A FIXED-INVERSE BINARY MISCLASSIFICATION MODEL UNDER POSSIBLE FALSE-POSITIVE MISCLASSIFICATION

Asmerom Tesfamichael, Advisor: Dr. Kent Riggs Stephen F Austin State University – Department of Mathematics and Statistics

Abstract

- In this project, we develop a particular statistical model for binary data that allows for the possibility of false-positive misclassification. To account for the misclassification, the model incorporates a two-stage sampling scheme.
- Next, we apply maximum likelihood methods to find estimators of the primary prevalence parameter p as well as the false-positive misclassification rate parameter ϕ . In addition, we derive confidence intervals for p based on inverting Wald, score and likelihood ratio statistics.
- Also, we graphically compare coverage and width properties of the Wald-based, score-based, and likelihood ratio-based confidence intervals for *p* through a Monte Carlo simulation. The simulation study is done under different parameter and sample size configurations. Also, we apply the newly-derived confidence intervals for p to a real data set.

Introduction

- > Due to practical reasons such as cost and time savings, fallible classifiers which are prone to error are used to classify binary data.
- Misclassication may result in false-negatives or false-positives.
- > Misclassification errors may distort results of statistical analysis.
- ➤ Models that account for misclassification have been developed to compensate for the effect of errors.
- > The misclassification rate parameter is a measurable feature of a statistical model that accounts for misclassification.
- > Different applications requires different statistical models, which have specific advantages and limitations.
- > Better estimation can be done by an infallible device, but at a higher cost.
- > A double sampling scheme using both fallible and infallible devices may be used at a reasonable cost, while properly accounting for misclassification.
- ➤ We consider a model that allows only for false-positive misclassification, which treats the first sample of a two-stage sampling scheme as fixed and the second stage of the scheme as random (inverse sampling).

Two-Stage Sampling Scheme

The double sampling scheme involves the use of a fallible (cheap) and infallible (expensive) classifier in two stages in an effort to appropriately estimate *p* and the rate(s) of misclassification. The first stage involves the use of a fallible classier that is prone to producing false-positives under fixed sampling. The second stage involves using an infallible and fallible classifier under inverse sampling technique. For insight into this two-stage scheme consider the following example (* denotes false-positive):

Stage	Pop.	0	1	1	0	0	0	0	0	1	1	0	1	0	1	0	1
First	Fallible	0	1	1	1*	1*	0	0	1								
	Fallible									1	1	1*	1	0	1	1*	1
Sec.	Infallible									1	1	0	1	0	1	0	1

Fixed-Inverse Binary Misclassification Model

For the two stage sampling scheme, define the following counts: y = # of observations labeled success after *m* trials of the fallible device in stage 1, $n_{00} = \#$ of observations labeled failure by both fallible and infallible devices in stage 2. $n_{10} = \#$ of observations labeled "success" by fallible device but "failure" infallible device in stage 2, n_{11} = # of observations labeled success by both fallible and infallible devices in stage 2. For example above, y = 5, $n_{00} = 1$, $n_{10} = 2$, and $n_{11} = 5$.

Distributional Assumptions

The Binomial distribution and Negative Multinomial distribution are used to model the counts y, n_{00}, n_{10} :

where,

- stage 2,
- p = probability infallible device yield success,
- ϕ = probability fallible device yield false-negative,
- π = probability fallible device labels an observation as success.

Maximum Likelihood Estimators

 $\hat{p} = \frac{n_{11}(n_{11} + n_{10} + y)}{(n_{11} + n_{10})(n_{00} + n_{10} + n_{11} + m)}$ and $\widehat{\Phi} =$ $\frac{n_{10}(n_{10}+n_{11}+y)}{(n_{11}+n_{10})(n_{00}+n_{10}+n_{11}+m)(1-\hat{p})}$

Large Sample Confidence Intervals for p

- \succ Wald CI: $\hat{p} \pm Z_{\alpha}$
- Score CI: values of

 $[u_p($

Likelihood CI: va

where,

- $u_p(\hat{\phi}_p) = \frac{\partial l}{\partial p}$ at $\hat{\phi}_p$
- degree of freedom
- $I^{11}(p, \hat{\phi}_p)$ is the (1,1) element of the inverse of Fisher's Information Matrix
- *l* is the log likelihood function

$$(y) = \binom{m}{y} \pi^{y} (1 - \pi)^{m-y}$$

and

 $f_2(n_{00}, n_{10}) = \frac{(n_{11}+n_{00}+n_{10}-1)!}{(n_{11}-1)!n_{00}!n_{10}!}((1-p)(1-\phi))^{n_{00}}(\phi(1-p))^{n_{10}}p^{n_{11}}$

 $n = n_{00} + n_{10} + n_{11}$ is the random sample size needed to observe n_{11} successes labeled by both fallible and infallible classifiers in

$$\widehat{p} \pm Z_{\frac{\alpha}{2}} \sqrt{I^{11}(\widehat{p}, \widehat{\phi})}$$
values of p that satisfy :

$$[u_p(\widehat{\phi}_p)]^2 I^{11}(p, \widehat{\phi}_p) \leq \chi^2_{1}(\alpha)$$
d CI: values of p that satisfy :

$$2(l(\widehat{p}, \widehat{\phi}) - l(p, \widehat{\phi}_p)) \leq \chi^2_{1}(\alpha)$$

• $Z_{\underline{\alpha}}$ is $(1 - \alpha/2)$ percentile for the standard normal distribution

• $\chi^2_1(\alpha)$ is $(1 - \alpha)$ percentile of a chi-squared distribution with one

Motivating Example

- The western blot procedure (WBP) is one diagnostic test of the herpes simplex virus. Out of 693 women tested, the WBP yielded that 375 had the virus. (Hildeshiem and Boese)
- Under the binomial model (not accounting for misclassification), the maximum likelihood estimator (MLE) and Wald confidence interval for *p* is

Parameter	Estimate	Wald C.I		
р	0.541	(0.504,0.578)		

It turns out that WBP is a fallible detector of the virus, hence the estimate above is biased.

- Another procedure called the Refined Western Blot Procedure (RWBP) is accurate and we will consider it as an infallible classifying device.
- Also, from Hildesheim's data we will only consider the false positives from stage 2 and allow the false negatives to be absorbed into n_{11}
- From the two stages, the following counts were observed: $y = 375, m = 693, n_{00} = 13, n_{10} = 3$, and $n_{11} = 23$.
- Under the Fixed-Inverse Binary Misclassification Model, the MLE's for p and ϕ and confidence intervals for p are

Parameter	Estimates	Wald C.I *	Score C.I.*	Lik.
p	0.485	(0.4102,0.5589)	(0.3899,0.5793)	(0.4
φ	0.123	Not yet	Not yet	

 \circ The estimate of *p* under Fixed-Inverse Binary Misclassification Model is smaller than under the binomial model, which is intuitive because the misclassification rate (ϕ) is around 12%. Hence, the estimate of *p* under the binomial model is likely overestimated due to false-positives generated by using only the fallible classifier.

Simulation Results

- Next, we consider the coverage and width properties of the three confidence intervals when estimating *p*.
- Here we consider two configurations of ratios of the fallible data to the infallible data: $n_{11} = 0.05m$ and $n_{11} = 0.4m$, while varying the parameters p and ϕ .
- All simulations were performed in SAS IML with a simulation size of 10.000 iterations.
- The nominal confidence level was 95%.

- 3, Tenennbein, A., (1970), "A Double Sampling Scheme for Estimating From Binomial Data with Misclassifications," Journal of American Statistical Association, 65 (331), 1350-1361. 4, Hildesheim, A., Mann, V., Brinton, L.A., Szklo, M., Reeves, W.C., Rawls, W.E., (1991),
- "Herpes Simplex Virus Type 2: A Possible Interaction with Human Papillomavirus 16/18 in the Development of Invasive Cervical Cancer," International Journal of Cancer, 49, 335-340.