

BASELINE WATER QUALITY FOR LANANA CREEK WITHIN THE NACOGDOCHES AREA Tania Benavides, Greg Hanson, Phillip Sharp, and Michael A. Janusa, Ph.D. Department of Chemistry & Biochemistry, Stephen F. Austin State University

ABSTRACT

Lanana Creek is one of two springs that surround Nacogdoches, TX. Lanana Creek starts southwest of Lake Naconiche, conjoining with several other bodies of water along its path, and becomes part of the Angelina River. This body of water eventually ends in the Gulf of Mexico which may contribute to the dead zone. Contaminants in water may be of small concentration; however, prolonged exposure could produce many negative effects. To monitor future change in the creek, whether natural or humaninduced, a baseline of targeted species for the creek waters must be established as a "snapshot" of the Nacogdoches Lanana Creek area. Events that could change the baseline include, but are not limited to, floods, fertilizers and pesticides used in rural farms, and urban runoff.

METHODS

The experiment consists of obtaining samples from eight different locations approximately twice a month along Lanana Creek and testing for different anion and metal concentrations in the creek. Samples from the eight sampling sites consist of NE Stallings Drive, Austin Street, East College Street, Starr Avenue, Martinsville Street, Park Street, Main Street, and Martin Luther King Jr. Blvd. Samples were filtered to remove residue as only the dissolved species in the water are analyzed. Anion analysis was conducted using an ion chromatography (IC), and metal analysis was conducted using an Inductively Coupled Plasma - Mass Spectrometer (ICP-MS).

ACKNOWLEDGEMENTS Welch Foundation: Grant No. An-0008 SFASU Department of Chemistry & Biochemistry

Mean concentrations of anions in ppm over selected sampling sites for entire study of Lanana Creek										
	NE Stallings	Austin	E College	Starr	Martinsville	Park	Main	Martin Luther King Jr	mean ± s.d.	
Fluoride	0.633	0.585	0.428	0.511	0.504	0.364	0.562	0.497	0.511±0.086	
Chloride	53.590	69.509	51.549	54.418	61.605	48.396	52.015	44.289	54.422±7.865	
Nitrite	0.473	0.362	0.284	0.259	0.255	0.310	0.311	0.266	0.315±0.074	
Bromide	0.168	0.405	0.411	0.397	0.313	0.292	0.311	0.303	0.325 ± 0.081	
Nitrate	29.300	27.646	11.585	8.757	17.203	9.835	5.277	14.750	15.545±8.774	
Sulfate	38.038	36.161	40.876	42.056	44.182	40.340	36.047	35.986	39.211±3.116	
Phosphate	1.494	0.533	3.101	1.463	1.142	0.439	2.976	2.426	1.697±1.034	

	Mean concentrations of metals in ppb over selected sampling sites for entire study of Lanana Creek										
	NE Stallings	Austin	E College	Starr	Martinsville	Park	Main	Martin Luther King Jr	mean ± s.d.		
Cd	0.016	0.011	0.009	0.013	0.075	0.032	0.019	0.044	0.028 ± 0.023		
Co	0.659	0.142	0.281	0.398	0.342	0.267	0.499	0.327	0.365±0.158		
Cr	0.601	0.348	1.028	0.658	0.706	0.639	0.894	1.313	0.774±0.297		
Cu	3.923	3.333	2.683	2.432	2.783	1.857	1.664	4.436	2.889±0.963		
Li	2.821	3.057	3.000	4.405	3.860	3.381	2.865	3.107	3.312±0.554		
Mn	8.649	9.739	25.035	17.071	10.813	8.937	22.101	38.982	17.666±10.664		
Mo	0.096	0.142	0.140	1.281	18.680	7.452	2.870	1.525	4.024±6.406		
Ni	2.298	1.616	1.707	2.083	1.672	1.469	2.357	4.634	2.23±1.026		
Pb	0.182	0.133	0.275	0.256	0.272	0.164	0.245	0.418	0.244 ± 0.089		
Zn	77.851	59.217	78.184	67.562	71.582	57.298	109.160	111.284	79.018±20.71		

CURRENT STATUS AND FUTURE WORK Data has been collected since August 2013 to the present approximately twice a month. Currently an initial baseline of targeted anions and metals has been established; however, further collection and analysis of the creek water will be needed before a valid baseline for the creek can be established for controlling/monitoring changes in the creek over time.