Introduction to forestry investment analysis: Part I. Basic investment characteristics and financial criteria

Thomas J. Straka
Steven H. Bullard
Stephen F. Austin State University, Arthur Temple College of Forestry and Agriculture, bullardsh@sfasu.edu
Mark R. Dubois

Follow this and additional works at: http://scholarworks.sfasu.edu/forestry
Part of the Forest Sciences Commons
Tell us how this article helped you.

Recommended Citation

Straka, Thomas J.; Bullard, Steven H.; and Dubois, Mark R., "Introduction to forestry investment analysis: Part I. Basic investment characteristics and financial criteria" (2001). Faculty Publications. Paper 91.
http://scholarworks.sfasu.edu/forestry/91

Many forest landowners consider their forest to be an investment. Some of these landowners, however, and many new timberland investors, may not fully understand the basic ingredients that make up a forestry investment Like all investments, forestry involves costs and revenues, and rates of return can be calculated. These rates of return can be compared with interest rates earned for other mvestments, but forest landowners should be sure to understand the unique characteristics of a forestry investment. Most of the cash flow from a forestry investment will result from timber sales. Timber sale revenue, of course, is a function of current stumpage prices, but also it is a function of the amount of wood removed from an acre. This is called forest yield.

Forest Yield or Return from the Forest

Yield is just that, what the forest yields in timber products. Pulpwood is usually expressed in cords (a $4 \times 4 \times 8$ foot rick of wood) and sawtimber in board feet (a 1 inch $\times 1$ foot $\times 1$ foot board contains 1 board foot). Since it is the amount of timber you expect from a forest, yield (and stumpage price) also reflects the revenue you expect to receive
from timber Computer models and tables can provide expected yields for a forest site. Two key elements affect the timber yield you can expect from your forest site index and stocking.

Site index describes the quality of forestland for growing trees (soil productivity). Site is always in reference to a particular tree species; for example, loblolly pine sites or white oak sites. Few species grow equally well on the same site. Specifically, site index is the average total height of the dominant trees in a forest stand at an index age.

In the South, for instance, an index age of 50 years is commonly used for natural pine stands and 25 years for pine plantations. If forestland has the capacity to grow dominant loblolly pines to an average total height of 90 feet in 50 years. it is classified as "site index 90 land for loblolly pines, base age 50 ." Site index is important because of its
dramatic impact on timber yield at harvest. On Virginia's coastal plain, loblolly pine yields by site index for a 20 -year-old stand with 700 trees per acre are in Figure 1.

Thomas I. Straka, Steven H: Bullard, and Mark R. Dubois

Because site quality has such a major effect on timber yield, it should be a key element in pricing any forest tract. Higher site index land is worth more than lower site index land for timber production. If your forest management capital is limited, the highest site index areas of your forest should receive investment prionty since they provide maximum timber production.

Stocking is a measure of how many trees are in a forest stand relative to how many are needed to attain your objectives. There are two common measures of sfocking. trees-per-acre and basal area. Basal area is the cross-sectional area of trees at breast height (4fi feet above the ground) per acre, measured in square feet: Or, in plain English, basal area is the square foot area of the top of all the tree stumps on an acre of land if all the trees were to be cut 4 fi feet above the ground.
atand should approximate the 50 year wite inder of the land. Using the nules ste indee 90 land should have a stocking of about 90 squame foct of basal area perr acte.

Trees- per-acne is a vagute measure of stocking, unless you have an idea of itre glee and how the brees are spared in the stand. But it has the great advantage of being wasily understood

Stocking kas ittle effed on tratal yield of your forest stand if you are ordy interested in exthic feer ut wood produced Stocking has a great impaet, however, on the timeter products available at haryest You need a property atricked stand to grow sawtimber. Tur Mample, for a 30 -year-old toblolly pine sland, slocking differences can accourd the aver 5 , (1H2) ndaitional board leet (Fig. 2)

Fig. 2

Trees Pei Acre	All Trees		Pulpwood (Cords)
	As Pulpwood	Sawtimber	
	(Cords)	(Board Feet)	
500	52.6	7,523	32.5
600	52.7	5,551	37.2
700	52.6	4,090	40.6
800	52.2	3,011	43.0
900	51.7	2,214	44.6
1,000	51.7	1,628	45.6

Another characteristic of timberlinal invexaments is the lang the pariod atten involved. A fill growing cycle for southem pine is 25 to 35 yeary. You may br atie to buy ne establistied formst, say 20 yearm old, and quickly earn harvest rev: E!pue. A large tumberland purchase may include timber of many ages, allowing periodic of armual harvest revenuos. Small ferents huweves may only provide accasional meomes through thannings and maino harvento every lew

When buying timberiand, carefuilly consider the age structure of the tereot because it will dictate the cash flow from your investmeni. Small timberland isvestrontis ave likely to produce infrequent hrome and enpecthlly when the fursa is young, timberfand can be a moderately illiquid mvestment since the timing of timber revenue is very pre dietatile; however carcfal planning can minimizo cash flow problims.

Wher soquired, bure land bfon requher a latge inital expense for foryst establishment. Atrual management costs and properly taxes, however, are likoly to sequire sonly umall cash payments. Again, these Lash dlows are very predictable and easy to molude in an investment malysis. Current tax laws whimence furestry investurents and help reduce the impact of early expenses. Fored regereration expensur, for example, car qualify for ant inveritmient tas predit and deductions over abven tax ypare.

Snother unique quality of timbertand is that is can be an enjoydble investmenl, proxiding fruting and other outdesor xecreation for you and yout lamily. Althougio knch bemefits are nits sasily moladed in investruent appraisale, they can tre a very impartant part af timitierland hevestmert decisions.

Compounding and Discounting

Eerestry myesumert analysion nexis Wifh compounding and disocunting. These ferms simply refer to moving: money thruugh tome while taking interest inem account. For example, if you plate $\$ 100 \mathrm{mbtg}$ a llavinge accounl caming 43. meterest. how much will be in the account in one year, in five years? You probably mulbiplied $\$ 100$ times 2.04 to come up with $\$ 4.010$ interest, and added that to $\$ 100$ to corme up with 5104 in the wecount at the end of one yeat. Or, you could hove shipped a step and multiplied $\$ 100$ by 1.04 to obtain $\$ 1144.30$. How about the 5 -year question? Compound interest means you carn interest on interest, so you expect 4\% more on $\$ 104$ in the second year, and so on. In furmula torm, ther ran be accomplished by multiplymg the $\$ 100$ by a serien of 1.04%. Or in thiscase, after five years the accoum will contatio $\$ 100$ $(104)=\$ 121.67$.

Compounding means to move a sum of money into the future like we fust did Discountaing merans bringing it back to the present considering inferest. If you are promised $\$ 121.67$ in 5 years and use a 4 贸 interest rate, the sum is worth $\$ 100$ fisday. This is discounting

The the basic lumesy investment attualysis formulay that we thed above ate:

In compound maney $F V=\mathrm{CV}^{\circ}(1-1)^{\mathrm{m}}$
 To discount money PVEEV/(1-a) ${ }^{\prime \prime}$

where
FY premert palue, ies yalue today
$\Gamma \mathrm{V}=$ 「utuse valte .
n=nurnber sf rumpounding perinals
i-discount rate or interest rate. expresed as a decimal

All of finance comes duwn to these two basic formulas. Formulas also exies (5). comphound or discount zasde Alaw series (like a series of car proymento), but
they are fust shmolate form having to use the formadas abovermaluple tames

Fimmelal criteris

Nef Present Value (NPV) it wac al the mast common criteria used to cyalluaie bartelisy investments if is nething more than all of the cash flews discrountvat to the presenf of a specificd interest rate. If ts the value today of an inveatment at a specified inkereat rate. NPV tw slated in derllars. If an inventment has a net present value of $\$ 000$ per acre al an a 4 percent interest rate, this means the frvestment will produce an 8 percent rate of rebunn plus the equavalent value of 5000 at the beginning of the investment. If the NPV is negative, you are not enrrimg the apecitled inferest rate. Net present valides axe very dependent on the interest rale used. The average investor needs 10 be aware of net present value: but prohobly has a better ancterstarding of the straightforwayd rate of retum methog for evalualing investments.

Rate of Return (ROIV) is the interest sate varned by the invested money. II is wquivalent to the inferest rate paid on a savings account or the yield of a Fund Usually a furester will calculate the rate of ceturn using a computer or a financial calculatos. The catculation involves findmig the interest rate earnest by the invesment's ansk flow. This will produce an NP' y of sero: that io you wam exactly that intorest rite, no mure, nia less Rates bf ruturn may er may ront incloude inflation. In an investment malysis, the term noal indicates that inflation Han heers empaved. The male of mature tarned by an invertmeni maly be stafed in real
terme or in maxhet (or nominal) terims. That is the rowe of refurs wal include inflation (market interest fate) sor will be roe ut inflation (real intorost rate) if the inturest tatu for on investment is not spaesfied as real ar inflated the staled rate rot return uetally inclades inflation. If the amalysis includes an allowancu for inllation, the lerm real rate of veturn is almond always used. Isflation is discussud in l'art II of this aplide.

Be. wary of the stated sate of matum ofe a timberland investment if the intereqt sate varned cant be disfingushed as real or market, If inflation is 5 fercent annually and one investiment has at market rate of Teturn of 8 percant and a second invesimeni the a real rate al return of 3 percont, you might be templed fo take the higher refum. thit the first investment ondy refurns sbrut 2 percent in real ferms. The second investment has the higher real rotursi. All you need th remernber about an investment's pate of return is that it is an intereal rate, fusil like any other interest rate, and that it cam be directly compared with the inlerest rates of ather invesiments.

Equivalent Aurual Income (EAN) can also be calculated by a toresten. At a specific interest inte, EAI represents the annual income equevalent to the nel present value (NPV) of a fill rotation int timber. For example. if a 25 -year rotation has a NPV of $\$ 3,506$ al 4% interest, EAI at W知 ban be calculated as $\$ 224,04$. In plain Englist, $\$ 224.04$ pasd ammally over 25 yuars is exactly equivalene to a cash payment koday of 50,500 at d is interost. Forment tandonveres may find thie spiturion uscinl when compheing agricultural craps to
Lable 1. Cash flow from a typical forestry investment (per aere).

Item	Year Incurred	Amount
Establishment Cost	0	$-\$ 160.00$
Annual Management \& Tax Cost	$14-27$	-2.25
Thinning Revenue	16	97.50
Thinning Revenue	22	156.00
Harvest Revenue	27	$1,287.00$

Bare Land Value (BLV) ar tand expectation value is the value of baxe forestland in permanent timber produc. tion. II is a specion NPPV calculation that obtains the value today of all future timber rolations on a piece of bare land Sinch if is a type of NT'V caloulation, it is very dependent on the interest rate used. It BLV was calculated at $\$ 600 /$ acre at 4% interest, you could pay 8000 for the bare land and would eurn exactly 4% if you put the land intir poryeutial tember prosduction. If you paid less thin 560:/ acare for the land. youd earn more than 4% im your investment. Yiou versa, it you paid more than SkNo/acre

The inferes rate (or diserunt tata) used is the investment atnlysie will affect the net present value and bare boul valud. The irvestor specifies the interest rate geed in the analyais It xhould he the rate of rehurn lie could ubtain from his hest atfernative invertment such as a certificate of deposit from a bank. This is why it is often called an altermative rate of return. An investor's aitemative rate of sutum is not always ensy to estimate A main advanage of the rate of retuen approach is that an alternative invert frest rate doeb ouat have fo hecestimuled

A Simpile Example

Ennsidur thu example or a latidown or deciding whefher to regererate 10 acra. Hisaliematnyerate of retum in 4% frem of taflotion and taxes). The investment is uutined if Tatsle I.

The NiV in this investment is the sumulative value of all the cash flown whh discounted at 4%. Nole ammail managemenl costs and prupurty taxereprement un anmual series, which is difcounted using a specialized luezula, Each 52,50 payment coubl be individual ty discounded and the result watha equal $\$ 40.82$.

If the NeV eqtaled weres the invenl mont womula cam exactly the inleres zale uset in the calculation. An tiveselmont in Acceptable it the NPV is mqual to 10
greater than zero. In this case, the investment would earn a 4% rate of return PLUS $\$ 363.41$. This means you would earn at least the interest rate you used in the calculation.

Rate of Return (ROR) is the interest rate earned by the investment. ROR is the average rate of capital appreciation during the life of an investment. ROR is usually calculated with a computer program. The program calculates NPV at various interest rates until the NPV equals zero. Recall, the ROR is the interest rate that makes NPV equal to zero. The program accomplishes its task via a series of guesses. Higher interest rates make NPV decrease. So if NPV turns
negative the ROR would be less than the interest rate used to calculate NPV. In this case, a second guess might be 8% for ROR. Table 2 calculated with an 8% interest rate produces a NPV of $\$ 30.93$. So we know now ROR is greater than 8%. A good third guess would be 9% for ROR. At 9% the NPV becomes $-\$ 11.46$. By numerous calculations, we find NPV essentially equals zero at $8,7 \%$. Table 3 illustrates NPV being recalculated at 8.7%.

At 8.7% interest rate, NPV is -0.23 (close enough to zero for our calculations as we only need ROR to two decimal places; the actual ROR is 8.704%),

Table 2. Calculation of net present value $(\mathrm{i}=4 \%)$.

Item	Year Incurred	Amount	Formula	Discounted or "Present" Value
Establishment Cost Annual Management \& Taxes	0	$1-27$	-2.50	$\frac{(1.04)^{27}-1}{(.04)(1.04)^{27}}$

Table 3. Calculation of net present value ($\mathrm{i}=8.71 \%$).

Item	Year Incurred	Amount	Formula	Discounted or "Present" Value
Establishment Cost Annual Management \& Taxes	0	$\$-27$	-2.50	---160.00
Thinning Revenue	16	$\frac{(1.087)^{27}-1}{(.087)(1.087)^{27}}$	-25.71	
Thinning Revenue	22	156.00	$1 /(1.087)^{16}$	$1 /(1.087)^{22}$

Equivalent Annual Income (EAI) was calculated as $\$ 22.25$. At 4% interest, a landower should be indifferent between $\$ 363.41$ today and $\$ 22.25$ per year for 27 years. The values are equivalent.

Bare Land Value (BLV) is the value of bare land put into perpetual forest production. The calculation involves compounding all costs and revenues to the end of a single rotation. This compounding includes establishment cost, but it does not include land cost (land value is what is being calculated). This net future value is assumed to occur at the end of every rotation to form a perpetual series, Then another specialized formula can be used to convert this net future value to BLV.

BLV is $\$ 556.37$. This represents the maximum amount that could be paid for the land for forestry uses-if the required interest rate of 4% must be earned and the timber values assumed are those actually expected for the property.

We have examined four common forestry investment criteria: NPV, ROR, EAI, and BLV, Only the ROR criterion requires no interest rate assumption; it actually is the interest rate. That makes ROR a very popular criterion. However, the other criteria have advantages. BLV considers all future costs and revenues. EAI makes sense when comparing, for example, an annual crop like soybeans to timber production. NPV will produce very consistent results, given the proper interest rate. A forest landowner likely will

