Introduction to forestry investment analysis: Part II. Taxes, inflation, and other issues

Thomas J. Straka
Steven H. Bullard
Stephen F. Austin State University, Arthur Temple College of Forestry and Agriculture, bullardsh@sfasu.edu
Mark R. Dubois

Follow this and additional works at: http://scholarworks.sfasu.edu/forestry
Part of the Forest Sciences Commons
Tell us how this article helped you.

Recommended Citation

Straka, Thomas J.; Bullard, Steven H.; and Dubois, Mark R., "Introduction to forestry investment analysis: Part II. Taxes, inflation, and other issues" (2002). Faculty Publications. Paper 87.
http://scholarworks.sfasu.edu/forestry/87

INTRODUCTION TO

Part II: Taxes, Inflation,

and Other Issues
 FORESTRY INVESTMIENT ANALYSIS
 Thorais I. Straki Steren H Bullare. and Mork R Dubois

Part I of this article covered the basics of compounding and discounting. You were introduced to forestry investment analysis. However, several complications were not discussed. What about inflation, taxes, and risk? Part II addresses basic complications. It also includes more detailed forestry investment analyses.

Accounting for Inflation

Inflation must be considered in any analysis involving revenues and/or costs that occur in the future. You account for inflation by making sure that the discount rate and all values in the analysis are either in inflated terms (current dollar approach) or that they are all in uninflated terms (constant dollar approach). The key is consistency-use entirely inflated or uninflated values in the analysis, and if your analysis includes uninflated values, be certain the discount rate does not include inflation.

An exception exists if the analysis involves costs that have been capitalized for tax purposes. Since taxes are paid on "inflated dollars," only the current dollar approach should be used for after-tax investment analysis. If taxes are not a consideration, either approach will produce the same financial results.

The current dollar and constant dollar approach can best be illustrated with a simple example. Assume the inflation rate is 3% and the real interest rate you need to earn is 5\% (recall "real" means net of inflation). Then the discount rate for the current dollar approach will be 8.15%. We assume the two rates affect each other, so the combined rate is a little more than adding 3% to 5% to get 8%; it is calculated as $(1.03)(1.08)-1=0.0815=$ 8.15%. Consider the simple rotation below with one cost and two revenues. For the current dollar approach, we assume the costs and revenues increase at the inflation rate. Note that both
approaches produce the same NPV (see Table 1).

Accounting for Taxes

After-tax investment analysis also involves a consistency requirement. All of the numbers involved should be expressed on an after-tax basis. That means all revenues and all costs should have taxes subtracted before discounting takes place, and an after-tax discount rate should be used. Generally, timber income is subject to the lower capital gains tax rate. Thus, reforestation costs must be capitalized and allocated against timber income as it is realized. In this example, we will not consider the possible 10% tax credit and 7 -year amortization available on $\$ 10,000$ of reforestation expenses annually.

Table 1 illustrates why the current dollar approach is required in after-tax investment analysis. Notice in Section B

Table 1. Inflation example: current and constant dollar approach.

,			Current Dollar not inflation adjusted		Constant Dollar inflation adjusted
Year	Item	Amount/ Acre	Amount with 3\% Increase	Discounted Value @ 8.15\%	Discounted Value @ 5\%
0	Establishment Cost	-\$160.00	-\$160.00	-\$160.00	-\$160.00
15	Thinning Revenue	350.00	545.29	168.36	168.36
23	Final Harvest Revenue	2,200.00	4,341.89	716.26	716.26

Table 2. Example of after tax analysis.

Year	Item	Amount/ Acre	Amount with 3% Increase	Adjusted for Taxes	Discounted Value @ 5.87%
0	Establishment Cost	$-\$ 160.00$	$-\$ 160.00$	$-\$ 160.00$	$-\$ 160.00$
15	Thinning Revenue	350.00	545.29	445.83	189.49
23	Final Harvest Revenue	$2,200.00$	$4,341.89$	716.26	$\frac{941.42}{}$
					$\mathrm{NPV}=\$ 970$

the dollars are not increased by the inflation rate, In Section A, the dollar amounts are increased by the inflation rate. Capital gain is calculated in the current dollars of Section A.

To convert Section A to an after-tax basis, taxes would need to be subtracted from each item. Establishment cost is capitalized at the beginning of the rotation and no tax deduction is allowed. Thus, the $\$ 160$ cost is the same beforeand after-taxes. The thinning revenue is another story. Let's assume the thinning represents 30% of the stand's volume, then 30% of the related establishment cost (or $\$ 48$) can be applied against the sales revenue. So the $\$ 545.29$ is reduced by $\$ 48$ for a taxable capital gain of \$497.29. Note that the government does not allow the establishment cost to be indexed to inflation. Assuming a capital gains tax rate of 20%, the tax due would be $\$ 99.46$. The after-tax cash flow is $\$ 545.29-\$ 99.46$ or $\$ 445.83$.

The final harvest produces revenue of $\$ 4,341.89$ and all the remaining establishment cost (\$112) would be allocated against this income. The taxable capital gain would be $\$ 4,341.89-\$ 112-\$ 4,229.89$ and a 20% tax rate equates to 5845.98 tax due. The after-tax cash flow is $\$ 4,341,89-$ $\$ 845.98=\$ 3,495.91$. Because interest is deductible, the appropriate interest rate is the nominal or stated rate reduced by (1 - marginal tax rate). Let's assume this taxpayer has a marginal tax rate of 28%. Then the tax-adjusted discount rate in Secton A of Table 1 example becomes 8.15\% ($1-0.28$) $=5.87 \%$, Table 2 illustrates this same example on an aftertax basis.

Note that the reduction in the discount rate actually caused the NPV to increase.

Accounting for Opportunity Costs

When a resource is put to a particular use, opportunities for using the resource in other ways are affectedsome alternative uses, or opportunities, for the resource may no longer be possible. These opportunities are foregone, and foregone opportunities often include foregone revenues or other benefits. Alternative uses therefore often involve "opportunity costs" -revenues foregone by using a resource such as land or capital for a specific purpose. By using a positive interest rate to account for the time value of money in an investment analysis, we're recognizing the fact that the funds have alternative uses; by investing funds in a specific forestry project, we're foregoing the income that would be earned on the funds if they were invested in other forestry or non-forestry activities.

There are many examples of opportunity costs in forestry investment analysis. A very important example is the opportunity cost of forestland. The fact that we are using a specific tract of land for a forestry investment means that the dollar value of the land is "tied up" during the period of the investment, Consider an example where you've got $\$ 150$ per acre "tied up" in the land for the entire period of the investment unless you add this value to the cash flows of your investment, the NPV, ROR, or other criteria that are calculated will be overstated. They simply will not reflect all of
the costs that are relevant to your investment.

Consider the example in Table 3. It uses the constant dollar approach of Table 1. Land opporturity cost would reduce the NPV of Table 1 by $\$ 101.16$. Unless there is a valid reason that the land has no market value (cannot be sold for legal or family reasons, for example), land opportunity cost is a necessary component of any forestry investment.

Accounting for Sunk Costs

Project analysis is often called "marginal analysis" since only the added costs and added benefits of a potential investment are considered. Costs that have already been incurred, meanwhile, are "sunk" in the sense that they have already been made and cannot be changed. "Sunk" costs are outside the realm of current decisions, and therefore should not be included in calculating NPV, ROR, or other financial criteria for a specific project.

A forestry rotation provides a good example. Assume you spent $\$ 150 /$ acre last year for site preparation and planting. You are now considering the need for herbicide application that will increase seedling survival. The $\$ 80$ per acre you've already spent cannot be changed and is therefore not relevant to your herbicide decision. It should not be used to evaluate the herbicide treatment.

What is relevant? The physical characteristics of the site and the current biological opportunities for release are quite
relevant to your analysis and decisionyou now have an asset that has attributes related to the site prep and planting. The actual expenses you incurred to achieve the attributes of your stand, however, cannot be changed and are not relevant to future decisions.

A forestry rotation also provides a good example for sunk costs. Assume you spent $\$ 150$ /acre last year for site preparation and planting. One year later you are now considering an expenditure of $\$ 80$ /acre for a herbicide application. This example involves a sunk cost (the $\$ 150$; it is irrelevant to the decision at hand) and an incremental cost (an extra $\$ 80$ cost) and an incremental revenue (you expect an extra $\$ 440$ at final harvest), This type of calculation is called an incremental analysis because it only
involves the relevant incremental costs and revenues. In this case, the investment opportunity is good at a 5% real interest rate because it increases NPV. Note the values were calculated relative to year 1 (when the decision is being made) and the $\$ 440$ is discounted for 22 years. (See Table 4.)

Accounting for Uncertainty

Rarely are all the physical and financial values of an investment known with certainty. Cost savings, future yields and revenues, sales and profit increases, etc. are typically estimated based on the best information available at the time a potential forestry project is evaluated.

Various techniques to account for uncertainty have been advanced in financial analysis and engineering econ-

Table 3. Impact of land opportunity cost. omy texts and articles. The techniques

Year	Item	Amount/ Acre	Discounted Value @ 5%
0	Buy Land	$-\$ 150.00$	$-\$ 150.00$
23	Sell Land	150.00	48.84
		Decrease in NPV $=\$ 101.16$	

Table 4. Illustration of sunk cost.

Year	Item	Amount/ Acre	Discounted Value @ 5\%
0	Herbicide	-\$80.00	-\$80.00
23	Additional Harvest Revenue	440.00	150.84
Decrease in NPV $=\$ 101.16$			

assumptions influence NPV, ROR, or other criteria, and therefore how they may influence the accept/reject decision for a project. You may feel there is a great deal of uncertainty in projecting timber prices at the end of a rotation that is several decades long, for example. You may also find, however, that because they are discounted for long periods, considering wide ranges of future prices in your analysis has relatively little impact on NPV or other financial criteria.

Table 5 illustrates a simple sensitivity analysis, Assume you are uncomfortable with the real interest rate of 5% used in Table 2. Perhaps it is too high or low. What impact does interest rate have on this particular investment? In this case, the interest is changed by 2% to 3% and 7% and the impact on NPV evaluated. Obviously, this problem is very interest rate sensitive.

Obtaining a Discount Rate

The discount rate used to evaluate a specific project should be consistent with the rest of the numbers in the analysis in terms of taxes and inflation. That is, the rate used may be real or inflated, and it may be specified as before or after taxes; how the rate is specified should be consistent with the overall analysis. In many cases, the actual rate of interest that's appropriate to use in forestry and natural resources analyses depends on who owns the land or other resource.

Public Agencies: Discount rates for public agencies are often specified by law. The federal government, for example, requires that agencies use a "real" rate (uninflated) of 10% unless a special rate, formula, or other guideline is set by law. The USDA Forest Service currently uses a "real" rate of 4% for long-term investments (generally more than 10 years), and 10% for other, shorter-term investments.

Corporations: P'ublictohell caporations usually tefine diecouni sater as a weighted average asit of capita) (the chest of debt capital and the cost of equity capatsl weighted by the firm's percentage of alebt and equity). Privately held compamies lypically specify a discount rate by ronsidering alternative uses for the capitat (the "nltemative" rate), or by the internesa tate paid on burrowed capital.

I'rivate Individuals: Individuals may specify their digcount rate by considering alternative uses for their capp-tal-allernative rates may thus be the rate they expect to earn on other investments, of they may be the rates they ate paying an lymrowed capital. Each landawner to different, however, and discusion may be needed in alicit an individual Laindowner's preferences for momey today versus money in the future. While mary tactors may influence an indipidual's rale of time preference for gontey pealaps the most important one is. their cuernt wealth-the amount of muswy and sther assets they already huve available ter current and expected ruthre needs.

Example of a Simple Rorestiry investment Annlysis

Consider the simple exacople of a simherland investment outlined in Table 6. A real dollar approach (no inflation) in used in the example and no price appriciatimin is assumed. Also nose the example ior on a before-tax basis with in apportunity ta aell the fand

Tible 5 presenta cash flows for the thestry investment. Castr flow is the consh gemsated for each year of the investment (cash receipts minus cash payments). It payments are mere thati receiple for any yeat, a "negalive cash Ilow" resulte. The basic information needed tovevaluate an investment is how much eash is generated or paid out and whan does each cash recept of payment occur. Once the timing of cisth flow is know, the investmert's sate of xeturn can be deternined.

First, lef's consider NPV and Equivalent Ansual Income (EA1) for this investrment. We've discussect intenst rate as long as NPV is presilive. you are saming the interest cate used in the anatyis plus the dollar amount of the NPV. If the net present yalue is negative, you are not oirning the speeffied interest rate. Net present yalues are very dependent on the interest rale used. The ayerage investor iseeds to be aware of net presents sulue, but probably has a better understanding of the atragitforward rate of rethrm method fren evaluating investments The NPV's and E/AJ's for the exampleat 4%, 7 Kis. and OH ane illus. trated in Figure L

Nole how eensitive the net present vilues are to the interest rate used, Since the rate of refum for this investroment is 10.4 , the net pesent value would be kerve at a 10.4% interest rate, This is what the rate of neturt represents.

A third method of evaluaing tumbertanif invedments froothees a bare brat value. This is the net present value of hare timberland used in pyrmanent Limbar production. Since it is a type of niet puesent value, it is very dependentor the interest cale oned, It is the theorekical value of the land for timber growing, but sulfiect to the assumptions used to obtains the net present value, The bare lond valuen for the example at $180,7 \%$ and $10 \% \%$ are Mustrated in Figwe 1

The interest zate (or discount rate) used in the investment anolysis wal affect the NTV, EAI, and BLV: The inventor speafies the interest cale used in the analysis. It again sirould be the rate of retum he could obtain trom tus best affernative investmemt, such as a conficate of deposit from a bank, Ant investor's alternative rate of return is mut always easy to estimate. A main difoadvantage of the rate of retum approach is that an alfernative investment rate dress not have ta be estimated.

A lourth method, rate of retarn, dusm not depend on an interest rate. It to am inlerest rate, spectifically the one that produces a NPV of zero (ko you ame vxactly parning that inferest rate). Al 10% abuve we've noted the NFV is apprdaching zero, The rate of retumn karned by this fonestry example is 10.4 real rate of return the torestry example will earn mum than 10 C above the infliotion rate.

Senativity Anolysis

Ant investor should afk a seriee of "What if . .?" questians wher evalualing any investonent. The idea is to detarmine how sensitive the rate of neturn or otber methods are on the issumptions ined. We have already wated the sensitivity of fiet present valie and hare fand value ta the interest rate. Table-8 illusBates the effects of changing varions. assumptions on the rate of rofurn.

Simple changes in the basic assumptions can change the rale of retum by abrout plus or crinus 3%. Forsst farmers

Figure 1

Interest Rate	Net Present Value	Equivalent Annual Income
4\%	\$725.58	\$41.96
7\%	234.80	18.92
10\%	18.57	1.97

Nowe 2

Interest Rate		Bare Land Value
4%		$\$ 1,049.01$
7%	270.31	
10%	19.70	

should perform this type of "What if . . $?^{\prime \prime}$ analysis anytime they invest to earri certain rates of return. Note that forestry still retains significant tax advantages (10% investment tax credit and early amortization of capitalized costs). This is why the rate of return remained basically unchanged after taxes were considered.

Key Questions

We have identified some key questions you need to ask when considering a timberland investment: What's the site index of the land? What kinds of yields can 1 expect? What are stumpage prices expected to do? What levels of property tax and management expenses are expected? How will taxes affect my investment? What kind of real rate of return can I expect from this investment?

This article covers merely the basics of timberland investments. Don't be
afraid to invest in the advice of a professional forester to answer these questions. The problems you may avoid by the simple investment in a forester are very likely to produce a reasonable "return."

For More Information
Dr. Steve Bullard of Mississtippi State University and Dr. Tom Straka of Clenlson Untiersity have written a 330 -page workbook lifled "Bastic Concepts in Forest Valuation and Investment Analysis". The book has many examples and details of forestry investment analysis, including the important question of premerchantable timber value. Computer software titled FORVAL for Windows is distributed with the workbook by PRECEDA Education \& Training in Auburn, AL (334/821-9222). This softuare includes the ROI approach for estimating the invistment volue of premerchantable stands.

Table 6. Simple example of a one-acre investment in a southern pine plantation (no land cost).

Year	Item	Per Acre Dollar Amount Cash Flow
0	Site Preparation/Plant	$-\$ 150.00$
$1-30$	Property Taxes	-2.50
$1-30$	Annual Management Expenses	-2.50
17	Net Thinning Revenue	+210.00
24	Net Thinning Revenue	+530.00
30	Net Final Harvest Revenue	$+2,100.00$

Table 7. Sensitivity analysis of changes in assumptions of Table 1 and the effect on rate of return.

> What if ...?

Resulting Rate of Return

1. What if no changes are made in Table 1? 10.4\%
2.What if timber prices increase 2% annually over inflation?
12.8\%
2. What if site preparation and planting costs $\$ 225$ per acre?
9.0\%
3. What if land must be purchased at $\$ 200$ an acre? 7.3\%
4. What if low site index or poor timber management costs reduce yield by one-third?
8.6\%
5. What if property taxes and annual management costs double? 9.4\%
6. What if an old-field is planted with regeneration cost of $\$ 50$ per acre? 14.1\%
7. What if taxes (28% rate) are considered?
10.5\%
