

Stephen F. Austin State University SFA ScholarWorks

Faculty Publications

Chemistry and Biochemistry

1998

Palladium-Catalyzed Carboxylation of Allyl Stannanes and Carboxylative Coupling of Allyl Stannanes and Allyl Halides [Abstract]

Russell J. Franks Stephen F Austin State University, rjfranks@sfasu.edu

Follow this and additional works at: http://scholarworks.sfasu.edu/chemistry_facultypubs Part of the <u>Chemistry Commons</u> Tell us how this article helped you.

Recommended Citation

Franks, Russell J., "Palladium-Catalyzed Carboxylation of Allyl Stannanes and Carboxylative Coupling of Allyl Stannanes and Allyl Halides [Abstract]" (1998). *Faculty Publications*. Paper 31. http://scholarworks.sfasu.edu/chemistry_facultypubs/31

This Conference Proceeding is brought to you for free and open access by the Chemistry and Biochemistry at SFA ScholarWorks. It has been accepted for inclusion in Faculty Publications by an authorized administrator of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.

Palladium-Catalyzed Carboxylation of Allyl Stannanes and Carboxylative Coupling of Allyl Stannanes and Allyl Halides [Abstract]

The reaction of allyl stannanes with CO₂ to form stannyl carboxylates (esters) is catalyzed by Pd(PR₃)₄ complexes. Thus, R₃SnCH₂CH=CH₂ [R=Me and Ph]are converted to R₃SnO₂ CCH₂CH=CH₂ and R₃SnO₂CCH=CHCH₃ under 33 atm of CO₂ (70°C, THF) in moderate to excellent yield in the presence of 8 mol% Pd(PPh₃)₄ ; polycarboxylation of diallyldibutyltin and tetraallyltin also is effected, producing the respective di- and tetracarboxylates, Bu₂Sn(O₂CCH₂CH=CH₂)₂ and Sn(O₂CCH₂ CH=CH₂)₄ , along with the corresponding isomeric crotyl derivatives. In the presence of allyl halides, allyl stannanes and CO₂ undergo carboxylative coupling to produce allyl esters. Under these conditions other Sn-C (Sn-alkyl, -aryl, -vinyl) and Si-C (Si-allyl, -alkyl, -aryl, -vinyl) bonds are inert to carboxylation and carboxylative coupling with allyl halides. A tentative mechanism is proposed to account for this catalytic carboxylation of a main group metal-carbon bond.