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ABSTRACT
The Haynesville Shale lies under areas of Louisiana and Texas and is one of the largest gas plays in the U.S. 
Encompassing approximately 2.9 million ha, this area has been subject to intensive exploration for oil and gas, 
while over 90% of it has traditionally been used for forestry and agriculture. In order to detect the landscape 
change in the past few decades, Landsat Thematic Mapper (TM) imagery for six years (1984, 1989, 1994, 
2000, 2006, and 2011) was acquired. Unsupervised classifications were performed to classify each image 
into four cover types: agriculture, forest, well pad, and other. Change detection was then conducted between 
two classified maps of different years for a time series analysis. Finally, landscape metrics were calculated 
to assess landscape fragmentation. The overall classification accuracy ranged from 84.7% to 88.3%. The 
total amount of land cover change from 1984 to 2011 was 24%, with 0.9% of agricultural land and 0.4% of 
forest land changed to well pads. The results of Patch-Per-Unit area (PPU) index indicated that the well pad 
class was highly fragmented, while agriculture (4.4-8.6 per sq km) consistently showed a higher magnitude 
of fragmentation than forest (0.8-1.4 per sq km).
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1. INTRODUCTION

Oil and natural gas exploration has increased 
substantially in recent years due to increased 
demand and improvements in technologies 
that allow for access to geologic strata once 
considered impractical to pursue for petroleum. 
With the increases in oil and gas activities 
comes a conversion of land cover, such as 
forest or agricultural land, to oil and gas well 
pads. This disturbance of land can fragment 
the land cover and result in loss of productive 
forests and agricultural lands, and may affect 
other resources, such as water resources and 
wildlife habitats.

During oil and gas development, a com-
plex system of well pads, roads, pipelines, and 
other infrastructure is created across the land-
scape. Louisiana and Texas have experienced 
an increase in natural gas exploration due to 
recent advances involving hydrofracturing 
and horizontal drilling. Currently, one of the 
largest and most active gas plays in the United 
States is in the Haynesville Shale formation, 
which is located in northwest Louisiana and 
northeast Texas.

The Haynesville Shale region encompasses 
approximately 2.9 million hectares, and has 
been subject to intensive exploration. The 
full spatial extent of the Haynesville Shale is 
not yet known and the mapped region is con-
tinually changing due to new discoveries. The 
Haynesville Shale lies in an area that has had 
significant oil and gas development due to the 
Louisiana-Mississippi Salt Basins and the East 
Texas Basin (Grant et al., 2009). Oil and gas 
exploration also continues that is not related 
to the Haynesville Shale, so identification of 
wells specific to the Haynesville Shale is based 
on drilling depth and composition of the gas 
produced (Grant et al., 2009).

Land cover changes are continually occur-
ring due to natural and anthropogenic activities, 
and monitoring of natural resources has been 
significantly enhanced with improvements 
in satellite imagery. With the availability of 
sequential satellite imagery, temporal changes 

on the Earth’s surface may be evaluated. Land 
cover change detection has been applied in 
various situations, and is especially useful in 
monitoring changes due to human impact (Bi 
et al., 2011; Phalke & Couloigner, 2005; Tang 
et al., 2008; Vescovi et al., 2002).

Change detection is a valuable tool for 
analyzing biophysical and anthropogenic altera-
tions to the Earth’s surface. Change detection is 
the process of identifying differences by view-
ing an image of a specific location at different 
times. Examples of uses for change detection 
are land-use and land-cover changes, forest or 
vegetation changes, environmental change, and 
urban change (Lu et al., 2004).

One method for change detection is 
post-classification comparison. Using post-
classification of images to detect change has 
been successful, since it better handles effects 
of bias and variance between images (Phalke 
& Couloigner, 2005). Post-classification com-
parison of Landsat Thematic Mapper (TM) 
imagery has shown to be a successful method 
for change detection and quantification of the 
changes (Döner, 2011; Vescovi et al., 2002; 
Zhao et al., 2004). With the use of Landsat 
TM imagery, changes over time to forests 
and agricultural lands due to oil and gas well 
pads may be quantified within the Haynesville 
Shale region.

Changes due to abrupt and gradual distur-
bances to land surfaces are in need of investiga-
tion. Surface disturbance is caused by distinct 
events that alter the physical environment 
(Farina, 1998). This can lead to fragmentation, 
which is a continuous process that subdivides the 
land cover into smaller, isolated patches (Farina, 
1998; Li et al., 2009). Abrupt change is caused by 
a disturbance, such as well pads, while gradual 
change is a linear trend due to something like 
long-term annual rainfall or land degradation 
(Verbesselt et al., 2010). Disturbance of land 
from petroleum exploration and production may 
result in a fragmented landscape.

Concerns associated with fragmented 
landscapes include ecological and economic 
issues. Ecological concerns include wildlife 
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habitat loss, shifts in species distribution, and 
increased soil erosion. Economic issues include 
the loss of land used for other resources (e.g., 
timber or crops) and loss of recreational uses 
(e.g., hunting and fishing).

Land cover metrics can be used to quantify 
the land cover patterns and assess possible 
fragmentation due to well pads. Two metrics 
useful for the quantification of fragmentation 
are the Patch-Per-Unit area (PPU) and Square 
Pixel (SqP). Patch-Per-Unit area is the degree 
of fragmentation of patches and SqP is a mea-
surement of the shape complexity of patches 
(Ayad, 2005; Franklin & Dickson, 2001). The 
inclusion of land cover metrics provides further 
information to assess the impact oil and gas well 
pads have on landscape dynamics.

Due to disturbances of the land, oil and gas 
exploration and production has shown a range 
of negative impacts on the landscape (Bi et 
al., 2011; Wilbert et al., 2008). By calculating 
the physical dimensions of the disturbed area, 
direct effects can be measured (Wilbert et al., 
2008). Land cover metrics are used to quantify 
the composition and spatial arrangement of the 
Earth’s surface. Advantages of the use of metrics 
include a better capturing of the inherent spatial 
structure of the land cover patterns and biophysi-
cal characteristics of the spatial dynamic (Tang 
et al., 2008). Disturbed land cover size-shape 
relationships can influence multiple environ-
mental aspects, including surface water runoff 
and animal dispersal (Krummel et al., 1987).

The overall objective of this study was to 
quantify the amount of land within the Haynes-
ville Shale area that had been converted from 
forest land and agricultural land to oil and gas 
well pads. Oil and gas exploration activity was 
high in Louisiana and Texas in the 1980s and 
spiked again in recent years. A 27-year period 
was assessed to quantify changes in land cover 
due to oil and gas exploration and production 
from 1984 to 2011 and for 6 different year 
comparisons within the 27-year period. The 
land cover changes were also assessed through 
landscape metrics calculations.

2. METHODS

2.1. Study Area

The study area was the region located above 
a natural gas producing shale known as 
the Haynesville Shale located in northwest 
Louisiana and northeast Texas (Figure 1). The 
boundary of the study area was set based on 
a shapefile available from the Department of 
Energy’s Energy Information Administration 
(ftp://ftp.eia.doe.gov/pub/oil_gas/natural_gas/
analysis_publications/maps/maps.htm, May 
2011). The Haynesville Shale lies under nine 
Louisiana parishes (Bienville, Bossier, Caddo, 
Claiborne, DeSoto, Natchitoches, Red River, 
Sabine, and Webster) and sixteen Texas counties 
(Angelina, Cherokee, Gregg, Harrison, Jasper, 
Marion, Nacogdoches, Panola, Polk, Rusk, 
Sabine, San Augustine, Shelby, Smith, Tyler 
and Upshur). Land cover of this region contains 
large amounts of forest and agricultural land.

2.2. Image Acquisition

Landsat 5 TM images were obtained through 
the United States Geological Survey (USGS) 
Global Visualization Viewer (GloVis) website 
(http://glovis.usgs.gov, November 2011). Im-
ages acquired for the study area included path 
24, rows 37 and 38, and path 25, rows 37 and 
38 (Table 1). Since four Landsat images were 
required for complete coverage of the study 
area, a mosaic image was created for each 
date using ERDAS IMAGINE 2010 (Version 
10.1; ERDAS Inc., Norcross, GA, USA). The 
mosaicked images had minimum cloud cover.

2.3. Radiometric Correction

Landsat TM bands were chosen to avoid atmo-
spheric effects due to absorption, so the primary 
atmospheric effect in the data was due to scatter-
ing. All data were attained at 8-bit radiometric 
resolution. Additionally, the use of cloud-free 
images acquired at approximately the same time 
of year reduced possible environmental effects.

ftp://ftp.eia.doe.gov/pub/oil_gas/natural_gas/analysis_publications/maps/maps.htm
ftp://ftp.eia.doe.gov/pub/oil_gas/natural_gas/analysis_publications/maps/maps.htm
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A radiometric correction was performed 
on each image to reduce errors that may have 
been present from the sensor or the atmosphere. 
Histogram subtraction of each band was used 
for radiometric correction. For each band, the 
minimum digital value was subtracted per 
pixel. These lowest digital values represented 
atmospheric effects, and were altered to show 
a more accurate spectral signature resulting in 
improved classification accuracy.

2.4. Geometric Correction

The Landsat 5 TM images were already geo-
metrically corrected when downloaded from 
USGS GloVis. Each image was geometrically 
referenced to the World Geodetic System (WGS) 
1984, Universal Transverse Mercator (UTM) 
Zone 15 North.

2.5. Image Classification

Each individual satellite image in the time series 
was classified to their respective land cover 
types using ERDAS IMAGINE 2010 software. 
Unsupervised classification was used with 500 
classes, 100 iterations, and a 0.975 convergence 
threshold. Each class was identified and recoded 
to its respective land cover type (forest land, 
agricultural land, well pad, or “other”). Forest 
land included deciduous and evergreen, agri-
cultural land included cropland and pasture, 
and the “other” class included everything not 
classified as forest land, agricultural land, or 
well pads, such as water, roads, and buildings.

Well pads did not have a unique spectral 
digital signature. Agricultural land and urban 
areas were misclassified periodically as well 
pads. Consequently, each pixel value that was 
classified as well pad was examined visually to 
determine if it also represented another class. In 
all instances, the pixel value was representative 

Figure 1. The Haynesville Shale region in Louisiana and Texas
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of agricultural land or “other.” A process was 
created to aid in the isolation of the well pad 
class from the classes for agricultural land and 
“other.” To begin, one image was recoded to 
represent only the well pad class, and a second 
image was recoded to represent forest, agricul-
tural land, and “other.”

Since no universal size and shape exists for 
well pads, areas between 0.5 to 2.3 ha were used 
to isolate the well pads from areas that may have 
been misclassified as well pads. The range of 
0.5–2.3 ha was used based on literature review 
of well pad sizes. The clump and eliminate tools 
available in ERDAS IMAGINE 2010 were 
used on the well pad only image to remove 
areas larger than 2.3 ha and smaller than 0.5 
ha. Clump identifies contiguous pixel groups 
in one thematic class while eliminate removes 
the small clumps and replaces those clumps 
with the pixel value of the neighboring larger 
clumps. In Landsat TM imagery, the size of 2.3 

ha is between 25 and 26 pixels (2.25–2.34 ha), 
so clumps of 25 pixels (2.25 ha) or less were 
eliminated. The eliminated areas were coded as 
background, since only the well pad class was 
in the image. This “clumped and eliminated” 
image was subtracted from original well pad 
classified image, which resulted in areas clas-
sified as well pads less than 2.3 ha. Clump and 
eliminate was then performed again on the 
subtracted image to remove areas less than 0.5 
ha. The size of 0.5 ha falls between five and six 
pixels (0.45–0.54 ha) in Landsat TM imagery; 
therefore, clumps of five pixels (0.45 ha) or less 
were eliminated. This resulted in an image that 
contained areas between 0.5–2.3 ha classified 
as well pads. Areas that were initially recoded 
to the well pad class, but were outside the range 
of 0.5–2.3 ha were coded as background after 
this process.

The image containing areas classified as 
well pads between 0.5 and 2.3 ha was subtracted 

Table 1. Landsat 5 TM imagery used for this study 

Year Date Path/Row

1984 30 November 1984 
30 November 1984 
21 November 1984 
21 November 1984

24/37 
24/38 
25/37 
25/38

1989 12 November 1989 
12 November 1989 
03 November 1989 
03 November 1989

24/37 
24/38 
25/37 
25/38

1994 31 March 1994 
31 March 1994 
07 April 1994 
07 April 1994

24/37 
24/38 
25/37 
25/38

2000 26 November 2000 
26 November 2000 
19 December 2000 
19 December 2000

24/37 
24/38 
25/37 
25/38

2006 13 December 2006 
13 December 2006 
04 December 2006 
04 December 2006

24/37 
24/38 
25/37 
25/38

2011 08 October 2011 
08 October 2011 
31 October 2011 
31 October 2011

24/37 
24/38 
25/37 
25/38
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from the image containing the classes of forest, 
agricultural lands, and “other.” The subtracted 
image was added back to the image of well pads 
between 0.5 to 2.3 ha, resulting in a classified 
image containing forest, agricultural land, well 
pad, and “other” classes.

The resulting image was masked to remove 
urban areas and major water bodies. Urban areas 
and major water bodies were removed from 
the images as these areas were not of specific 
interest to this study. Louisiana urban areas 
and major water bodies were downloaded from 
Atlas: The Louisiana Statewide GIS (http://
atlas.lsu.edu, October 2011). Texas urban areas 
and water bodies were downloaded from the 
Texas Natural Resources Information System 
(http://www.tnris.org, October 2011). Lastly, 
the masked image was clumped, and clumps 
less than two pixels were eliminated (Figure 2).

2.6. Accuracy Assessment

Accuracy assessments were completed on all 
classified maps using aerial photos acquired 
from the United States Department of Agri-
culture (USDA) National Agriculture Imagery 
Program (NAIP) as the reference data. Although 
accuracy assessments were completed with 
aerial photos without “boots on the ground”, 
we followed standard procedures in remote 
sensing when classifying a satellite image with 
surface features that are easily distinguishable 
on an aerial photograph based on their unique 
shape, size, and location (Campbell, 2007). A 
total of 300 points were randomly selected using 
stratified random generation with a minimum 
of fifty points for each class (agricultural land, 
forest land, and well pad). The “other” class 
was not included in the accuracy assessment 
because it largely consisted of areas that were 
masked (urban and water).

Figure 2. Classified maps of the Haynesville Shale region for each year of study (1984, 1989, 
1994, 2000, 2006, and 2011)
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An error matrix was generated for each 
map, and contained producer’s accuracy, user’s 
accuracy, overall classification accuracy, and 
Kappa statistic. While no ideal classification 
system for land cover exists, guidelines were 
established to provide a basic framework for 
classification of remote sensing imagery, and 
classifications should have an accuracy level of 
at least 85% (Anderson et al., 1976). Therefore, 
85% accuracy was the target level for accuracy 
for images classified in this study. Producer’s 
accuracy is the percentage of a class correctly 
classified. User’s accuracy represents the reli-
ability of the classified map. Overall classifica-
tion accuracy was calculated by dividing the 
number of correctly classified points by the 
number of reference points and represents the 
percentage of pixels classified correctly. The 
Kappa statistic represents the accuracy of the 
classified map relative to its percent accuracy 
above random chance assignment.

2.7. Change Detection Analysis

Post classification comparison was used for 
change detection analysis. Since no physical 
change maps, or difference images, were pro-
duced in this study change detection analysis 
was performed via a pixel-by-pixel analysis 
of each classified pixel to extract detailed 
from-to data to determine land cover changes. 
Comparisons were made on each 5-6-yr interval 
between scenes, and between the 1984 and 2011 
scenes. For each comparison, an interactive 
summary matrix within ERDAS Imagine 10.1 
was generated to identify the important from-to 
information.

2.8. Land Cover Metrics

Land cover metrics were calculated for the 
entire classified study area and for each of the 
classified categories (agricultural land, forest 
land, well pad, and “other”). These metrics were 
determined based on contiguous pixels with the 
same value that is defined as a patch. A minimal 
mapping unit of a six pixel area (0.54 ha) was 
used to match with the smallest size of well 
pad. Patches less than six pixels of size were 

replaced with the majority class in the surround-
ing area. Once each patch was identified and 
its area calculated, Patch-Per-Unit area (PPU) 
and Square Pixel (SqP) were calculated and 
compared for landscape fragmentation. Data 
used for the calculation were obtained using 
ERDAS IMAGINE 2010 software.

Patch-Per-Unit area was calculated using 
the formula shown in Equation 1 (Frohn, 1998):

PPU
m

n
=

×( )λ
	 (1)

where, m = the total number of patches, n = the 
total number of pixels in the study area, and λ is 
a scaling constant equal to the area of a pixel. 
PPU is a patch contagion index with increased 
PPU meaning more fragmentation.

Square pixel is an indicator for patch shape 
complexity as defined by Frohn (1998) calculat-
ing the area perimeter ratio using Equation 2:

SqP
A

P
= −

×










1
4 	 (2)

where, A = the total area of all pixels and P 
= the total perimeter of all pixels. Results are 
normalized to values between 0 and 1, with 0 
indicating a square, the least complex shape 
(Ayad, 2005; Rutledge, 2003). For this study, 
an alternative form of square pixel shown as 
Equation 3 was used that ranges from 1 (for a 
square) to infinity (Frohn, 1998).

Sq
P

A
=

×









4

	 (3)

3. RESULTS

3.1. Image Classification and 
Accuracy Assessment

One objective of this study was to accurately 
isolate well pads using Landsat TM imagery. 
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Results of the classified images had an overall 
classification accuracy range between 84.7% 
and 89.0% (Table 2). The 2006 classified image 
had the highest overall classification accuracy 
with 89.0%. The lowest overall classification 
accuracy of 84.7% was in the 2000 classified 
image. Each of the classified images reported 
similar accuracy values in the error matrices, 
showing consistency existed between the dates.

User’s accuracy represents the reliability 
of the classified map. User’s accuracy for forest 
land (96.9% to 98.7%) and agricultural land 
(81.8% to 88.1%) was acceptable for all classi-
fied images; however, well pad user’s accuracy 
remained low in all classified images (50.0% to 
60.0%). Images with the highest user’s accuracy 
for well pads were the 1984, 1994, and 2006 
classified images with each achieving 60.0%.

Producer’s accuracy is the percentage of a 
class that was correctly classified. Producer’s 
accuracy for forest land (94.6% to 97.7%), 
agricultural land (79.1% to 90.9%), and well 
pads (90.9% to 100%) remained at acceptable 
levels for all classified images. The well pad 
class had a particularly high producer’s ac-
curacy. Since the producer’s accuracy of well 
pads was high, and the user’s accuracy was 
low, this indicated an over classification of the 
number of well pads. Difficultly in isolating 
well pads from agricultural land and urban 
areas resulted in user’s accuracy levels below 
the desired target level.

3.2. Change Detection Analysis

A summary matrix for each time series was 
generated with the values (hectares and percent-
ages) representing the amount of correlation 
between the two images. The changes in land 
cover from agricultural land and forest land 
to well pads for the five- to six-year intervals 
(Table 3) showed varying degrees of change. 
The greatest change from agricultural land to 
well pads occurred between 1994 and 2000 
(12,965 ha), while the conversion from for-
est land to well pads was found to be highest 
between 2006 and 2011 (5,947 ha). Between 
1984 and 2011, 6,703 ha of agricultural land 

and 8,071 ha of forest land were converted to 
well pads (Table 3). The discrepancy between 
the amounts of agricultural land converted to 
well pads was likely due to classification errors, 
with a larger portion of the agricultural land and 
“other’ classes being misclassified as well pads 
in 2000 than in the other years.

3.3. Land Cover Metrics

As expected, the results of mean patch size 
showed that well pads maintained the same 
small average size (1.1-1.2 ha) throughout the 
years. From 1994 to 2011, the mean patch size 
of forest continued to increase, while that of 
agriculture was decreasing. The overall mean 
patch size for the study area did not show a 
significant change over time (Figure 3).

Patch-Per-Unit area calculations showed 
the inverse of mean patch size. Compared with 
other classes, the high PPU values of well pad 
(85.6-94.3 per sq km) across the years indicated 
a much higher magnitude of fragmentation than 
other classes. For each year, agriculture was 
more fragmented than forestry. Since 1994, the 
two classes were heading toward two opposite 
directions, with agriculture becoming more 
fragmented (4.4, 6.8, 7.1, and 7.7 per sq km), 
whereas forest becoming more aggregated (1.4, 
1.3, 1.0, and 0.8 per sq km) (Figure 4). The 
“other” class had an increasing trend of frag-
mentation (5.1-9.9 per sq km). PPU metrics of 
the entire Haynesville Shale region did not vary 
greatly (3.2-3.9 per sq km) over the course of the 
study period. The increase in overall PPU value 
between 2006 and 2011 (3.2-3.4 per sq km) was 
likely influenced by the increased natural gas 
exploration that began in the Haynesville Shale 
in 2007. The main contributor to the increase in 
fragmentation was found as agriculture (7.1-7.7 
per sq km) and “other” (7.7-9.9 per sq km).

Square pixel indicated the shape complex-
ity, and was greater for agriculture (240.5-292.2) 
than forest (145.2-199.1), well pad (112.5-
184.6), and “other” (103.8-132.5) (Figure 5). 
Square pixel metrics can range between 1 to 
infinity, with higher values indicating more 
complexity. Well pad consistently had a lower 
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Table 2. Error matrices for image classifications 

Reference

1984 Other Forest 
Land

Agricultural 
Land

Well Pad Total User’s 
Accuracy

Classified Other 0 0 0 0 0 ---

Forest Land 4 155 1 0 160 96.9%

Agricultural Land 5 5 77 3 90 85.6%

Well Pad 4 0 16 30 50 60.0%

Total 13 160 94 33

Producer’s Accuracy --- 96.9% 81.9% 90.9%

Overall Classification Accuracy = 87.3%, Overall Kappa statistic 0.790

Reference

1989 Other Forest 
Land

Agricultural 
Land

Well Pad Total User’s 
Accuracy

Classified Other 0 0 0 0 0 ---

Forest Land 1 165 2 0 168 98.2%

Agricultural Land 1 8 71 2 82 86.6%

Well Pad 6 0 15 29 50 58.0%

Total 8 173 88 31

Producer’s Accuracy --- 95.4% 80.7% 93.5%

Overall Classification Accuracy = 88.3%, Overall Kappa statistic 0.799

Reference

1994 Other Forest 
Land

Agricultural 
Land

Well Pad Total User’s 
Accuracy

Classified Other 0 0 0 0 0 ---

Forest Land 1 146 1 0 148 98.6%

Agricultural Land 5 8 88 1 102 86.3%

Well Pad 6 0 14 30 50 60.0%

Total 12 154 103 31

Producer’s Accuracy --- 94.8% 85.4% 96.8%

Overall Classification Accuracy = 88.0%, Overall Kappa statistic 0.804

Reference

2000 Other Forest 
Land

Agricultural 
Land

Well 
Pad

Total User’s 
Accuracy

Classified Other 0 0 0 0 0 ---

Forest Land 2 157 3 0 162 96.9%

Agricultural Land 7 9 72 0 88 81.8%

Well Pad 9 0 16 25 50 50.0%

Total 18 166 91 25

Producer’s Accuracy --- 94.6% 79.1% 100%

Overall Classification Accuracy = 84.7%, Overall Kappa statistic 0.744

continued on following page
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SqP value, which is understandable due the 
rectangular shape of well pads. The “other” class 
had an increasing trend for SqP that reached its 
maximum in 2011. Square pixel metrics for the 
entire Haynesville Shale region (277.2–346.0) 
showed the biggest increase between 1989 and 
1994, and then continued to decrease.

4. DISCUSSION

Louisiana and Texas have been greatly impacted 
by the recent boom in natural gas exploration 
and production in the Haynesville Shale region. 
Concern about this increase in exploration has 
arisen, and is partly due to the possible effects 
drilling has on land, including the conversion 
of land from forests and agricultural lands to 
well pads, access roads, and pipelines. This 
study evaluated the land area affected by well 
pad construction over an approximate 25-year 

span. During the mid-1980s oil exploration 
spiked in the region, and during the mid-2000s 
gas exploration increased.

One objective of this study was to quantify 
the amount of land converted from forest or 
agricultural land due to well pad construction 
over the last 25 years. To accomplish this task, 
images had to be classified to accurately reflect 
the amount of land considered well pads. Un-
fortunately, during identification of the classes, 
areas of agricultural land and man-made struc-
tures (e.g., buildings and roads) shared the same 
digital signature as the well pads. This led to 
lower user’s accuracy levels in the classified 
maps that were used to quantify land cover 
changes. The accuracy of the post classification 
comparison is dependent on the accuracy of the 
initial classifications. A more consistent and 
highly accurate method for isolating well pads 

Reference

2006 Other Forest 
Land

Agricultural 
Land

Well 
Pad

Total User’s 
Accuracy

Classified Other 0 0 0 0 0 ---

Forest Land 0 163 3 0 166 98.2%

Agricultural Land 4 6 74 0 84 88.1%

Well Pad 11 0 9 30 50 60.0%

Total 15 169 86 30

Producer’s Accuracy --- 96. 4% 86.0% 100%

Overall Classification Accuracy = 89.0%, Overall Kappa statistic 0.814

Reference

2011 Other Forest 
Land

Agricultural 
Land

Well Pad Total User’s 
Accuracy

Classified Other 0 0 0 0 0 ---

Forest Land 4 166 0 0 170 97.6%

Agricultural Land 5 4 70 1 80 87.5%

Well Pad 15 0 7 28 50 56.0%

Total 24 170 77 29

Producer’s Accuracy --- 97.6% 90.9% 96.6%

Overall Classification Accuracy = 88.0%, Overall Kappa statistic 0.798

Table 2. Continued 
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Table 3. Land cover changes (hectares and percentages) in the Haynesville Shale region between 
years of study 

1984

Agriculture Forest Well Pad Other

1989 Agriculture 428,862 (59.5%) 90,708 (4.8%) 18,301 (61.6%) 25,557 (9.7%)

Forest 254,260 (35.2%) 1,742,530 (92.9%) 6,691 (22.5%) 22,880 (8.6%)

Well Pad 7,454 (1.0%) 1,444 (0.1%) 1,015 (3.4%) 1,865 (0.7%)

Other 30,762 (4.3%) 41,359 (2.2%) 3,716 (12.5%) 214,301 (81.0%)

1989

Agriculture Forest Well Pad Other

1994

Agriculture 483,750 (85.9%) 372,399 (18.4%) 9,269 (78.7%) 40,039 (13.8%)

Forest 58,700 (10.4%) 1,606,260 (79.3%) 291 (2.5%) 42,891 (14.8%)

Well Pad 5,320 (0.9%) 4,016 (0.2%) 1,083 (9.2%) 2,253 (0.8%)

Other 15,658 (2.8%) 43,692 (2.1%) 1,133 (9.6%) 204,961 (70.6%)

1994

Agriculture Forest Well Pad Other

2000

Agriculture 509,315 (56.3%) 145,526 (8.5%) 6,833 (53.9%) 17,558 (6.6%)

Forest 353,914 (39.1%) 1,511,840 (88.5%) 3,337 (26.3%) 47,501 (17.9%)

Well Pad 12,965 (1.4%) 1,912 (0.1%) 1,208 (9.6%) 1,391 (0.5%)

Other 29,265 (3.2%) 48,862 (2.9%) 1,294 (10.2%) 198,997 (75.0%)

2000

Agriculture Forest Well Pad Other

2006

Agriculture 445,630 (65.6%) 117,491 (6.1%) 12,457 (71.3%) 24,904 (8.9%)

Forest 202,440 (29.8%) 1,745,720 (91.1%) 1,711 (9.8%) 56,214 (20.2%)

Well Pad 4,927 (0.7%) 4,145 (0.2%) 1,297 (7.4%) 1,597 (0.6%)

Other 26,236 (3.9%) 49,243 (2.6%) 2,011 (11.5%) 195,703 (70.3%)

2006

Agriculture Forest Well Pad Other

2011

Agriculture 406,034 (67.6%) 100,666 (5.0%) 4,722 (39.4%) 24,705 (9.0%)

156,732 (26.1%) 1,812,050 (90.3%) 1,940 (16.2%) 42,515 (15.6%)Forest

Well Pad 6,220 (1.1%) 5,947 (0.3%) 2,506 (21.0%) 2,126 (0.8%)

Other 31,495 (5.2%) 87,411 (4.4%) 2,797 (23.4%) 203,838 (74.6%)

1984

Agriculture Forest Well Pad Other

2011

Agriculture 359,648 (49.9%) 135,806 (7.3%) 15,219 (51.1%) 25,453 (9.6%)

317,405 (44.0%) 1,645,890 (87.7%) 10,629 (35.8%) 39,308 (14.9%)Forest

Well Pad 6,703 (0.9%) 8,071 (0.4%) 789 (2.7%) 1,236 (0.4%)

Other 37,583 (5.2%) 86,267 (4.6%) 3,086 (10.4%) 198,606 (75.1%)
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in Landsat TM imagery needs to be developed 
for creation of reliable thematic maps.

Object-based classification has produced 
results indicating it may be more accurate than 
pixel-based classification (Dorren et al., 2003; 
Matinfar et al., 2007). The use of a combination 
of pixel-based and object-based classification 
has also shown promising results in classifica-
tion accuracy improvement (Aguirre-Gutiérrez 
et al., 2010). Additionally, high resolution aerial 
photos may provide more accurate analysis of 
well pads. However, this may only be practi-
cal when dealing with smaller areas within the 
Haynesville Shale rather than the entire region. 
An object-based method combining Landsat TM 
data and aerial photos has also improved clas-
sification accuracy (Geneletti & Gorte, 2003).

Satellite images acquired for this study were 
taken during winter months. Due to the large 
study area and the need for cloud free images, 
winter months had more available imagery than 
summer months. However, summer images may 

have been better to use for classification of well 
pads because agricultural land and well pads are 
more likely to have the same digital signature 
in winter months than summer months. During 
summer months, more areas of agricultural 
land would be growing crops or grasses that 
would have a different digital signature than 
the cleared land around well pads.

Change detection analysis for the Haynes-
ville Shale region showed a change in both 
forest and agricultural lands due to well pads. 
When each approximate five-year interval was 
examined, results indicated a greater percent 
change in agricultural land than forest land to 
well pads. One consideration when examining 
results was to realize that confusion existed 
between the classification of agricultural land 
and well pads; however, little error existed 
when classifying forest land. Due to this, more 
discrepancies may exist in the change detection 
analysis of agricultural land than forest land.

Figure 3. Patch size change over time within the Haynesville Shale region
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Results for the overall time period (1984–
2011) indicated more forest land changed 
to well pad (8,071 ha) than agricultural land 
to well pad (6,703 ha). Forest land covered 
more of the study area than agricultural land, 
so placement of well pads was more likely to 
occur on forest land than agricultural land. 
Additionally, between 1984 and 2011 a large 
amount of agricultural land was converted to 
forest (317,405 ha). The increase in agricultural 
land converted to forest was also observed by 
Hung et al. (2004) within this region.

Patch-Per-Unit area and Square Pixel were 
used to analyze fragmentation and complex-
ity of patches within the Haynesville Shale. 
Patch-Per-Unit area trends reported in this study 
were similar to those reported by Hung et al. 
(2004) for an East Texas area that falls within 
the Haynesville Shale region. Following 1994, 
agricultural lands showed an increased trend 
in fragmentation. Forest lands had an opposite 
trend, with a decrease in fragmentation after 

1994 (Figure 3). Although well pad showed 
much higher magnitudes of fragmentation, 
its contribution to the overall landscape was 
not significant as it only accounted for a small 
portion of the study area. Notably, the “other” 
class had increasing fragmentation over the time 
period examined that was likely due to new roads 
and construction of other man-made structures.

Overall, the Haynesville Shale region ex-
perienced an increasing trend in fragmentation 
with the greatest increase occurring between 
2006 and 2011. During this period, the two major 
contributors were agriculture and “other”. More 
well pads were constructed in agricultural lands 
due to easy access. The “other” class included 
roads and pipelines, which increased in number 
as natural gas exploration increased. While roads 
and pipelines were difficult to discern using 
Landsat imagery, some areas were identified 
and were classified as “other” in this study. 
These areas likely account for the increased 
fragmentation that occurred between 2006 and 

Figure 4. Patch contagion change over time within the Haynesville Shale region
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2011, indicating that the natural gas exploration 
that began in 2007 in the Haynesville Shale 
increased landscape fragmentation.

The SqP values depicted the patch shape 
complexity. Agricultural lands decreased in 
shape complexity between 1984 and 1994, but 
increased between 1994 and 2000. Following 
2000, agricultural lands showed a decreasing 
trend in shape complexity, even though it was 
experiencing higher fragmentation. Forest 
lands showed a decrease in shape complexity 
following 1994. Between agriculture and for-
est, agriculture had a consistently higher shape 
complexity value than forest, suggesting that 
agriculture was practiced in smaller areas with 
more irregular shapes, whereas forests were 
grown in much larger areas. Although well pads 
were small in size, they remained less complex 
in shape than agriculture and forest due the 
nature of its rectangular shape. The “other” 
class did display an increasing SqP trend from 
1984 to 2011. It reached its maximum (132.5) 
in 2011 suggesting that the natural gas explora-

tion beginning 2007 in the Haynesville Shale 
had an impact on the landscape patch shape 
complexity caused by the construction such 
as access roads. This highest shape complexity 
for the “other” class in 2011 echoed the fact 
that the highest fragmentation for this class 
was found in 2011 as well. The “other” class 
included any land cover that was not classified 
as agriculture, forest, or well. It could be bare 
land, road, and any other man-made structure 
that had the highest impact to the landscape 
other than well pad itself.

Landscape metrics were calculated using 
the classified maps generated for this study. The 
fidelity of these measures relies on the accuracy 
of the classified maps. Furthermore, the image 
processes such as clump and eliminate could 
also introduce errors that propagate to the land-
scape metrics, While they report fragmentation 
and high levels of complexity within the shale 
region, further analysis using higher user’s ac-
curacy on well pad classification may provide 
a better understanding of landscape dynamics 

Figure 5. Patch shape complexity change over time within the Haynesville Shale region
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involving forest land, agricultural land, and well 
pad in the Haynesville Shale region.

5. CONCLUSION

Landsat imagery had lower user’s accuracy for 
identification of well pads than expected. While 
the overall accuracy of each classified map was 
above the 85% target level, the user’s accuracy 
of well pad identification (50.0%–60.0%) was 
too low to obtain highly reliable measurements 
for change detection analysis and land cover 
metrics.

A summary matrix of from-to data for all 
forest land, agricultural land, and well pads was 
generated to quantify the amount of change 
every 5–6 years and the overall time period 
(1984–2011). The total amount of land cover 
that changed in the Haynesville Shale region 
from 1984 to 2011 was 686,766 ha, which re-
sulted in a total land cover change of 24%. The 
findings showed an overall change of forest and 
agricultural land to well pads to be 0.1% (8,071 
ha of forest and 6,703 ha of agricultural land).

Landscape metrics were used to determine 
surface disturbance to forest and agricultural 
lands due to well pads. The results showed that 
agriculture was more fragmented and more com-
plex in shape than forest at all times. From 1994 
to 2011, agriculture became more fragmented, 
while forest became more aggregated. In 2011, 
the “other” class reached its highest magnitude 
both in fragmentation and shape complexity 
that might be related to the construction of well 
pads as well as other developments. Overall, 
oil and gas exploration within the Haynesville 
Shale region had disturbed forest and agricul-
tural lands. It should be noted that access roads 
were not included in this study, so the impact 
of petroleum exploration and production in 
this study area are likely higher than values 
reported as what was found in the landscape 
metrics for the “other” class. Further research 
using higher spatial resolution data sets like 
QuickBird or GeoEye may produce a higher 
user’s classification accuracy and report more 
detailed analysis of changes in the landscape.
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