathway in a step-wise addition of four phenylthiols to gold(III) 

chloride as shown in Scheme 1. The pathway was calculated in both methanol and benzene 

solvents. The first addition of a thiol to the gold complex proceeds through a bipyramidal 

transition state with a barrier height of 0.42 eV in methanol (Fig. 1) and 0.66 eV in benzene (Fig. 

2) and then a chloride ion is expelled. The chloride ion then reacts with the hydrogen on the 

sulfur atom and detaches a proton to produce HCl. The thiol attaching to the gold(III) and the 
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subsequent discharging of a chloride ion, reaction (1A), has a reaction energy of 0.16 eV in 

methanol (Fig. 1). The proton transfer, denoted (1A′) in Scheme 1, from the thiol to the chloride 

ion in methanol has an energy of −0.26 eV for an overall reaction energy of −0.10 eV (Fig. 1 and 

Table 1). For comparison, we have also performed these calculations in benzene. In benzene, 

reaction (1A) yields an energy of 0.49 eV and a reaction (1A′) yields an energy of −0.51 eV. The 

overall reaction in benzene produces an energy of −0.02 eV (Fig. 2 and Table 1). The chloride 

ion is more favored to form in the methanol solvent than the benzene solvent, since the polar 

solvent can more easily stabilize the negative ion. The initial chloride removal may not occur in 

a nonpolar solvent.  

 

 
Scheme 1 

 
 

http://pubs.rsc.org/en/content/articlehtml/2015/cp/c4cp04314f#fig1
http://pubs.rsc.org/en/content/articlehtml/2015/cp/c4cp04314f#sch1
http://pubs.rsc.org/en/content/articlehtml/2015/cp/c4cp04314f#fig1
http://pubs.rsc.org/en/content/articlehtml/2015/cp/c4cp04314f#tab1
http://pubs.rsc.org/en/content/articlehtml/2015/cp/c4cp04314f#fig2
http://pubs.rsc.org/en/content/articlehtml/2015/cp/c4cp04314f#tab1
http://pubs.rsc.org/services/images/RSCpubs.ePlatform.Service.FreeContent.ImageService.svc/ImageService/Articleimage/2015/CP/c4cp04314f/c4cp04314f-s1_hi-res.gif


 

 

Fig. 1 Overall reaction involving addition of 

four equivalents of phenylthiol to AuCl4
− in 

methanol. Gold = gold, chloride = green, 

carbon = gray, sulfur = yellow, and hydrogen = 

white. R = reactants, TS = transition state, Int = 

intermediate, PT = proton transfer, and P = 

products. HCl and Cl− are not shown for clarity. 
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Fig. 2 Overall reaction involving addition of 

four equivalents of phenylthiol to AuCl4
− in 

benzene. Gold = gold, chloride = green, carbon 

= gray, sulfur = yellow, and hydrogen = white. 

R = reactants, TS = transition state, Int = 

intermediate, PT = proton transfer, and P = 

products. HCl and Cl− are not shown for clarity. 

 

Table 1 Comparison of reactions in methanol and benzene and with methyl and phenyl thiol. R = 

methyl values in methanol are from ref. 27  

Solvent 

Methanol Benzene 

R = methyl27 R = phenyl R = methyl R = phenyl 

Overall reaction energy (eV) −0.54 −0.39 0.37 0.44 

Reaction (1) (eV) −0.17 −0.10 −0.10 −0.02 

Reaction (2) (eV) −0.41 −0.27 −0.35 −0.26 

Reaction (3) (eV) −0.10 0.14 0.58 −0.27 
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Reaction (4) (eV) 0.14 −0.16 0.24 0.99 

 

 

 

Second thiol reaction 

The second addition of thiol reacts with the monosubstituted gold complex to form a disulfide. 

The initial reaction (2A) results in a reaction energy of 0.38 eV and a barrier height of 0.40 eV in 

methanol (Fig. 1). There are three structures that are produced from the initial reaction: AuCl2
−, 

Cl−, and H(Ph)SSPh+. The second part (2A′) of the reaction is the proton transfer from the 

protonated disulfide to the chloride ion, resulting in a neutral disulfide and HCl. This step is 

similar to the proton dissociation in the first addition of a thiol, and has an energy of −0.65 eV. 

Overall, the reaction in methanol has a calculated reaction energy of −0.27 eV.  

In benzene the overall reaction is favorable, though under closer examination it appears 

unlikely with a barrier height of 1.14 eV. Reaction (2A) has a calculated reaction energy of 1.04 

eV and reaction (2A′) has an energy of −1.30 eV for an overall energy of −0.26 eV (Table 1). 

The charge separation in the nonpolar solvent is highly unfavorable, causing the initial thiol-for-

chloride substitution to be highly endothermic and the subsequent proton removal by the chloride 

to form neutral HCl to be highly exothermic. 

Third thiol reaction 

The third thiol reacts with the AuCl2
− species to eject a chloride and form a monosubstituted 

gold(I) complex. In methanol, the reaction energy was calculated to be 0.14 eV with a barrier 

height of 0.38 eV, so it is slightly endothermic. In benzene, the reaction energy was calculated to 

be −0.27 eV with a barrier height of 0.54 eV (Table 1).  

Recent work by Zhang et al. has suggested that the chloride does not fully dissociate in 

nonpolar solvents.38 We find that the chloride ion is not favored in either methanol or benzene 

solvents to cause a subsequent proton transfer and yield HCl; rather, if generated in the reaction, 

the chloride remains in the ionic form. As discussed previously by Barngrover and Aikens,27 

removal of the chloride and proton are required for potential formation of (AuSR)n polymers. 
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Fourth thiol reaction 

The fourth addition of the thiol acts on a monosubstituted gold complex and causes the last 

chloride ligand to be removed and another gold–sulfur bond to form. The barrier height for the 

reaction is calculated to be 0.32 eV with a reaction energy of −0.16 eV (Fig. 1) in methanol. In 

benzene the reaction energy is 0.99 eV (Fig. 2) with a barrier height of 1.42 eV. Again, the 

formation of a charged species in nonpolar solvent is highly unfavored compared to reaction in 

the more polar methanol solvent.  

The overall reaction energies in methanol and benzene were calculated to be −0.39 eV and 

0.44 eV, respectively. The reaction could reasonably occur in methanol and the first two steps 

would be the driving force for the third and fourth step to occur. This pathway is unreasonable in 

the benzene solvent without considering the effects of counterions. The charge separation in the 

second reaction causes a highly endothermic reaction in benzene and cannot be reasonably 

overcome. 

R group dependence 

In addition to the solvent dependence of the reaction energies for R = Ph, we can also examine 

the influence of the R group on the reaction energies in both methanol and benzene. Our current 

work can be compared to prior work where the R group is a methyl and the solvent is methanol.27 

Reaction (1) ((1A) followed by (1A′)) is more favored with the methyl group, since this yields a 

reaction energy of −0.17 eV whereas the phenyl group has a reaction energy of −0.10 eV (Table 

1). Reaction (2) ((2A) and (2A′)) is more favorable with the methyl ligand with a reaction energy 

of −0.41 eV; the phenyl ligand has a reaction energy of −0.27 eV. The third reaction is also more 

favored with the methyl ligand than the phenyl ligand. The reaction energy for methyl in reaction 

(3) is calculated to be −0.10 eV and for phenyl it is 0.14 eV. The reaction energy for reaction (4) 

is more favored with phenyl and is calculated to be −0.16 eV and for methyl the reaction energy 

is 0.14 eV. This may possibly explain why most experimental syntheses employ aliphatic rather 

than aromatic ligands. In addition, we have examined the reactions of both methylthiol and 

phenylthiol in benzene. Most of the steps are more favorable (less endothermic or more 

exothermic) for methylthiol than phenylthiol (Table 1); however, they are not as favored as the 
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reactions carried out in methanol.  

Conclusions 

The synthesis of gold thiolate nanoclusters or nanoparticles through the Brust–Schiffrin method 

has been performed for years with minor understanding of the mechanism for the formation. This 

work is centered on the modified single-phase Brust–Schiffrin method utilizing two different 

solvents. Our calculations are performed with a four-to-one ratio of phenylthiol to gold salt and 

showed that the reduction of gold(III) to gold(I) and formation of a disulfide is favorable in 

methanol solvent. Compared to previous work done with the same pathway, it can be concluded 

that the addition of phenylthiol ligands to the gold salt is less thermodynamically favorable than 

the addition of methylthiol groups. The reduction of gold(III) to gold(I) and the formation of a 

disulfide in benzene is thermodynamically less favorable. Charge separation in benzene is 

substantially higher in energy than in methanol. Since this reaction is traditionally conducted in 

toluene, which is nonpolar similar to benzene, a different pathway must be explored to explain 

the growth in nonpolar solvents.  
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