View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by SFA ScholarWorks

Stephen F. Austin State University

SFA ScholarWorks

Faculty Publications Forestry

5-17-2007

Low temperature induces two growth-arrested
stages and change of secondary metabolites in
Bursaphelenchus xylophilus

L.L.Zhao

W. Wei

David L. Kulhavy

Xing Yao Zhang

Jiang Hua Sun

Follow this and additional works at: http://scholarworks.sfasu.edu/forestry

b Part of the Forest Biology Commons, and the Forest Management Commons
Tell us how this article helped you.

Recommended Citation

Zhao, L. L.; Wei, W.; Kulhavy, David L.; Zhang, Xing Yao; and Sun, Jiang Hua, "Low temperature induces two growth-arrested stages
and change of secondary metabolites in Bursaphelenchus xylophilus" (2007). Faculty Publications. Paper 268.
http://scholarworks.sfasu.edu/forestry/268

This Article is brought to you for free and open access by the Forestry at SFA ScholarWorks. It has been accepted for inclusion in Faculty Publications

by an authorized administrator of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.


https://core.ac.uk/display/72734858?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.sfasu.edu?utm_source=scholarworks.sfasu.edu%2Fforestry%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sfasu.edu/forestry?utm_source=scholarworks.sfasu.edu%2Fforestry%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sfasu.edu/forestry_department?utm_source=scholarworks.sfasu.edu%2Fforestry%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sfasu.edu/forestry?utm_source=scholarworks.sfasu.edu%2Fforestry%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/91?utm_source=scholarworks.sfasu.edu%2Fforestry%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/92?utm_source=scholarworks.sfasu.edu%2Fforestry%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
http://sfasu.qualtrics.com/SE/?SID=SV_0qS6tdXftDLradv
http://scholarworks.sfasu.edu/forestry/268?utm_source=scholarworks.sfasu.edu%2Fforestry%2F268&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cdsscholarworks@sfasu.edu

Nematology, 2007, Vol. 9(5), 663-670

Low temperature induces two growth-arrested stages and change
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Summary - The third-stage dispersal juvenile (JIII) is the stage for survival and dispersal in the winter of the pine wood nematode,
Bursaphelenchus xylophilus. Through investigations at different temperatures, we found two kinds of growth-arrested development,
including the adult longevity extension and J11I formation induced by low temperature. They showed similar characters: densely packed
lipid droplets and extended longevity. We considered that there were four stages in the formation of growth-arrested stages: induction,
growth-arrested pathway, growth-arrested development and cold-tolerance duration. Moreover, at 4°C there were significant changes in
secondary metabolites, which may be related to signal communication and metabolism associated with the formation of growth-arrested
stages. The results suggested that low temperature was necessary for the dispersal of pine wood nematode and influenced distribution

and intensity of pine wilt.

Keywords — pine wood nematode, secondary metabolism, survival, third-stage dispersal juveniles.

Postembryonic development of nematodes proceeds
through four juvenile stages to the adult during favourable
environmental conditions. In response to a less favourable
environment, nematodes cease development and enter a
growth-arrested stage, specialised for long-term survival
or dispersal to new hosts (Riddle & Georgi, 1990; Som-
merville & Davey, 2002). There are at least two types of
growth-arrested stages: dauer diapause stage and temporal
tolerant stage (Vanfleteren & Braeckman, 1999).

Dauer diapause probably results from the activation of
an enhanced life-maintenance programme, which is nor-
mally operative during dauer diapause. Diapause in para-
sitic nematodes is a mechanism that ultimately enables de-
velopment of the parasite to be synchronised with the sea-
sonal abundance of suitable hosts (Michel, 1974). Som-
merville and Davey (2002) considered that the division of
developmental cycles into diapausing and non-diapausing
stages confers flexibility on the organism that enhances
the prospect of survival. Furthermore, these authors pos-
tulated that there are four stages in diapause. The first is
induction, typically brought about by environmental sig-
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nals. In the second phase, termed ‘diapause pathway’, ne-
matodes have been induced to enter diapause at a later de-
velopmental stage. Surprisingly, entry into the diapause
pathway may be reversible under some circumstances.
The third stage is diapause development, an incompletely
understood process that must be completed prior to the
fourth stage, emergence from diapause. After diapause de-
velopment is complete, resumption of development may
be further delayed by host or environmental conditions.
The basic mechanism of dauer diapause is common
among species but different species adopt different sur-
vival strategies and have different diapausing stages. The
dauer juvenile of Caenorhabditis elegans is JIII, and
its formation is induced by crowding, a low food sup-
ply and high temperature. However, the pine wood ne-
matode, Bursaphelenchus xylophilus (Steiner & Buhrer)
Nickle, has a different survival diapause strategy (Rid-
dle & Georgi, 1990). The pine wood nematode is dis-
persed worldwide and has destroyed large areas of pine
forests in Japan. It has become a global invasive alien
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species (Rautapaa, 1986; Dwinell, 1997; Mota et al.,
1999; Schrader & Unger, 2003; Yang et al., 2003).

The pine wood nematode is a destructive pest of pines
that develops through two pathways: propagative and dis-
persal. Propagative stages (Jn) reproduce rapidly and in-
crease the number of nematodes in infected pines and
cause severe damage to healthy pines. In the autumn, with
the tree weakening, the pine wood nematode switches
to the dispersal pathway. JIIT dispersal juveniles develop
from second-stage propagative juveniles (J2) and accumu-
late around Monochamus pupal chambers (Mamiya, 1972,
1983). As adult beetles emerge the following spring,
developmentally-arrested dauer fourth-stage juvenile J1v
enter the tracheae of the beetle to be vectored to another
pine tree (Ishibashi & Kondo, 1977; Dwinell, 1997).

The Jii1 of the pine wood nematode corresponds to
the pre-dauer (J2) stage of C. elegans, which contains
densely packed lipid droplets. However, instead of rapidly
moulting to the dauer stage equivalent of C. elegans, it
can survive as a special sustained diapause stage, and
moults to JIV only when vector beetles are present. The
formation of JIIT is not only important in ensuring within-
tree survival of the nematode, it is also the precursor
to formation of JIV which ensures transmission to a
new host tree by Monochamus beetles (Linit, 1988).
However, the mechanisms that mediate the switch in
B. xylophilus development from the reproductive to the
dispersal pathway are poorly understood.

Sometimes the cues that induce diapause are intrinsic,
as genetic and signal pathways (Riddle & Georgi, 1990;
Wolkow, 2002; Braeckman & Vanfleteren, 2007), but
diapause in the parasite is a seasonal phenomenon and
external signals, such as pheromones, dehydration and
temperature, can also induce diapause (Sommerville &
Davey, 2002; Jeong et al., 2005; Olsen et al., 20006).
Many laboratory experiments confirmed the importance
of low temperature as an environmental cue, signalling the
onset of autumnal conditions and preparing the nematode
to enter winter diapause in the host (Sommerville &
Davey, 2002). At the same time, the longevity of adults
of plant-parasitic nematodes can be extended during low
temperatures as a type of temporal growth-arrested stage
(Ishibashi & Kondo, 1977). However, the effect of low
temperature on the adult of the pine wood nematode has
not been investigated.

Two different protective mechanisms that mediate the
formation of diapause stage JIII and extension of adult
longevity in B. xylophilus have not been reported previ-
ously. In the present work we chose low temperatures to
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treat J2 and adults of the pine wood nematode to char-
acterise and compare the changes in morphology and sec-
ondary metabolites during the formation of diapause stage
Ji1 and adult longevity. We discuss the cold tolerance
metabolic mechanisms of the pine wood nematode.

Knowledge of development and diapause in the pine
wood nematode will provide a reference point for predict-
ing the potential global distribution, which is an important
factor in relation to the management of the pine wood ne-
matode.

Materials and methods

NEMATODES

In April 2006, pine wood nematodes B. xylophilus were
obtained from Zhejiang, China. The Jn were cultured
with the fungus Diplodia sp. Nematodes for experimental
purposes were rinsed from the culture dish lids with
distilled water.

EFFECTS OF DIFFERENT TEMPERATURES ON THE
GROWTH-ARRESTED DEVELOPMENT OF PINE WOOD
NEMATODE

The longevities of nematodes were determined at —4, 0,
4,10, 15, 20, 25 and 30°C. About 0.3 million nematodes
in 80 ml distilled water were mixed evenly by a magnetic
stirrer. A suspension (1 ml) containing about 3000 ne-
matodes was transferred to each Axygen 2 ml screw cap
tubes (Beijing Zohonice Science & Technology Develop-
ment, Beijing, China). Ten replicate tubes were included
for each temperature. The number of surviving nematodes
was counted by assessing movement response to mechan-
ical prodding every 5 days over 6 months by direct obser-
vation through a dissecting microscope.

EFFECTS OF LOW TEMPERATURE ON THE
MORTALITIES OF J2 AND ADULT

For life-span analysis nematodes were reared at 4°C.
About 2000 young adults and J2 were select out of a
mixed population including third-stage (J3) and fourth-
stage (J4) juveniles and transferred into separate 2 ml
tubes. Ten replicates were included for each time. The
numbers of surviving nematodes were counted as above
every 5 days for over 2 months by direct observation
through a dissecting microscope.

Nematology
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EFFECTS OF LOW TEMPERATURE ON THE BODY
LENGTHS OF J2 AND ADULT

Fifteen each of live female adults, male adults and J2
were chosen from 2 ml tube suspensions to measure body
lengths every 5 days over 2 months at 4°C. The nematodes
were measured after killing by gentle heat.

EFFECTS OF LOW TEMPERATURE ON THE LIPID
DROPLETS OF J2 AND ADULT

The male adults and J2 chosen from separate 2 ml
tubes were fixed in 70% ethanol and the droplets of
unbound neutral lipid within the nematodes were then
stained with Oil Red O (Croll, 1972). Individually stained
nematodes were recorded with a high resolution video
camera mounted on a brightfield optical microscope,
and images were videotaped. Image analysis software
(Mocha, SPSS, Chicago, IL, USA) was used to determine
total body area and lipid droplet area of each videotaped
nematode. The percentage of body area occupied by
droplets of lipid (percent lipid area) was measured on 15
surviving adults and J2 every 5 days over 2 months at 4°C
(Stamps & Linit, 2001).

EFFECTS OF LOW TEMPERATURE ON THE SECONDARY
METABOLIC MATERIALS OF THE PINE WOOD
NEMATODE

Chemicals

The standards in GC-MS and materials in bioassays
included isobutyl propylketane, pentadecane, 2-methyl-4-
heptanol, 1-dodecano, 2,6-di-tert-butylphenol and ethyl-
arachidonate (all from Acros Organics, NJ, USA; purity
>95%).

Collection and analyses of volatiles

Batches of 5000 propagative nematodes at 25°C and
5000 of the diapause nematodes treated for 60 days at 4°C
were each rinsed, centrifuged and concentrated in 1 ml
distilled water. Concentrated nematodes were extracted
with 2 ml n-hexane for 5 min, and the resulting extracts
were dehydrated through anhydrous sodium sulphate and
stored at —20°C until needed.

Extracts were analysed by GC-MS. Extracts were
concentrated to 10 wl, in which 1 wul extracts were
analysed with an Agilent 6890N Network GC system
(Agilent Technologies, Palo Alto, CA, USA) coupled to
a 5973 network mass selective detector. The GC was
fitted with a DB-WAS capillary column (0.25 mm i.d.

Vol. 9(5), 2007

30 m; Agilent Technologies), and the column temperature
programme was 50°C for 2 min, then 5°C/min to 220°C
and then held for 20 min. Injections were run in the
spitless mode. Components were identified by comparing
their retention times and mass spectra with those of known
standards (Lacey et al., 2004).

STATISTICAL ANALYSIS

Data analyses were analysed using statistical software
SPSS 11.0 for Windows (SPSS, 2001). Differences among
different times were compared by ANOVA, with signifi-
cance at P < 0.05.

Results

EFFECTS OF DIFFERENT TEMPERATURES ON THE
GROWTH-ARRESTED DEVELOPMENT OF PINE WOOD
NEMATODE

Temperature-response curves showed the number of
surviving nematodes after the pine wood nematode was
exposed to a variety of temperatures for different times.
Results indicated that temperature had a marked influence
on the survival of the pine wood nematode. Between 15
and 30°C, the nematodes were in a propagative pathway
and did not enter growth-arrested stages. At 25 and 30°C,
there was 88.9-98.1% mortality before 15 days (Fig. 1)
and 100% mortality after 80 days. At —4, 0, 4 and
10°C, the pine wood nematode formed lipid droplets in
the body. At 0 and 4°C the nematodes entered growth-
arrested stages for a long-term survival and 25.5% at 0°C
and 25.6% at 4°C remained alive after the base level of
200 days (Fig. 1). The growth-arrested nematodes formed
after 60 days and survived until the end of the study. Low
temperatures (0-4°C) induced the development of growth-
arrested J2 and adult (Fig. 1) and lengthened the life span
of the pine wood nematode. However, the nematodes at
—4 and 10°C with lipid droplets died by day 60 (Fig. 1).

EFFECTS OF LOW TEMPERATURE ON THE FORMATION
OF GROWTH-ARRESTED STAGES

J2 and adult nematodes were treated at 4°C to compare
their different developing processes of cold tolerance.
This temperature was used instead of 0°C because it was
conducive to a more rapid development of the life stages.

The number of surviving young-adult nematodes decli-
ned rapidly before 10 days, followed by a stable period,
then 16.0% entered into diapause. The numbers of J2 that
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Fig. 1. Effects of different temperatures on Bursaphelenchus xylophilus. Solid symbols indicate temperatures at which the lipid droplets
filled the body of nematodes: open symbols stand for temperatures at which no lipid droplets occurred in the body of nematodes.

survived were nearly constant over time and the propor-
tion of worms that moulted into JIIT and entered diapause
was up to 53.7%, a significantly greater percentage than
adults (Fig. 2A).

Low temperature influenced the body length of the pine
wood nematode, which showed different trends between
adults and J2. The body length of live adults decreased
gradually but the length of J2 increased and after 35 days,
the change in range was as great as 39.05 um per 5 days.
Eventually, after 50-60 days, the length of adults and Jii1
were uniform at 492.66-495.97 um (Fig. 2B).

The lipid droplets developed more slowly in J2 than
in adults. Lipid droplets appeared in the adults at 5 days.
Lipid droplets appeared in J2 at 15 days. At that time, lipid
droplets occupied 58% of the adult’s body. After 45 days,
both adults and J2 were full of lipid droplets and J2 were
believed to moult into Jii1 (Fig. 2C). The lipid droplets
appeared from the ventral side of adult nematodes, then
appeared in the dorsal side, and then gradually increased
from hypodermis to intestine, eventually filling the whole
body.

EFFECTS OF LOW TEMPERATURE ON THE SECONDARY
METABOLIC MATERIALS OF THE PINE WOOD
NEMATODE

After treatment at 4°C, there were specific components,
such as isobutyl propylketane, pentadecane and ethyl-
arachidonate, in the growth-arrested stages. 2-methyl-4-
heptanol and 2,6-di-fert-butylphenol increased greatly. By
contrast, 1-dodecanol disappeared (Fig. 3).
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Discussion

Nematodes cease development and enter a growth-
arrested stage in a less favourable environment (Riddle &
Georgi, 1990; Sommerville & Davey, 2002). We found
that the pine wood nematode had two growth-arrested
stages, JIII and adult, at low temperature at 0 and
4°C. We found that growth-arrested adults had similar
characters compared to JIII: lipid droplets were densely
packed and longevity was extended. There were four
stages during the formation of the two growth-arrested
stages. The first is induction (0-5 days), typically brought
about by low temperature. The nematodes were not
active until placed at room temperature for 2-3 h. Many
nematodes froze during this phase. In the second phase
(5-35 days), the growth-arrested pathway, the amount of
neural lipids increased rapidly. Entry into the diapause
pathway may be reversible at room temperature. The
third stage is growth-arrested development (35-60 days).
Nematodes completed the main body length changing
process and established a uniform morphology and J2
moult into JIII. The last stage was cold tolerance duration
(60+ days). Although growth-arrested development is
complete, resumption of development may be further
delayed at low temperature. The results correspond to
four stages in diapause summarised by Sommerville and
Davey (2002).

In C. elegans, during the formation of growth-arrested
stages, the decision whether or not to enter the diapause
pathway and arrest development is made primarily by

Nematology
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Fig. 2. Effects of low temperature on the developments of second-stage juveniles (J2) and adults of Bursaphelenchus xylophilus. A:
Effects of low temperature (4°C) on the longevity of J2 and adults; B: Effects of low temperature (4°C) on the body lengths of J2 and
adults; C: Effects of low temperature (4°C) on the lipid droplets of J2 and adults.

assessing the concentration of a constitutively secreted
pheromone in the environment (Riddle & Georgi, 1990).
Under continuing detection of pheromone signals by sen-
sory receptors, the genetic pathway would be induced;
neurosecretion would then alter the hormonal balance in

Vol. 9(5), 2007

the nematode to initiate dauer morphogenesis, and fi-
nally nematodes store nutrients within intestinal and hy-
podermal granules (Riddle & Georgi, 1990). During de-
velopment, the basic metabolism of the nematode de-
creased (Rea, 2005). However, the secondary metabo-
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Fig. 3. Effects of low temperature (4° C) on the metabolic materials of J2 and adults of Bursaphelenchus xylophilus. A: GC-MS figure of
extracts of propagative nematodes; B: GC-MS figure of extracts of the growth-arrested stages. 1. Isobutyl propylketane; 2. Pentadecane;
3. 2-Methyl-4-heptanol; 4. 1-Dodecanol; 5. 2,6-Di-tert-butylphenol; 6. Ethylarachidonate.

lites that may relate to cold tolerance have not been re-
ported.

Our results showed that the secondary metabolites of
growth-arrested stages at low temperature were differ-
ent to propagative stages of pine wood nematodes. There
were specific secondary metabolites induced by the pine
wood nematode at 4°C: isobutyl propylketane, pentade-
cane, 2-methyl-4-heptanol, ethylarachidonate and 2,6-di-
tert-butylphenol. Isobutyl propylketane, pentadecane and
2-methyl-4-heptanol, which are pheromones found in
some insects (Ali et al., 1989; Do Nascimento et al.,
1998; Cho & Kim, 2003), might also act as chemical
signals secreted by the pine wood nematode to induce
the growth-arrested genetic pathway. Ethylarachidonate
could increase the synthesis of arachidonic acid (Panta-
leo et al., 2004), which plays an important role in the for-
mation of phospholipids, decreases penetration and sta-
bilizes membranes (Tanaka et al., 1996), and may be in-
volved in metabolism, protecting nematodes against the
effects of low temperature. 2,6-di-fert-butylphenol could
regulate biological development (Chu ez al., 1999), and
may regulate the formation of growth-arrested stages and
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extend the longevities of both J2 and adult nematodes. 1-
dodecanol may disturb the darkening process of the cuti-
cle of Rhodnius prolixus and Triatoma infestans, and has
the role of a penetration enhancer on epithelial membrane
lipid domains (Turunen et al., 1994). The disappearance
of 1-dodecanol indicated that 1-dodecanol might partici-
pate in some depressed metabolism at low temperature. In
conclusion, we speculate that low temperature induced the
pheromone secretion and special secondary metabolism
of pine wood nematode. In the future, we will investigate
the functions of secondary metabolites in the formation of
growth-arrested stages of pine wood nematode.

Acquired tolerance metabolism to low temperature
stress is a major protective strategy of nematodes. The
life span-controlling mechanisms involved in growth-
arrested development remain complicated. In C. elegans
at least two life span-controlling pathways have been
discovered. An insulin-like signalling regulates dauer
diapause. A different mechanism regulates many temporal
tolerant processes (Vanfleteren & Braeckman, 1999).

We found development differences between J2 and
young-adults of pine wood nematode at low tempera-
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ture, which suggested that the formation of J1II and adult
longevity extension may be regulated by different genetic
pathways. The development of J2 was stable and a signifi-
cantly greater proportion entered diapause compared with
the adult stage. Therefore, the formation of JIII was acti-
vated by an enhanced life maintenance programme in J2
rather than the adult, which is normally operative during
diapause. However, the adult entered the growth-arrested
development more rapidly, was more unstable, and had
greater mortality and change of body characters, which
may belong to the temporal tolerant process.

Environmental factors including temperature are im-
portant to determine whether the invasive species will suc-
ceed in establishing a persistent population at any poten-
tial sites of establishment (Bartell & Nair, 2003). Tem-
perature may directly influence distribution and intensity
of pine wilt. The natural life cycle of pine wood nema-
tode is completed by propagative and dispersal stages to-
gether. Propagative pine wood nematodes multiply rapidly
and cause epidemic pine wilt disease in regions of Eu-
rope, North America and Japan, where mean summer air
temperatures of more than 20°C occur (Sikora & Malek,
1991; Fielding & Evans, 1996). At the same time, low
temperatures had significant influence on the successful
dispersion of the pine wood nematode to healthy pine
hosts. The —10°C January mean air temperature isotherm
was suggested as the northern limit of vector sawyer, Mo-
nochamus alternatus (Ma et al., 2006a, b). This limits the
potential distribution in China because M. alternatus did
not survive to vector the pine wood nematode.

Our research showed that low temperatures are neces-
sary for the formation of dispersal stages of B. xylophilus,
which suggested that there is a southern limit to the po-
tential distribution of pine wood nematode.
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