Introduction to forest valuation and investment analysis

Steven H. Bullard
Stephen F. Austin State University, Arthur Temple College of Forestry and Agriculture, bullardsh@sfasu.edu Thomas A. Monaghan

Thomas J. Straka

Follow this and additional works at: http://scholarworks.sfasu.edu/forestry
Part of the Forest Management Commons
Tell us how this article helped you.

Recommended Citation

Bullard, Steven H.; Monaghan, Thomas A.; and Straka, Thomas J., "Introduction to forest valuation and investment analysis" (1986).
Faculty Publications. Paper 81.
http://scholarworks.sfasu.edu/forestry/81

Introduction to Forest Valuation and Investment Analysis

 by

Steven H. Bullard, Thomas A. Monaghan, and Thomas J. Straka

Department of Forestry, School of Forest Resources, Mississippi Agricultural and Forestry Experiment Station and
Forestry Department Mississippi Cooperative Extension Service Mississippi State, MS 39762 August, 1986
\square

By

Steven H. Bullard,
Thiomas A. Monaghan,
and
Thomas J. Strake ${ }^{\text {I/ }}$

[^0]Page

1. Interesr and the Time Value of Money 1
II. Cash Erlow Diagrams and Equivalence 2
III, Present and Future Values (Single Sums) 4
IV. Monthy Compounding 12
V. Series of Cash Elows 15
Terainating Annual Series 15
Present Falue. 15
Future Value 18
Sinking Fund Accounta. 21
Capital Recovery 23
Teminatifeg Periodic Serdes 28
Present Value 28
Future Value 29
Perpensel Anqual Series (Present Value) 30
Parpetual Periodic Serieg (Present Value) 32
VI. Decision Criteria, 35
Criteria. 35
Payback Perlod 35
Net Present Value. 35
Equivalent Anmual Incone 43
Beaefit/Cost Ratio 45
Internal Rate of Return. 45
Land Erpectation Value $\$ 1$
Application of Criteris 54
Rotation Determination 54
Reforestation and Sensitivity Analysis 58
VII. Investment Analysis - Accountimg For गakes 62
Coste of Forest Ownership asid Oparation 63
Bepletinn $6 B$
Capital Gains Treatment of Timber Income. 69
After-leax Investment Analysis 73
VIII. Investment Analysis - Accounting Eor Infiation 81

CONTENTS (continued)

Page
IX. Special Topics 86
Gradient Cash Flow Series 56
Geomerric Cash Elow Series. 90
Cont inuous Compounding. 93
Add-on Interest 95
Amortization. 97
X. References 99
XI. Appendices
Appendix A, Compound Interest Maltipliers 101
Appendix E, Interest Mulriplierg, Terminating Pertodic Series. 119
Appendxx C, Interest Muitipliers, Perpetual Periodic Series. 120
Appendix D, Derivations of Cash Flow Series Formulas (nor inciuded) 121
Appendix E, Solutions to Problems 127
GOMPOUND INTEREST FORNULA DTAGRAM. 132

Introduction to Forest Valuation and Investment Analysis

I. Interest and the thme val Ue of monei

Bnst faresters and forest lanoowers ate awate that money has a tive value. A aollar today is worth more than a dollar comorrow: If yeu botrow $\$ 1.000$ From the bank today, you would heve to pay back more than $\$ 1,000$ in 90 days. The term forest economists pse for this cuncept 1s the time value of money: The closer to today you receive a sum of money, the greater ics prasent yalue,

Two aspects of Forestry investments require that ve understand the thme value of money; Gigh investment cosis and the lotig period of time of ren ituolved. The first aspear, high favestment costg, meang that we often invest quite a lot of money in stand establishment or orher Forestry prartices in auticipatian of fiture profit or otier benefits. The second aspect, the long period of time Involyed, means a period will pass before most fेorestry investments produce cash returus, Together, these aspects of rorestry farce us to carefully consider the time waine of money in on mangent dectsions.

Interest is used to equate values of money over the. Intatest is the "rent" paid for the use of money. If you borrow $\$ 1,000$ Eram the bank today, you w 111 expect to pay back $\$ 1,000$ plus an incerest payment In 90 days. The taterest added to the $\$ 1,000$ meles the value of the repaymemt in 90 days exactly equal in tema of yalue to the original $\$ 1,000$ (i.e., the taterest accounts fot the that value of money).
II. CASH FLOW DIAGRAMS AND EQUIVALENCE

Cash Flow Diagrame

A forestry investment usually conslets of more than one paymen or more than one receipt. Fot example, if you borrowed $\$ 1.000$ and paid it back with three mouthly payments, you would have one recetipt and three peyments. The four cash transactions represent a cash flow. The casit Slow inagran is a usaful tool for andyzing costs and revenues, by providing a handy means of representing their timing. The basis of a eash Flow diagram is a time line, identifying each interest period (usugliy a year). Arrows pointing upward at a periad indicate income and efrows pointing downazd at a petiod indicate costs. Figure I shows a time inge far an initial investment of $\$ 5,000$, costs of $\$ 1,000$ for each of the naxt four years, anil a $\$ 16,000$ treowe at the end of year 5,

Figure 1. Fxample rash flow dianzam-

Equivalence

Two amounts of money can be equated lif the proper duterest rate is used. The equivalent velue of the amounts of money must be defined ac a spediflic point in itme. So innestmext snalysis requitets two values for each incume and each eagt: the tollar amount and when it occurs. When borh values are known, equivalence between amaunts of money catr be established by using an interest rate and the proper equation of formula

Examole 1
You borrow $\$ 100$ today and promise to repay the primcipal (\$100) in one year, plus 10 percent interest, The future vaiue of the $\$ 100$ vo the lender its:

Future Value $=\$ 100+(\$ 100 \times 0.10)=\$ 110$.
Thus, $\$ 100$ today and $\$ 110$ in one year are equivalent, at a 10 percent incerese rate.
iII. FRESEMT AND EUTURE VALTES

Interest is the device that equates sums af maney over time. It is used to equate a sum of money roday with a Eurure sum of money. For example, suppose you placed $\$ 100.00$ in a savings account for 5 years ar 8 percent interest. How much money will be in the account after 5 years? On a year-to-year basis, the solution is:

$$
\begin{aligned}
& \text { After Year 1: } \$ 100.00+\$ 100.00(0.08)=\$ 108.00 \\
& \text { After Year 2: } \$ 108,00+\$ 108.00(0.08)=\$ 116.64 \\
& \text { After Year 3: } \$ 116.64+\$ 116.64(0.08)=\$ 125.97 \\
& \text { After Year 4: } \$ 125.97+\$ 125.97(0.08)=\$ 136.05 \\
& \text { After Year 5: } \$ 136.05+\$ 136.05(0.08)=\$ 146.93 .
\end{aligned}
$$

This is an example of equivalence, At 8 percent interest, $\$ 100.00$ roday is equivalent to $\$ 146.93$ in five years. If you look closely at the calculations above, you'll probably norice a pattern to the हteps used in solving the problem: Ir 15 possible to develop a formuta that combines thebe steps. First, we'll need to defide a few terms; let;
$V_{0}=$ the present vaiue of a sum of money (or the yalus in year 0),
$\mathrm{V}_{\mathrm{u}}=$ thie furuxe value of a sum of money (or the value after year n),
$1=$ the interest rate expressed as a decimal
(far axample, $8 \%=.08$), and
fi * the number of interest bearing periods (usually years).
Notice in the above calculation that the value ar the end of any year can be obtained by multiplying the beginaing value by ($1+.08$) or (1.08). That 18 , on a year-to-year basiat

After Year I: $\$ 100.00(1.08)=\$ 108.00$
After Year 2: $\$ 108.00(1.08)=\$ 16.64$
After Year 3: $\$ 116.64(1.08)=\$ 125.97$

$$
\begin{aligned}
& \text { After Year } 4=\$ 125.97(1.08)=\$ 136.05 \\
& \text { After Year } 5: \$ 136.05(1.08)=\$ 146.93
\end{aligned}
$$

Note rhar the beginning value for any year fos the ending value for the prior yeat. The year 5 vaiue (\$146.95) could be detivad by multiplying the 1 nitial $\$ 100$ by a series of (I, OB)'s;

$$
\$ 120.00(1.08)(1.08)(1.09)(1.08)(1.08)=8146.93
$$

Io simplify the math:

$$
\$ 100.00(1.08)^{5}=\$ 146,93
$$

This example 11 luetrates the effect of compound tnterest. Siatlay calculations can be performed in a geveral manner using unarimatioai notarion, rather than actugl numbers, In cermo of gur earlier defingtone:

$$
\begin{aligned}
& V_{n}=\text { the present value of a sum of money }=\$ 100.00 \\
& V_{n}=\text { the future value of a gum of money }=\$ 146.53 \\
& \pm=\text { the interest rate expressed as a decimal }=0.08 \\
& n=\text { numbet of Years }=5
\end{aligned}
$$

We want to develop a relationship between the present vaiue of a sum of money $\left(V_{0}\right)$ and the future value of the eare suin of maney (V_{n}). This relatiomship is defined by the exprescion $(1+1)^{\text {मI }}$. The future vaiue of a sum df money is related to the present yalue by the future value of a gingle sum formula:

$$
\begin{equation*}
V_{n}=V_{0}(1+i)^{64} \tag{1}
\end{equation*}
$$

Note that the interest rate in farmula 1 mist be expressed as a decimal $\langle 10 \%=0.10\rangle$, Figure 2 ghows the telatiouship between the present value af a single sum and the future value of a single sum. This cash flow diagram shows a Eutare value (V_{n}) accurring "ti" pertods after a preseat value (∇_{0}).

Compoind interest prLtipliets ays listed in separare columis of Appenai* A, 玉ach rable in Appendix A lists multiplierg far a diferent Zntarest rate (Eables Al to Als correspond to taterest rates af from 1 to 18 percent) Column 1 gives the value of $(1+i)^{n}$ for selected palues of "f" and "A". Note that the factot Eor (1,08$)^{5}$ da $1,4693,3$, and Using equation (1) for the previtus problem:

$$
\nabla_{5}=\$ 100(1.46933)=\$ 146.93
$$

Elqure 2. Gash Elow alagran for slogle sums.

The diegram ot the last page of the manual, titled compoumb INTEREST FORMULAS, shove Eommulas used for different rypes of cash Elows. The dyagram also refers you to. the appropriate Appendis table cc get the multiplier for each farmulaz The diagram is intended as a handy guide for'solving problema, and is presented on the last page Eor quick referenç;

The alteraative to using the talulated values, of course, is to caleufate them directy whth a hand-held calculator, Many calcudators are programmed to detarmife présent and future walues, and ocher fivestment cIfteria automarlealiy. Amy talculator with a y^{x} key can be

```
used, frwever, ta detemine miltipller values (For (i,O8) 5, Fot example, enter \(1,08 j^{2} 5=\) and the calculator should dispiay 1 , 46932.91).
```


Example 2

What is the future value of $\$ 100.00$ compounded for 10 years at 8 percent interest?

$$
\begin{aligned}
V_{a} & =\nabla_{0}(1+1)^{n 1} \\
& =\$ 100,00(1+.08)^{10} \\
& =\$ 100.00(1.08)^{10} \\
& =\$ 100,00(2.15892) \text { fram column L, Appendix Table A8 } \\
& =\$ 215.89
\end{aligned}
$$

Equation I can also be used to solve for the present value of a future sum of money. Solving Eqpation 1 for V_{0} gives the present vake of a single sum formula:

$$
\begin{equation*}
V_{0}=\frac{V_{n}}{(1+i)^{n}}=V_{n}\left[\frac{1}{(1+i)^{n}}\right] \tag{2}
\end{equation*}
$$

Colum 2 of the tables in Appendix A gives the matriplier (the bracketed term above) to discount the furare value of a singie suin of money to its present value. That 49 , it gives the value of $1 /\left(1+()^{11}\right.$ for selected values of "in" and "ri". Note that the mutipiplier in Example 3 can be obrained from columit 2 of Table All. The value of $1 /(1.11)^{12}$ Is 0.28584 . Also note thet the formula table on the last page of the manal refers you to colum 2 of Appenais A for the present value of a single sum.

Calculations frvolving formila 1 ate called compoundingt coloulations tnvalving Formula 2 are called discounting The interest
rate used in formulas 1 and 2 is alsa called the discount rate, tha cost of canital, or the alternative rate of teturn.

Example 3
An investment will raturn $\$ 10,000$ in 12 years. You use an 11 percent interest rate to evaluate investments. What can you afford to pay for this Investment today and earn Il percent over the 12 year period (4.e., what is the present value of the Invesument.)?

$$
\begin{aligned}
V_{\mathrm{D}} & =V_{\mathrm{n}}\left[\frac{1}{(I+1)^{n}}\right] \\
& =10,000\left[\frac{1}{(1,11)^{12}}\right] \\
& =10,000(0.28584) \text { Ex ono columim 2, Appenaix Table All } \\
& =\$ 2,858,40
\end{aligned}
$$

L. If $\$ 8010.00$ is piaced in a saviags ancount earniag il percent amuality, hoow guch will be in the atcount in 7 yeate?
2. If you hold a $\$ 100,000.00$ band dure in 9 years, that is Its present value at a 5 percent incerest cale?
3. Tou are considering an Investment in forest ferfilizacion that will increase yield by 10 sords to the acre in 11 years. If a cord of pulpwood is expected to te worth $\$ 16.00$ in 11 years, how much could you pay for fertilization today and eara 7 perceat on the Investment?
4. You ake of fered $\$ 6,500,00$ toaay for your loblolly pire plantation that you expect to be worth $\$ 10,000$ in a yeara. If your cost of copital is 7 percent, should you acpept the offer?
3. Vom Inyest $\$ 2,500$ In a woney tracket account that pays 10 petcent, compounded annualiy. Hem mich will be in the account in y years!
6. What is the present value of $\$ 100,000$ that is due in 10 years? Use an 8 parcant iuteregt rate.
7. You are tonsldering an truestment of $\$ 10.00$ per acre in imber stand impravement. The stand will be harvested in 14 years. Using a 6 peccent interast rata, how much addttional harvest watue musc be gencerated to justify the invescment?
8. You have cruised a private tract and detamimed that $\$ 380,000$ warth of elmber is on the traet. You Will have to wait two years to harvest the tract Gue to the dandowtier's restrictions. If the value remaxna constant and your cost of capital is 10 percent, how much coula you pay for the thmber tooay?

IV. MONTHLY COMFOUNDING

Monthly interest is moke Eadilat to many people than any other sype of interest. Although of ten stated an an amnal basis, compounding interest on a monthly basis is very common.
if an annual interest tate is given for monkhly cqmpounding, the monthly interest rate is the annual rate divided hy i.2. For example, 18 percent interast coupounded monthly $1 s$ in percent per monch. The term "n" 1 m our equations tepresents the auber of compounding periods, on monthe in this case. All of our formulas assume interest is compounded annually, but they ere easily modiffed to non-annual sompounding perigds; simply use "L" divided by the number of compounding petiode per year as the interest rate, and multiply the muber of years by the number of compounditg pertads per year to get " n ."

Example 4

Yau place $\$ 100$ in a savings account that pays 12 percent interest, compounded monthly, How much will be in the account in z years?

The account WIII pay I percent per manth (17 percent/12 months) for 24 months $(a=2 * 12)$. In teros of equation $\dot{1}_{1}$ the final velue will be:

$$
v_{24}=\$ 100(1,01)^{24}=\$ 126.97
$$

The multiplier can be obfained from calum 1 of Appendis Table A1.

Tha 12 percent interest rate is called a nodithel interest rate or sumal percentage rate (APR). This is the rate a bank of laan agency

WIIL quare. But, isn't the effective imberast rate bourd to be greater than 1% percent? Compoumding takes place from month-ro-mouth and interest is paid on accumblated interest as well as the ungifd balarice. The effective tate for monthly payments is given by

$$
\begin{equation*}
\sum_{\text {effective }}=()+1_{\text {manthly }} j^{12}-1 \tag{3}
\end{equation*}
$$

Example 3
What is the effecrive annual interest rate in Example 4 ?

$$
i_{\text {efEective }}=(1.01)^{12}-1=12.7 \%
$$

See colum 1 of Appendix Table A! for the wultiplier. Note that $\pi=12$ can be used *a compute effective anmual tates for any ponthiy Interest charge.

In many cases with nomoanmul compounding periods, the interest rate will hava a Eractional compotent. For example, an APR af 8.8 pezcent 4.5 a monthly rate of $8 . B / 12=0.73$ percent, Appendix rables are not included for such interest rates, but present and future values can sti.il be calculated by using the proper fotmula and the y^{2} key on your calculator.

9: Foll barrow $\$ 1,000$, at a 12 percent interesc raten expounded
 How mueh will be due?
10. If you have a credit card, it probably charges 18 ar 21 percent interest on an annual basis. $O F$ course you receive monthly statements and you pay monthly faterest chargea. What is the effective interest rate on credit card purchases?

v, SERAES OF CASH FLOCNS

Abstract

The fotullas for the present value and future value of a singta sum can be dsed to eyaluate any serdes of cash Elows. However, if the cash Flow sexies is lang, the palculations tould be futte tedious. Formulas have therefore been developed to redsee the calculations mecessary for wost types of eesh Elow series,

Before presenting these formulas, a fed definirians are meeded. An amual series is a uniform series of sasts or zevenues which are due each year. A petwodic seties is due on a non-anntal basis (e,g., every six months or every two 7ears). A teminaring geries is a sertes of costs or revenues that ends after a specified period of thme. A perperual sartes lis due Ludefinitely Since seifes of costs or revanues may be annual or periodic, and tempariog ot perperusl, four comb-nacions are aeeded:

Terminaring Anmul Serfes
Terminathag PerLodic Series
Perpetual Annual Series, and
Perperual Pariodic Series
Simple derivetions for the formulas are presented in Appendix D, Ail important chacacteristic of 911 of the formules is that the Eirst cost dr revenue in each serdeg accurs at the end of the Eirst period, and the last cost or revenue pccura et che end of the lest perlod.

Teminating Annual Series

Presemt Value. Constlet ant investment that yields SI,000 per year for B years. Since the $t i m e$ perlon is finite and the payments are anumal, the investment represents a terminaring anpual series what is
the present value of the investment at S'percent interest? Or. phrased another way, han much coutd yau afford to pay for the investment and earn 9 percent? Elgure 3 shote tite cash Elow diagram for the investment, Note From the Hagram tiat the terminating anmual series begdns at the and of the first year and ends at the end of the eightin year.

Years
$-\$?$

Figure 3. Cash fian diagtam far a $\$ 1,000$ g-year rerminating aqual series of revenuen.

This problem can be salwed by usting formula 2 (present value of E slogla sum), Each of the 8 cash flowg is discounted by 5 percent and the eight results are summed. Table 1 shows the calculations inecesary to determine the presen value of this teminating annual series. The present value of a $\$ 1,000$ S-year termLnating amual geries at a 5 percent interest rate ds $\$ 6,463,21$. The calcilations were time-consuming and could be quite tedious for longer seriesFortunately, ganeralized fatmulas for calculations like these can be easily developed. Lét us add a deflnitfom:

```
a = the dollmr amount of a uniform, pervoilc or annual cost or
``` revenue (annaity),
\(=\$ 1000 \pm \pi\) the example \(1 \pi\) Table 1 :

Table b. The prasent value bf'a sl, 000 8-yeat temminating amual serles at a 5 percent interest tate.
\begin{tabular}{|c|c|c|c|c|}
\hline Yeat off Payment & Discmint Period (years) (a) & \begin{tabular}{l}
Fresent Value \\
Single Sum \\
Frictar (\(5 \%\)) \\
(Appendixx Table A5)
\end{tabular} & \begin{tabular}{l}
Annua 1 Series \\
(a)
\end{tabular} & \begin{tabular}{l}
Present \\
Value
\[
\left(V_{0}\right)
\]
\end{tabular} \\
\hline 1 & 1 & 0.95238 & \$1,000 & \$ 5 \$22.38 \\
\hline 2 & \(z\) & 0.90703 & 1, 1200 & 907.03 \\
\hline 4 & 3 & 0,86384 & 1,000 & 869.84 \\
\hline \({ }^{*}\) & 4 & 0.82270 & 1,000 & 822.70 \\
\hline \(\ddagger\) & 5 & 0.78353 & 1,000 & 783,59 \\
\hline 6 & 6 & Q. 74621 & 1,000 & 746.21 \\
\hline 7 & \(\tau\) & 0.71068 & 1,000 & 710.68 \\
\hline 8 & A & 0.67684 & 1,006 & 676.84 \\
\hline & & & & \$6,463,21 \\
\hline
\end{tabular}

A general formula exfors to calculate the preaent value of a teminating annual series of costs of revenues:
\[
\begin{equation*}
v_{0}=a\left[\frac{(1+i)^{n}-1}{1(1+i)^{n}}\right] \tag{4}
\end{equation*}
\]

This fevim is shown in the COMPOUND INTEREST FORMULA disgram (back cover) as PRESENT YALUE, TERMINATING ANNUAL SERIES, and waltipliers of values for the term in brackets are foumi in column 4 of Appendix A (Tables Al through A18),

Equation 4 cac be used to Find the present velue of the example cash flow series in Table i:
\[
\begin{aligned}
V_{Q^{\prime}} & =31,000.00\left[\frac{(1,05)^{8}-1}{.05(1.05)^{8}}\right] \\
& =\$ 1,000,00\left[\frac{1.47746-1}{.05(1,47745)}\right] \\
& =\$ 1,000.00 \text { (6,46323) from columai 4, Appendix TaE 1e AS } \\
& =\$ 6,463.23 \text { (suall a1fference due to rounding). }
\end{aligned}
\]

\section*{Example 6}

A hufting club offers 50 lease a gal acre forest tract from you Iot \(\$ 6,00\) per acte per year (\(\$ 5,400\) annually). The lease would tetulture in 50 years. Teing \(?\) percent as an alrernative rate of returu; whet ts the present vaiue of the humidng Lease?
\[
\begin{aligned}
y_{0} & =a\left[\frac{(1+1)^{n}-1}{1(1+1)^{n}}\right] \\
& =55,400\left[\frac{(1.07)^{50}-1}{.07(1.07)^{50}}\right] \\
& =\$ 5.400(13.8074) \text { Ir00 colum 4, kppendix Table A7 } \\
& =\$ 74.524 .00
\end{aligned}
\]

Future Value. The COMPOLND INTEREST FORMDLA diagtam aiso shows the Fotmula Eor the FUTURE VALUE, TERMINATING: ANNUAL SERTES:
\[
\begin{equation*}
v_{n}=a\left[\frac{(1+i)^{n}-1}{i}\right] \tag{5}
\end{equation*}
\]

Values for the term In brackets are 1isted in column of the tables fro Appendix A.

The future value, pr value after year 50, of the hunting lease payments in example 6 would be:
\[
\begin{aligned}
\nabla_{S 0} & =\$ 5,400\left[\frac{(1,07)^{50}-1}{0.07}\right] \\
& =\$ 5,400(406,5300) \text { from column 3. Append1x Table A7 } \\
& =\$ 2,195,262,00
\end{aligned}
\]

\section*{Problems}
11. Timber rights on a 40 acre tract are purchased by a titru with a 6 pexcent casr of capital. The timber will be cut in 20 years. The firil agrees to pay the property tax of \(\$ 3.50\) per acere on the tract until the timber is sut. What is the ptesent value of the tax payments?
12. Operating costa far a pickup truck are expected to be 5750 per year, If you oun the truck for 5 years, what is the presapt value of the costs af a 10 X Laterest rate?
13. A finnting club leasas a 1,750 ade tract for 20 years. The clan will pay \(\$ 3.00\) per acre per year for the entre 20 years due today. The lessor will use a 5 percent interest rate to compound payments What will the value of the lump gurs payment be?
14. What if the lease reveque in problem 13 is not due unt the end of the 20 years? Whar will be the future value of the annual. Iease paymentis, with interest?

Strikitg Fiund Accounts, Two rypes of terminating annual seties deserve specfal treatment. Sinking fund actounts ate simply a madification of the future yalue of a teminating annual series, and capital recovery problems are sipilar to the present value of a teroinating annual series.

Sinkting fand accounts are destgned to accumulare a given sum of tioney within a certain number of years. We wake yearly payments into an account that earns interest, so that at the end of "n" years we will have accumulated a giver amount, \(\mathrm{g}_{\mathrm{a}}\). For the Eormula, we gimpig solve the fiture value of a temituating monual series formula for " \(a\) "; the annual payment:
\[
\begin{equation*}
a=V_{n}\left[\frac{i}{(1+i)^{\pi}-1}\right] \tag{5}
\end{equation*}
\]

Palues for the term in brackets are listed in column 5 of the tables in Appendx A.

\section*{Example 8}

You want to pay cast for a new plokup truck 4 years frow now, If you think you will reed \(\$ 9,000\) to purchase the truck, how much roula you thave to ieposit each year into an actount earning 5 percent interest? Before looking at the solucton, will the amount be more or less thant \(\$ 9,000 / 4\) o \(\$ 2250\) per year?
\[
\begin{aligned}
a & =\$ 9,000\left[\frac{.05}{\left.(1.05)^{4}-1\right)}\right] \\
& =\$ 9,000(0,23201) \text { columin } 5, \text { Appendi.x Tabie As } \\
& =\$ 2,088.09
\end{aligned}
\]

Sinking fund actounts are most commbily used in forestry te calculaţe ammal savings needed ce replace logging or bEher equipment, In al enss. by saving for a future expense, yots are making payments m yourself and accupulating interest tather rhan paying interest to somenne else; In the next eection, we diseuss eapical recovery rhrough Instaljment payments, and with the plckup truck example we. II see the difference if makes when interest is allawed to accumulate in grour ow arcount.

\section*{Problems}
15. It will cost \(\$ 25,000,00\) to replaca a lagging reuck in 4 years. It a. 9 percent staking fund is established ta pay for the truck in is years, What will be the amual payments Into the fund?
15. A \(\$ 220,000,00\) tractor must be replaced in 4 years; If the 51 m's cost of capital is 12 percent, how wach lis the payment inta an sunual sinking Fund?

Capital Reconery, Ofren, it is desirable to compute the armual payment that is equal te a certain prasent value at a given interest rate. A good example is instaliment payments (ize., paying off a loan, with fncerest charged on the unpaid balance). The mnual payment would be the amount necessary to exactly recover (repayl an initial capital Irvestant within a specified time perioui (bence the name capital recovery). The annual series of payments needed to repay a capital investment within a specific time period is:
\[
\begin{equation*}
a=v_{0}\left[\frac{1(1+1)^{n}}{\left.(1)+1)^{n}-1\right]}\right] \tag{6}
\end{equation*}
\]

The capital recavery mitipliar 1 s listed in column 6 pi Appendix \(A_{4}\) for different values of "in anu "n" As you may notice, the capital recovery fatinula is simply the ptesent value of a terminaciug annual series Eomula wriften to solve for "a" rather than \(V_{0}\) "

\section*{Example 9}

Suppose you borrow \(\$ 9,000=0\) buy the plekup truck in exampie 8. For compaxisun, assume you conld borzou at 5 percent Interest, and you will make 4 amnual payments, beginniog in cne yeaz.
\[
\begin{aligned}
a & =\$ 9,000\left[\frac{.05(1,05)^{4}}{(1,05)^{4}-1}\right] \\
& =\$ 9,000(0.28201) \text { co1umn 6, Appendix Table A6 }
\end{aligned}
\]
- \(\$ 2538.05\)

In example \(\mathrm{S}_{\mathrm{t}}\) where yoti accumulated the \(\$ 9,000\) before you spent 1t, only \(\$ 2089,09\) was needed asch year. The difference tould be greater, of course, for higher interast rates.

Since many people make oonthly installment payments on borroked funds, examples 10 and 11 are presented 20 f.1lusrate the steps involved (see the section on Nonthly Compoundigg for mora discussion).

Example 10
You want to barrow \(\$ 9.000\) for the trugk in the previous example, and the dealer quotes you an ampal percentage rate (APR) of \(6.9 \%\), What would your wonthly payments be for 48 Honths?

Two modifications are needed: use the number of months for " n ". and use the monchly interast rate \(\left\langle A P R / 12=i_{\text {monthity }}\right.\)) Far "it in the capital recovery formula.

Substitating into equation 6:
\(a=\) (Ambunt Borrawed) \(\left[\frac{\frac{A P R}{12}\left(1+\frac{\text { APR }}{12}\right)^{\text {Years A } 42}}{\left(1+\frac{A P R}{12}\right)^{\text {Years * } 12}}\right]\)
\(=\$ 9.000\left[\frac{\frac{.088}{12}\left(1+\frac{.058}{12}\right)^{48}}{\left(1+\frac{.088}{12}\right)^{48}-1}\right]\)
\(=\$ 233.11\)
Tables are not presented for all posstble values of \(i=A R R / 12\), Bo the above example is a good opporturity to check your hend-held calculator results.

Perhaps the secand mast addmon rype of capital reabery is hone mortgage loans. Lev's calculate the monchly payment on a 30-year, \(\$ 60,000\) morygage with a fixed-zate loan at \(10 \frac{3}{2}\) percent:
\[
\Delta=(\$ 60,000)\left[\frac{\frac{105}{12}\left(1+\frac{.105}{12}\right)^{360}}{\left(1+\frac{.105}{12}\right)^{360}-1}\right]
\]
\(=\$ 548.84\)
home moftgage payments are very inportam to foresters and foregt landownerg. Residential construetion is the greatest single qutlet for wood products. Can you relate high of low interest rates to forestry employment or stumpage prices? Prices and eraployment are affected by the dewand Eax Foreat products, and the dewand zesulta fram endrproduct demands such as new home eptistruction. Compare the mouthly payments below and you can easily see how Interest rates can Influence stumage priees and forestry employment:

Anmul Percentage
Rate
48
7
10
13
16
19
22

Monthly Paymetit on a Fixed-Rate, 30-Tear Nottgage of \(\$ 60,000\)
8. 286.45
399.18
526.54
663.72
806. 85
953.34

1,101.55

Figure 4 if Lustrates how monthly payments vary for different interest rates end principal ampunts.

Figure 4. Monthly payments firt a given nanimal frterest ratz and various príncipai amomes.

\section*{Problems}
17. A firm purchases उ site prap tractot for \(\$ 120,000\) at a 9 percenk interest rate. The firn will thake \(s\) ix uniform annuel paymenes, beginning in a yest. What will be the amount of the payment?
18. You boryaw \(\$ 88,000,00\) La purchase z tract of farest land; If payments ace spread pyer 20 yeafs and paur interest rate is il parcent, what is your amnal payment to revire che loan?

Teminating Periodfe Series
Proserif Value, A series of costs or revenues is periodic if the values occur on a non-anmual but untfokn basis. The diagram below defines "t" as the peitiod betwean the "a" costs or revemses,

Eigure 5. Terminating periodic series of costs or revenues.

The formula for the ptesent value of a teminating pertodic sertes ...
\[
\begin{equation*}
v_{0}=a\left[\frac{(1+1)^{\pi}-1}{\left((1+1)^{t}-1\right)(1+1)^{\mathrm{n}}}\right] \tag{7}
\end{equation*}
\]

The formila is referred to in the COMPOUNO INIERESI PORMULA diagram, and values for the tem in beackets are 3isted Eor \(1=4,8\) and \(12 \%\) in colums 2a, \(2 b_{+}\)and \(2 c\) of Appendix \(B\).

Example 12
What is the presenz value of prescribed burning casts of \(\$ 5.50 / a c\), if they occur every 10 years through yeat 50 \% \(1=12 \%\)
\[
\begin{aligned}
\nabla_{0} & =\$ 5.50\left[\frac{1.12^{50}-1}{\left((1.12)^{10}-1\right)(1.12)^{50}}\right] \\
& =\$ 5.50(0.4732) \text { from column 20. Appendrx } \\
& =\$ 2.60
\end{aligned}
\]

Future Value, Periodit serfes of conts and revenues can also be compounded. The formula for the future value of terminatime Deriodic series is:
\[
\begin{equation*}
v_{\pi}=\left[\frac{(1+i)^{n}-1}{(1+1)^{2}-1}\right] \tag{8}
\end{equation*}
\]

The formula is listed in the COMPOUND INTEREST FORNULA diagran, and values for the tam in brackets are listed in colums la, ib, and le of Appendix B (la, 16, ad ic eorrespond to interest rates of 4, B, arld 12 percent, raspectively),

Example 13
Yout forest yields approximarely \(\$ 6000\) every 5 years. If you put the \(\$ 6000\) inta sul account earainj \& percent annual Incerest, how much money woyid be in the accouns 25 years From now?

In this vage, \(t=3\) years per pertod, and there are 5 periods in the 85 -yeat \(t 1_{\text {me }}\) span. The future value 15 .
\[
v_{25}=\$ 6000\left[\frac{1.08^{25}-1}{1,08^{5}-1}\right]
\]
*5000 (12.4614) froun calum Lb , Appendix B.
\[
=\$ 74.768 .40
\]

Perpetual Annual Serfes (Present VaLue). A perpetual anmual series 15. a serles of casts or reverues ("A") pccurring ane yeat apart fit an Infirite nimber of years. A common farestry example of such an asset is an endless Elow of rew marerlal from a regulared foreat. The formula for the present value of a perpetual annual series is given by:
\[
\begin{equation*}
V_{\sigma}=\frac{a}{i} \tag{9}
\end{equation*}
\]

Fonuls (9) is shown in the COMBOUNE TNTEREST FORMULA diagram as the PRESENT VALUE, PERPETUAL ANNUAL SERLES, Values are not tabulated, however, since the Earmula is simply "a" divided by "ip",

\section*{Example 14}

Fall menage a 1,000 acre tract of bottom, hand hardwood on a S-year eutting cycle. The forest is regulated and you expact To haryest 7 rords per aura Erom 200 acres each year. Hardwood stumpage is worri 54 per cord. What is the present VAlue of this forest investment iE you intend zo fold it iri perperuity? Your cost of eapital is a percent.
\[
\begin{aligned}
& V_{0}=\frac{\frac{a}{ \pm}}{2} \\
& V_{0}=\frac{7 \mathrm{cds} \cdot / \mathrm{ac} \cdot \mathrm{x} \beta 4 / \mathrm{ed} \cdot x \cdot 200 \mathrm{ac}}{08} \\
& V_{0}=\frac{\$ 5600}{40}=\$ 70,000
\end{aligned}
\]

\section*{Problems}
19. If a fond is established Eo pay a \(\$ 2,00\) per acre property tax on a forest tract in perpetuity, how much money unst be deposited in an \& percent acoount to cover the payment?
20. A Douglas-fit forest is fully regulated and produces \(\$ 100,000\) of cimber cevenue annually. What womld this forest be worth today at 4 percent interest'?

Ferretual Reriodic Series (Eresent Value) A perperual periodic series ig a fommon type of cash Elow series fo farast regularioh. The Eormula for the present value of a perpetual periodis series of coets ar reyemues ig:
\[
v_{a}=a\left[\frac{1}{(1+f)^{\pi}-1}\right]
\]

Values for the chmin inackers are lfsted in Appendix \(C\) foy alfferent values of 恬" and "n".

Ftom the COMPOUND INTEREST FORMOLA Diagram, tote Ehac only ptessaz Yaines are listed for che perperual, anuual and periodtc series. Future女ajues are not eppogpfate for such serden slace we assume the costs or revenues do nor end.

Example 15
A Loblolly pine piantation 18 expected to yield \(\$ 1,290\) pe= acre every \(2 \hat{6}\) years an perperuity. what is the presenz value per aste of the plantation \({ }^{1}\) cash flow seties at a 6 percent discount rate?
\[
\begin{aligned}
v_{0} & =\$ 1,290\left[\frac{1}{(1.06)^{2 g}-1}\right] \\
& =\$ 1,290(0.24321) \text { Etcom Appenasis } G . \\
& =\$ 313.70
\end{aligned}
\]

What is the prasent value of a 51,000 payment every five years in perpertuity at a 12 percant interest rafe? The aultiplier Erom Appendix \(C\) for a 5-yeat period at a 12 percent intareat rate is 1.31175 , and
\[
\$ 1,000(1.31775)=\$ 1,311.75
\]

Does titis make bense? An infinlte sertes of payments worth orly a few hundred doljare more than the ortignal payment? Let's dibcaunc the firet 6 payments using columi 2 dE Appendix Table A1?:
\begin{tabular}{|c|c|c|c|}
\hline Paynent & Year & Pectot & Eresent Value \\
\hline 1 & 5 & . 56743 & \$ 567,43 \\
\hline 2 & 10 & . 32197 & 321.97 \\
\hline 3 & 15 & , 18270 & 182.70 \\
\hline 4 & 20 & . 10367 & 103.67 \\
\hline 5 & 25 & . 05382 & 58.82 \\
\hline 6 & 30 & . 03338 & 35,38 \\
\hline 7 & 35 & . 01894 & 18.94 \\
\hline 8 & 40 & . 01075 & 10.75 \\
\hline Total & & & \$1,297,66 \\
\hline
\end{tabular}
A. 1 most 49 percent of the present value is accomnted for ind the firgr 40 years. This shows the power of compound Interest. The paymant 10 gear 45, and all rematning paynents, are worth a total bf only \(\$ 44.09\) in presect value terms.

\section*{Erolrbens}
21. A forestry investment is axpscted to \(\begin{aligned} \text { ind } \\ \text { 2 }\end{aligned} 118,000_{0} 00\) at the end of every 28 year rotation. The tract is bare and needs to be planted. The discoumt rate is 4 percent, what is the value of the: Investment in perpetulty?
22. What is the present value of bara land whith sonid produce \(\$ 200,000.00\) of net revenue at 35 year intervals? The interest rate まa \& percent.

\section*{vi. DECISION CRITERJA}
```

Decision ordterta are used to evaluace Edrestry investment alternatives, Different cricerda may be apprapriare for aifferent investment struarions. often the chotee of a pazticulat eriterion is just a matter of persanal preference, We itscuas six major decisien Cricaria used in Eorestry lavestment amalyels
(1) payback period.
(ii) net present value,
(1i1) equivalent smuai incope,
(iv) bevefit/cost ratio,
(v) Intemal rate of revurn; and
(vi) Iand expectation vaLue.

```

\section*{Payback Pertad}

Fayback pertad is a commox aneagute \(\phi\) g the attractiveness of Forestry investments. It is the number of years required to recover the inftial eash investment ta a project. If the annal returns from an Luvesment are equal, the formula for the payback period ist

Payback Period \(=\frac{\text { Initial Investment }}{\text { AmuaL Return }}\)

The shorter the payback period, the better the investment.

Erample 17
An atsachment to a planting machine costs \$600. Two companies pcoduce models, both or the same cost, Compgny A's model will. reduce planxing costs by \(\$ 200\) per year, Compsing日's made? will eeduce plantigg costs by \(\$ 300\) in yeat \(1 ; \$ 200\)

The payback period criterlon has severati shortcomings. Most importantly, it does not consider the time value of money. That is, it does nat consider the interest cost of the inyested capital. Alan; it does not consider cash flows after the payback period. What if Company \(A^{\prime}\) 's model reduced coste by \(\$ 200\) for years 4 to 7 and Company \(\mathrm{I}^{\prime}\) 's model Teduced coste by \(\$ 100\) for years 4 to 72 This would not have been cons idered by the paybaek period.

The paybsck period criterion does have sexeral advantages. First, It is simple and easy to use, Second, usually cash flows must bes
 feel uncoufortable estimating cash flows over long pertods of fime: Third, when Lnyestment capital is tight, a company might be interested In an investment's payback period. Also, inveetments with short payback pectods are ubval \(2 y\) constiered less risky. If two porentlal, fitvestments are similar in earms of other economic criteria, for example, the one with the shotter payback period may be the best choied. Lass uncertalaty is usually involved with shorter inyestment periods.

\section*{Problems}
23. A centrally located saxvice genter for your area had been proposea. Total cast would be \(\$ 175,000\). The center should reduce service costs by \(\$ 25,000\) anoually. What in the payback period for this investment?
24. Three regional seddling. storage facilities have been proposed. Total cost is expected to be \(\$ 120,000\). The facilities wonld reduce regenerarian costs by \(\$ 40,000\) andually for the first two years, then by \(\$ 20,000\) annuelly. What is the payback period for this inves imetut?

Wet Present ValuE
The net ptesent value iNPV) criferidn is a very popplar decision critertont. It is also commonly called present net vedue (PNy), present. ter worth (PNW), and net present worth (NRW), It is simple to use and is pines consider the itme value of money. Net present value is the discounted yalue of all revenues minus the discounted value of all costs asaoclated with an investment. In matheristical termst
\[
\begin{equation*}
N P V=\sum\left(\frac{B_{n}}{(1+1)^{n}}\right)-\sum\left(\frac{c_{n}}{(1+1)^{n}}\right) \tag{12}
\end{equation*}
\]

Whera!
\[
\begin{aligned}
& \text { MEV = net present yalue, } \\
& \sum=\text { sum of all values in parantheses } \\
& \frac{R}{n}=\text { revenue in year } \pi, \\
& C_{n}=\text { coscs in year } u, \\
& \frac{5}{5}=\text { year in which cash flow occurs, and } \\
& i=\text { Interest fate, }
\end{aligned}
\]

If the intarest rate used in the calculation is gour cost of sapistal, any investment with a pogitive NRV will gield a rate of returit greater than your cost of capital. The cecision rule used with chis criterion is to accept investments with positive NEV'g.

Example 18
A landowner asks you to detemine the net present value Qf regenetating 40 acres, Site preparation and regeneration w131. cost \$160 per acre, Property taxes and management costa w11 be \(\$ 2.50\) per acre per year. Thinnings will occire in years 16 and 22 and will yield 5 cotda and 8 eords per acte, reapectively. Hatvest whll occur at year 27 and will yield 56
```

cords per acre. Pulpwood ts worth \$19.50 per cord. The
landowner's drernative rate of terurn is 4 petcent <see
Appendix A fox i = 4*). What is che investwent s NPV?
Revenues

Yeay	It¢	Amoutit	Multiglies	Present Value
16	Thin	$\$ 97.50$	. 53391	5.52 .06
22	Thir	156,00	. 42196	65.83
21	Hacruest	$1,287.00$	. 34582	445,36

Cos2s
Year Itean Amount Multipliet Presenc Vahue 0 Site Frep $\quad \$ 150,00 \quad 1.00000 \quad \$ 150.00$
1-27 Annual Costs
$2.50 \quad 16.32950$
40.82
Present Value of Costs Per Acre $=\$ 200.82$
Per Acte NEV $=\$ 564.25-\$ 200.82=\$ 363.43$

```

In Example 18 the inyestment earned a 4 percent taze of retum, plus 9363.43 . If the NPV had beed \(D\), the sate of retutn on the investment would aque been exactly a percent, If the NPV was less than zero, the rate of return wald have been less than 4 persent.

\section*{Example 19}

A fim 13 consideting an investment in fertilization chat vill cost \(\$ 50\) per acke now and \(\$ 50\) per acre In 10 years. The fertilization \(i s\) expectel to resuit in an additional dailar Yield in 20 years of \(\$ 251\), What is the NPV of this inveatmant for varlous intereat rates?
\begin{tabular}{|c|c|c|c|}
\hline Interesi 8ate & Present value of Losts & Present Value of Revempe & NPV \\
\hline 0 & S100,00 & 5251,00 & \$151,00 \\
\hline 2 & 91.02 & 168.92 & 77.90 \\
\hline 4 & 83.78 & 114.35 & 30.77 \\
\hline Fis & 75.92 & 78.25 & 0.34 \\
\hline \& & 13.16 & 53.85 & -19.31 \\
\hline 10 & 69.28 & 37.31 & -31.97 \\
\hline 12 & 66.10 & 26,02 & -40.08 \\
\hline
\end{tabular}

Example 19 iflustrates the relatiouship between interest rates and NPV. The hagher the interest rate, the Iower NPV (see figure 6). Ae The interest rate is telised, the rent far the use of money over time is higher, lowering the NPV, When NPY equals zero, the investment ion earning just the interest rate. That is, the rate of returu on the Fertilizazion fuvestment is 6 percent.

Notice in Figure 6 that the presant value of revenue decteases more quickly (as " 2 " increases) than the present value of costs. Why? Bechase in Example 12, as in most forestyy fuvestments, revenues orcur farther in the future than costs, and are therefore discounted more heayily to yield present valluen.

Figure 6. Ptesent value of revenme and costs for the problem tin Example 19.

\section*{Prablena}
33. An Inve日tment of \(\$ 25,000\) coday h121 produce revences of \(\$ 9,000\) for each of the next three years, using the NEV decision criterion and a ? percent incerest rate, should you accept the invesmment?
75. Preconmercial thiming a pine plancacton st age a ib expectad ca prodace additional yeveaue of \(\$ 36\) per acre and \(\$ 150\) per acre at Fears 17 and 24 , respertively. How much can you affora to spend on the precommercial thinning ustng the NPV decision erdterion and a \(S\) percent interest fate?

\section*{Equivalent snnual Incame (EAI)}

Equivalent annual incone (EAI) is the annual cash Elow that is egulvalent to mother speaified cash Flow ar a partieulat inverest iate, This criterian is also referred to as equal ambal income and equal amual equivalent. It is especially useful in comparing forestry Investmants to agricultural Invegtuents since agrleidrure yields armilal income, while forests often yield perlodic income, By convetting the periodic inccue into an equivalent armual cagh flow, one can easily compare an sgriculrural alternative for land; itke soybeans or smanal pasture rental. to a forestry investment.

The procedure for ealculating EAl fs simple. Pirst, calculase the NPV Far one cycla (i, e., fotarion) of the forestry investont. 5econd, convert NPV to EAI uefig the capital recovery multiplier:
\[
\begin{equation*}
\mathrm{EAAI}=\mathrm{NPV}\left[\frac{i(I+1)^{\pi}}{(1+1)^{n}-1}\right] \tag{13}
\end{equation*}
\]

Recall that capital recovery matipliers (values far the tern in brackets) are ifsted in column 6 of the tables in Appendix A, for different values of "1" and "n".

Example 20
What is the EAI of the investment in Example 18?
\[
\varepsilon_{h T}=\$ 363.43\left[\frac{.04(1.04)^{27}}{(1.04)^{27}-1}\right]
\]
\(=\$ 363,43(0\), D6I24) from caluom b, Appendix Table a 4
\(=522.26\)
The investmert \(y\) ields a net incenme equivalent to sn annual income of \(\$ 22.26 /\) as. \(/ \mathrm{yE}\). over the 27 year rotation.

\section*{Prablem}
27. You have a rract of fionest tand that you are consideting converting to soybeans. Soybeans yield \(\$ B 0 / a c . / y\). The rimber stand yieids \$5 50/ac. every 5 years. At \(6 \%\) incerest, campare the inverstments using the EAI criterion.

Benefit/ cost (\(B / C\)) ratios ate closely related to NPV. For NPV, the sum of all discounted costs is subtracted from the sum af all discounted revenues. For \(B / C\) ratios, total discounted revenues (benefits) are simply divided by ratal discounted costs.
\[
\begin{equation*}
B / C=\sum \frac{R_{n}}{(1+1)^{\pi}} / \sum \frac{C_{n}}{(1+i)^{\pi}} \tag{014}
\end{equation*}
\]

B/C ratios are often used ko evaluate public projects, with regulations and guidelines ph how benefits and costs are measured end What discount rates should be used. The guideline for evaluating investment projects with this criterion is:

If \(B / C \geqslant I\), Accept (benefits exceed casts), If \(B / C<1\), Reject (benefits less than costa).

Note that if \(B / C \geqslant 1\), then \(N \mathrm{NV} \geqslant 0\), and if \(\mathrm{B} / \mathrm{C}<\mathrm{I}\), NPV \(<0\) (see Figure 6). The decision to except of reject an investment will be the same whether you use B/C or NPV as a criterion. When accept ted projects are ranked by NPV and B/C, however, the order of ranking way be different. Note that the B/C ratio of Example 18 Ia t
\[
B / C=\$ 564.25 / \$ 200.82=2.8 I_{2}
\]

Internal Rate of Return
The internal rate of return (IRR) is the average rate of capital apprecistlan for an investment, ot more simply, the fincerest rate that makes the net present value of an divestment equal to zero. IE an Investment's NPV equals zero, the investment is enrming a return exactly equal to the interest rate. This requires that the sum of the Investment's discounted revenues equal the sum of the discounted costs. The IRR is the fatetest rate that causes the following relationship to be true.
\[
\begin{equation*}
\sum \frac{R_{\hat{n}}}{(1+2)^{n}}=\sum \frac{n}{(1+i)^{n}} \tag{1}
\end{equation*}
\]
wheree
\[
\begin{aligned}
& \text { 艮 }=\text { Teverue in year } n \text {, } \\
& C_{i t}=\text { casts in year } H_{5} \\
& \text { it }=\text { year in which cash flow ocnurs, and } \\
& 1 \text { = interest rate }=\text { TRR when relazionship is true. }
\end{aligned}
\]

Nota that boch terms appear in the formula for NPV，and that when the relationship is true，NPV must squal zera．The IRR for the problen in Example 19 is easily Identified in Figure 6 as 5 percent，

Example 21
CaIculate the IRR of the invesment in Example 18，to the nearest percent．First，we note the NRD of the investment is \(\$ 363.43\) at a 4 percent tnterest rate． Therefore，the IRR 15 greaket than 4 percent．But，how much greater than 4 percent？This answev requires us zo repeat the process of calculating NPV using alfferent interest rates．As you will see，coumon sensè will help．First，let＇s calculare the NPV at 8 percent：
\begin{tabular}{|c|c|c|c|}
\hline Year & Amount & Factor & Present Yalus \\
\hline 0 & －\＄160．00 & 1，00000 & －\＄160．00 \\
\hline 15. & 97.50 & 0.29189 & 28，46 \\
\hline 22 & 156，00 & D． 1839 A & 28.69 \\
\hline 27 & \(1,287.00\) & 0．12519 & 161.12 \\
\hline 1－27 & －2．50 & 1．0．93515 & － 27.34 \\
\hline & & & \(\mathrm{PV}=\$ 30.93\) \\
\hline
\end{tabular}

Since the NPV LB positive at 8 percent，the IRR is greater than 8 percent．Now Iet＇s try a \(1 \overline{0}\) percent intereer工ate：
\begin{tabular}{|c|c|c|c|}
\hline reas & Amount & Factur & Present Valuz \\
\hline [& -\$160.00 & 1.00009 & \(-\$ 160.00\) \\
\hline 16 & 97.50 & 0.21763 & 21.22 \\
\hline 22 & 156,00 & 0.12285 & 19, 16 \\
\hline 27 & 1,28200 & 0.07628 & 98, 17 \\
\hline \(1-27\) & \(-2.50\) & 9.23723 & \[
=-\frac{23.09}{54.54}
\] \\
\hline
\end{tabular}

Since the NPV is negative at 10 percent, the IRR is less than 10 percent. Since the NPV is negative at 10 percant and positive at 8 percent we know that the IRR is between 8 and 10 percent. The NEV at 9 percent is:
\begin{tabular}{|c|c|c|c|}
\hline Year & Amount & Factor & Present Value \\
\hline \(\theta\) & -\$260.00 & 1.00000 & -\$150.00 \\
\hline 16 & 97.50 & 0.25187 & 24.56 \\
\hline 22 & 156.00 & 0.15018 & 33.43 \\
\hline 27 & \(1,287.00\) & 0.09761 & 125.62 \\
\hline 1-27 & \(-2.50\) & 10,02659 & \(-25,07\) \\
\hline
\end{tabular}

Sinca NPV \(<0\), we now know that the IRR is less than \(q\) percent. IE gou do the calculations, the actual IRR is about 8.7 percent. The KPY ar 8.7 percent is 0,17 , or For practical pukposes, zero.

This example illustrates the typfcel repetitive process and the tedsoning involved in the IRR of an favestment. Fen people actuelly go thraugh these tedlous calculations. For detalled problems a computer package will be used Most Elnancial calculators can alao handle bssic IRR problems.

The decision rule used with the IRR decision sriterion is based on Comparing the IRR with a oinimum acceptable rate of return, usually the Cost of capital for a firm. Private landophers may compare IRR's for Earentry investments with their cost of capital if they borron money, or with their bighest possible slterbatiqe qate of retura. The decision guideline 1s:
\[
\begin{aligned}
& \text { If IRR >minlmum acceptable rare, Accept } \\
& \text { If } J R R<\text { minimum acceptsble rate, Reject. }
\end{aligned}
\]

The NPY and IPR declsion criteria are the two wast orddely osed aud eccepted investment ctiteria, A major advancage of the IRR criterion is that the answer provided is an inrerest rate. Many investors, especially nondndustrial private forest landowners, are most coufortable whith rate of retutn fuformation, Both colteria yield the aame answer when used to answer the question "Is this investment profitable?" That 15, when MPV is greater than zero, IRR 1 g graater than the discount rate and vice versa. As with \(\mathrm{B} / \mathrm{C}\) ratios, however, project zankings with NPV and IRR da not alway 5 agree.

\section*{Example 22}

A fimm is cons ldering an Investment in fertilization that Will cost \(\$ 50\) per acre, The fertilization is expected to result in an additional doliar yleld in 20 yeats of \(\$ 160.36\). What is the IRR of the investament?

Simple problems with one cost and one revenue car be solved directiy ustag equation in Solving equazion 1 for " \(i\) "
\[
\begin{align*}
v_{n} & =v_{0}(1+i)^{n} \tag{1}\\
(1+1)^{n} & =v_{n} / V_{0} \\
(1+1) & =\left(v_{n} / V_{0}\right)^{1 / \pi} \\
1 & =\left(v_{n} / V_{a}\right)^{1 / n}-1 \tag{16}
\end{align*}
\]

Equation 16 can be solved using your handheld calculator, on by using the tables in Appendix A. In ant example,
\[
\psi_{n} l v_{0}=160.36 / 50.00=3.2072 .
\]

This is the value by which \(V_{0}\) must be muleipliad (at "in", the interest rate) to obtain \(\nabla_{n}\), tee., \(\$ 50.00 \times 3.2072=\$ 160.36\). Or, chis \(1 s\) the future value, single sum multiplier from Appendix A. Since we know the factor (3.2072), and we know that \(n=20\) we can go ca Appendix \(A\) and scan the \(\pi=20\) row of colum 1 for each table until we locate 3.2072. We find 3,20716 for \(i=6\) percent. Therefore, IRR is approximately 6 percent.

\section*{Problems}
28. What is the IRR of an Investment wath the Following cash Elow patrern?
\begin{tabular}{lr}
Year & Amount \\
0 & \(-\$ 801.23\) \\
1 & 200.00 \\
3 & 800.00
\end{tabular}
29. An Inveatment in timber stand improvement (TSI) that costa \(\$ 30 \mathrm{per}\) acre at year 20 will yield 6 additional cords in 10 years worth \(\$ 10,80\) per cord. What is the IRR of the TSI investment?

The Land expectation value \(L_{\mathrm{e}}\) f dectstion exfterion 13 also widely used in forestry, It is also called the Fanstmann Fonnula and the bare land walue or safl expectation velue fommla (anose the value af bare land in perpetual forest production is calculated). The scandard fommla for a perpetual periodie series (Appendix c) is used for the calculation, This tes actually a standand NEV calculatlom, but with several critical assumptions:
1. The values of all costs and revarues are tdentical for all rotations. All costs and revenues are compounded to the end of the rotation to get che Euture palue af one rotation. This value wll be the amount received every "n" years.
2. The Iand will be forested in perpetuity.
3. The land requitee regeneration costs at the beginming of the ratation.

Gf Land value does not enter Into the calenlation. Land value is whet you are calculating-

The calculation ts quite easy and involves two steps, First, each cose and revenue is compounded to the end of the first racacian. The aet value at ratarion represents the dollar apount available at the end of each rotation in perpetuity. Secand, the prasent yalue of the dollat atount is calculated on a perpetual pertodic basis, and multipllers for the calculation are therefare Ilsted in Appendix C.

Example 23
You neen ta detemilte the bare land value of a forest trace which preaently has mo merchantable tiober, Follawhig
reforestation, the razet will be panaged pria 30 -yedr ratation and your cost of capiral is 6 percent. Sice preparation and regeneration whil occur in year 0 at a cost of \(\$ 80.00\) par acre. Annoal management nosts and property taxes will be \(\$ 1.50\) pet acra. Thinnings will occur at ages 18 and 25 and Wall Fleld 6 and 10 cords per acre, respectively. Final harvest will yield 57 curds per acre. Pulpwodis worth \(\$ 16\) per cord. If you intend to follow the above management séquence and you want to earn ar least 6 percent on your Inyescraent, how much can you afford to pas for the bare land?

\section*{Revenues}
\begin{tabular}{|c|c|c|c|c|}
\hline Iear & Irem & Andunt & Factor & Puture Value \\
\hline 18 & Than & \$ 96.00 & 2,0122 & \$ 193.17 \\
\hline 25 & Th mor & 160.00 & 1.3382 & 214.11 \\
\hline 30 & Harvest & 912.00 & 1.00000 & 912.00 \\
\hline
\end{tabular}

Foture Value \(\left(V_{30}\right)\) of Reverue \(=\$ 1,319.26\)
Gosts
\begin{tabular}{|c|c|c|c|c|}
\hline tear & Item & Amount & Factor & Future Value \\
\hline 0 & Site Preg & \$80.00 & 5.7435 & 5459,48 \\
\hline -30 & Ann. Costs & 1.50 & 79.0580 & 118.59 \\
\hline & & ture va & \(\mathrm{t}_{30}\)) of C & - 5578,07 \\
\hline & Net Futave & Value \(=\) & . 28 - \$5 & = 74, 21 \\
\hline & assumpt & ons tre & 隹 \$741. & 5 3 perpetual \\
\hline Ferioc & ies \}paid & every 3 &). & \\
\hline & \[
L_{e}=741.21
\] & \[
\left[\frac{1}{(1.06)^{30}}\right.
\] & & \\
\hline & Azpendix \(C\) & & & \\
\hline & \(E_{e}=\$ 741.2\) & (.21082 & & \\
\hline & \(=\$ 156.2\) & per acr & & \\
\hline
\end{tabular}

Le represents the maximum amount that could be paid for a cract of land and still earn the required tntetest rate. You could pay \(\$ 156.26\) per sere for the tract and earn 5 perceat on your investiment. assuning you tre the land to grom thber according to the management schedule quclined.
30. You are consldering the purchase of 3 nop-forested tract of labd. For a 28 -year rotation you expect the fallowing costs and revenues:

Amount
Teat
Itamin
Sper acre)
0 Site Pree \(\quad-\$ 50.00\)
1 Platt -20.00
22 Burn -3.50
1-28 Amusl Hunting Lease 1.30
1-28 Anrum 1 Cont -1.50

10 Thin 150.00
2I Thin 210.00
28 Harvest 1,120.00
How much can you afford to pay for the tract, per acre, if you would like to eari ar least 4 percent on your invested capital?

Apphicalion of Criteria
Rotation Deteruination. Optimal rotation age is conmonly fetermined using one of the decision eriteria we've discussed (ustally NPV, IRR, ar \(L_{e}\)); The best rotarion age is largely detemmined by the Cimber growth and yield since future revenues depend on expected yields. Gonsider the following simple yield relationshfpa
\begin{tabular}{cc}
Age & Yield (Cotas) \\
10 & 13.4 \\
15 & 38.4 \\
20 & 54.0 \\
25 & 67.9 \\
30 & 76.8
\end{tabular}

Nou may be familjar with the term mean aumal fricrement, Kean annual increvent (MAI) is simply the gyersge valume of wood grown each year (sverage apnual growth) - Or, in formula Eom:
\[
\text { MAI }=\frac{Z}{\tau}
\]
shere: \(\quad\) MAI \(=\) mean annual increments
\(Y=\) gield at rotation age, and
\(r=\) rotation age.
The rotation age thar maximizes MAI will marimite wood yield froil ab stami cuer time. If is often Hsed by public agencies in rotation determinazion. For our simple example, MAI is:

Age Sleld (Cords) MAI (Cords)
\(10 \quad 13,4 \quad 1,34\)
15 38.4 2.5世
\(20 \quad 24.0 \quad 2.70\)
25 67,9 2.72.
30 26.8 2.56

In the above example, maxionai Mal occurs at potacion age 25, If onets goal is simply to maximze average annual itmber growth, this is a satisfactory criterion. As you can see, however, MAI doas not constder the fime value of woney or production costs. When Eipancial canstiterations, as well as grawth and yield relarionships, are taken Into account, a rotarfon length shorter than maximum MAI is uswally calcuiated. This results begause Einsncial criteria reflect indelal costs and the financial advantage of recelving eariy harvest revenues. For example, if pulpwood can be sold for \(\$ 16\) per cord, s1te preparation/regeneration costs are \(\$ 80\) per acte, and annual management cogts axe \(\$ 1\) ger acte per yaar, at a 6 percent interest rate the various cotations have the Eollowing net present valuess
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Age & Yield (Cords) & \begin{tabular}{l}
Honey \\
Ytel口
\end{tabular} & D1gccunted Maney Mield & Site Prefl Regeneration Costs & Dfseount ed Annual Coste & \begin{tabular}{l}
Net \\
Fresant \\
Velue
\end{tabular} \\
\hline 10 & 13.4 & \% 214.40 & \$119.72 & \$80.00 & \$ 7.36 & \$ 32.40 \\
\hline 15 & 38.4 & 614,40 & 256.37 & 80.00 & 9.71 & 166.66 \\
\hline 20 & 54.0) & 864.00 & 269.40 & 80.00 & 11.47 & 177.93x \\
\hline 25 & 67.9 & 1,086.40 & 253.17 & 80.00 & 12.78 & 160.35 \\
\hline 30 & 76.9 & 1,228,80 & 213.95 & 80.00 & 13.76 & 120,19 \\
\hline
\end{tabular}

Intarnal tates of return for the vartous rotation lengths arer
\begin{tabular}{cc}
Age & IRR (\%) \\
10 & 9.5 \\
15 & \(14.0 *\) \\
20 & 11.9 \\
25 & 10.3 \\
30 & 4,1
\end{tabular}

Lana expectation values for the varlous rotatim lengrtis are:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Age & \[
\begin{gathered}
\text { ineld } \\
(\operatorname{Cords})
\end{gathered}
\] & \begin{tabular}{l}
Woney \\
Yield
\end{tabular} & Compounded Establishuent Costs & \(\qquad\) & Value at Rotation End (a) & \(\mathrm{I}_{\mathrm{e}}\) \\
\hline 10 & 11.4 & 5214.40 & \$143,27 & 513.28 & \$ 57.95 & 8.73 .27 \\
\hline 15 & 88.4 & 614.40 & 191.72 & 23.28 & 399.40 & 285.99\% \\
\hline 20 & 54,0 & 884.00 & 256.57 & 36.79 & 570.64 & 258,53 \\
\hline 25 & 67.9 & 1.086 .40 & 343, 35 & 54.88 & G88.10 & 209.06 \\
\hline 31 & 76.8 & 1,228.80 & 459.48 & 79,06 & 690.26 & \(145 \cdot 52\) \\
\hline
\end{tabular}

Io sumarize the resuits;
\begin{tabular}{|c|c|c|c|c|c|}
\hline Age & \[
\begin{gathered}
\text { Yield } \\
\text { (Cards) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { MAI } \\
\text { (Cords) } \\
\hline
\end{gathered}
\] & NEV & IRR (\%) & e \\
\hline 10 & 13:4 & 1.34 & \$132.40 & 9.5 & \$ 73.27 \\
\hline 15 & 38.4 & 2.56 & 166.68 & 14.0* & 285.99* \\
\hline 20 & 54.0 & 2.70 & 177.93* & 11.9 & 258, 5.5 \\
\hline 25 & 67.9 & 2.72* & 160.35 & 10.5 & 209,06 \\
\hline 30 & 76.8 & 2.56 & 120.19 & 9.1 & 145.52 \\
\hline
\end{tabular}

The rotation whlyek maximizes MAI is longer than that which masimizes economic criterie. The SPV, LRR, and \(I_{e}\) eriteria all consider the time walue of waney and produce sharter cotations than MAT, In the abpye example, \(L_{e}\) is maximized with a 15 year rotgcion, while the best totation according to NeV is 20 years, \(L_{e}\) is the most valia criterion simice all future revenues and costs are considered. NPV oonsiders only one ratation, and thetefore does not constder the opportunity to grow Hubsequent stands. Such stands can only be grown after the first stand is harvested.

Ench econoaic cofterion reflects different management objectives. NPV's objective is to maximize the net preaent value of tha future cash flows from one rotation, IRR's ofjective is to maximize the rate of
ratum an investment, and Le's phjective is to makimize bare land value. the present value of all firture net income.

\section*{Protlem}

3I. Below is a yleld table for planted lobloliy pine on an average gite In eastern Virginia. Calculate the best ratailon length using the MAI, NPV, IRR, and \(L\) decision cilteria, Assume establishment costs for e loblolly pine plantation in eastern Virginia are \(\$ 100\) pet acre and anntal management costs and property texes are \(\$ 2\) pet arre per yeer. Sumpage price is \(\$ 0.20\) per cubic Eoot. Cost of capital is \(3 \%\).

Yteld
Rotacion per acte
Age (cubic faor)
\(15 \quad 1,217\)
\(20 \quad 2,135\)
\(25 \quad 2,968\)
\(30 \quad 3,715\)
\(35 \quad 4.379\)
\(40 \quad 4.958\)

Beforestation and Sensitivity Anaiysis: Before dfecussing taxes and Infiation, let's anatyze the variables affeccing eite preparerion and regeneration decisions. The major variables can be seen in a simple met Fresent Value calculation. Consicer only the front-end costs of reforestation and the harvest value of the forest yipld. The met presenc value of one xotarion for this simple evample is given byt
\[
\begin{equation*}
N P V=\frac{H V}{(1+1)^{n}}-R C \tag{18}
\end{equation*}
\]

Where:
\[
\begin{aligned}
& \text { NPY = net present value, } \\
& \text { HV o harvagt value, } \\
& \text { RC }=\text { site yrep, /regenetation costs, } \\
& i=\text { interest rate, and } \\
& A=\text { rotation length, in gears, }
\end{aligned}
\]

This relation meraly says that the net preseat value of a reforestation investont is the discounted harvest yalue minus the cost of site prewaration and regeneration. Orr simple example includes the four major vartables that affect the ecouomics of zeforestation (\(1, n_{\text {, }}\) WV, and RC).

The incerest rate, "i", is one of the most fuportant veriables affecting reforestatlon decisions, When compounding or discounting over a rotatioz length, a smat change in the joterest rave can make a large difference In an investment's uet pxesent value the choice of an approprlate interest rate 18 thetefore a key decision affecting forestry invertment anaiysus, If the interest variable changes, through a change In the preference (how socm you need cash), weriker sates, ar land ownership, forestry investment decisinos may change diamatically.

Iikewise, the rotation length, \(n_{\text {, }}\) or the length of the livestment, Will have a major impaet on the rompounding and discounting of 1nvestment dollars. The present value of revenues is izversely related to the interest rate, and will also hecreace as " \(n\) " increases, uniest Ancreased stand age briags quallty or product changeg wose value differences more than offset the discouncing effects of interest, Site preparation and regeneration costs occur ar che beginning of the rotation. In terms of the NPV of the forestry investment, site preparation and regeneration underga ilicie discounting. If they occut In year 0 , of course, they are not discounted at all. Finpt-end costs can therefare be very critical in detemining net present values for forestry investrients.

The najor timber yield under everaged management occurs at tire time of final harvast. The anticipated cesh flow at hatvest is the expected timber Fheld times the price per unit volume. Yield can be predicted with some ilegree of accuracy, but the price per unit volume favoives critical assumptions. Will timber prices in 30 years be the aape as taday? Will they change only with inflation, or will increases or decteases occur after inflation is accounted for? Price profections may be theertain, but they are also heavily discounted and have much less influence (per doIIar) on BPy's or other economic criteria than do front-end costs or revenues.

Intermediate costs and revenues (e.g., prescribed burning coets and thinniog revenues) have been ointted from the example. They also have a much smaller effect on econoulc dectalone than front-end ecets, and dsually have less effect on present values than the Large reqenmes at narvest (although their effert per dollar is greater). If they yere
added to the example, each cost and fevemie would be discounted to yeat 0 and added to or subtracted fram the total NPV, Atso onitred सere the annital cosis and revenues. Each sefles of annual management costs, anmal property taxes, hunting lease revenues, etc. should be dtscounced as a terminating ammusi series of costs or revanues.

\section*{Sensitivity Amelysis}

How sensitive is NPV to changes of possible errors in each of the Fouf uajot yariables (f, \(n\); \(B \chi_{1}\), and RC)? A simple example Lllustraces Thelf potenzial inEluence.

Assune a 25 year notation of slash pine. The regeneration cost is \(\$ 100\) per acre and the hervest riadd is 40 cords per acre. Pulpwood is worth \(\$ 15\) per card and the interest rate 154 percent. The oet preseat Falue \#F one ratation is;
\[
\begin{aligned}
N P V & =\frac{\$ 600.00}{(1.04)^{25}}-\$ 100.00 \\
& =\$ 225.07-\$ 100.00 \\
& =\$ 125.07
\end{aligned}
\]

What if the "i" \(\Delta z^{\text {" }} \boldsymbol{\pi}\) " ehange by 10 peraent" A 10 percent change In the interest rate sppegrs to be trivial; 3,6 percent and 4.4 percent appear to be very close to 4 percent, However, a 10 percent decrease in "It causes Ntv to increase by 18.2 percent (to \(\$ 147.83\)) and a 10 parcent increase in "i" causes NPV to decrease by 16.5 percept (tu 104.47). A 10 percent decresge in "p" causes NPV to increase by 18.5 percent itc \(\$ 148,26\)) and a 10 pereent injrease in a causes NFV to decrease by I6.E percent (ta \(\$ 104,05\)). We can see by this aimple analysis that choosing an approprlate tarerest rate is cotblaal. While the rotatian length ie sery imporzant, a small change in "x" can affeer NPV as wuch as a large change in "n".

The effect of a change in reforestation costs on our example is . easy to see. These costs occur at year \(Q\) and are subtisctea directly from NPV. If RC increases by 10 percent, NPV decreases by 8 percent (to \$115.07); or if RG decreases by 10 percent, NPV increases by 8 percent (10 \$1 \(35 ; 07\)),

Harvest values are subject ta discounting, and a 10 percent increase in HV (due to an increase in yield and/ar price) causes NPV to increase by is percent (to \(\$ 147.57\)) and a 100 percent decrease in HV causes HPV to decrease by 18 percept (to \(\$ 102.36\)). Does chis mean that HiV changes ar errors affect \(N P V_{\text {mon than }} \mathrm{FC}\) changes? A 10 percent change in \(H Y\) changed NRV by 18 percent, yet a 10 percent change in RG changed NPV by only 8 percent, Reforestation costs are more important on per collat basis than estimated final harvest values; a one dollar grot in RC creates a one dollar error \(1 \pi \mathrm{NP} V_{\text {, but }}\), but dol lat error in HV at age 25 causes only a 38 c evrot in NPY,

The sensitivity analysis shows the choice of "fl has a critical impact on NPV calculations. We also have to make a critical assumption on Intermediate and final harvest stumpage prices. Reforestation costs. rotation length, and harvest yields probably require the least guesswork, Foresters of landowners who analyze forestry investments should be aware of the importance of assumptions for the dr andygee. Simple sensitivity analysis of ten helps evaluate the possible effects of key assumptions an Forestry decisions.

Up antai now, dur disousstons on Livesturnt analysis have begh on \(p\) before-tax basis; that 19, they did nor consider the impact of taxation Of the trivestment. This section will develop a Eranewark for after-tay quvestment analysis based on the federal tacome tax treagnent of timber, Before fetting into the investment analysis discussjon, we fitst reviens the bastes of federal rax treatment of tiaber. Qut review is neessarily Inted to an Introductory level.

Income is andigned to one of two Equeral income tax categories: ardinary income and rapital gatis incoule. Ordinary iniome is the get profit that comes from the econcafic activity of a corporation of 1ndividual. Capital gains (or fosses) result when a capital asser is sold for more (ar less) than its book value. A capital asset is thy asset that is not nomalyy baight of sold in the bustaess of an Individual or Eltur. Intfrnal Revenne Service (TRS) regulations define whith absets may be considered capial assets, Insluding e minimum Iength of time an asser must be heid fy an fridividual or firm for capital gains trgatment.

Capital gfins income is taked oc e lower rate than ordinary income. Individuals fre allowed to exempt 60 percent of Dong-texu capital gains From takghion; corporarions are subject to a maximun cespital gains income fax race of 28 percenti individuals are correhty subject tha mextrapa federal tncome tax vate if 50 percent and cotporations are suffect to a maximum tax tate of 46 percent on ordinary nicone over phoo, 000 . This is the adventage of capital gaing; it reduces the faxes paid by an indivino ar firu.

Taxes are an important part of forestry investment decistons. Taxes muse be considered to accurately reflect reyenues, costs, and races of return for Forescry activities, Out purpose in this chapter is co present correct methods for after-tax analysis, rather than to describe detalls of eurrent tax laws and provisions that rejate to forestry. Correct methods do not change with changes in tax laws, and this chapter is cherefore relevant regardless of spactfle tax provisions and cbanges fron yeat to year. See Hoover et al - (1989) and Haney and Siegel (1988) for derailed descriptions of current federal Intome tak provisions that relate to forestry costs and reveruas.

In ari after-tax investmant analysis, all revenues should be placed ón an after-tax basis, all cost-related tax savings (deduetions and credits) should be日etounted far, and an after-tax discount rate should be used. This phapter theyefore has separate sections for revenues, costs, and interest rates,

\section*{After-tax Revenues}

To calculate after-cax reyenues, simply subtract takes due from revenues seceived. The tax rate whioh applies is the matginal tax rate-the tata pald on additional or margizal income. Our examples use 15 and 28 percent tas rates for private nonindustrial landowners, and 34 percent for eqrporations. Tax rates have varled through the years, and In some years special provisions have been abde far income from timber sales and for ocher "capital gains. " Our examples do not include special provisions, and in general we Include federal income taxes only: Other taxes, such as salf-gmployment taxes or scate income taxes, may also be suburactad from fnoque rackived.

Atter-cas income in simply the income remaining after caxes have been subtractedt
\[
\left[\begin{array}{c}
\text { After-tax } \\
\text { Income }
\end{array}\right]-\left[\begin{array}{c}
\text { Befors-tax } \\
\text { Income }
\end{array}\right]-\text { (tax rate) }\left[\begin{array}{c}
\text { Before-cas } \\
\text { Iqeome }
\end{array}\right]
\]

Equation (1) can be redidead ta:
\[
\left[\begin{array}{c}
\text { Afcet-tax } \\
\text { Incolne }
\end{array}\right]-\left[\begin{array}{c}
\text { Before-tax } \\
\text { Income }
\end{array}\right](1-\text { Lax rate) }
\]

Esample I
After subtracting all qasts of the sale, your tiriber sale ircome last year was \$22,000. If you pay 28 percent of the fncome in caves, the after, tax revenue from the timber sale is?
\[
\$ 22,000(1-.28)=\$ 15,840
\]

\section*{After-tax Costs}

Costs that relate to Enreatry investrents ars generally daductible fot income tax purposes. Some costs are deducted entiraly in the year they occur (chey are expensed) while orher casts are deducted when incone it tealized from the irrvestment, of they are iedacted over a periad of years (they are Gapftalized\}. We first describe the correct way to caloulate after-tax costs for 1tams that ean be expensed, and then we consider after-tad costs whera the expenditure must be caphtalized. With changes in tax lawn, changes occur in the types of coscs that can be expensed versus those that must be capitslized our examples are genetal, however, and are interided ro denonstrate how tax savings Srom deductions should be accounted Eot in after-tas investment andysis.

Expensed Coscs. Costs that van be expensed, ive, deducted enciraly in che year they pcour, save you money by reducing the amount of incorpe tax due at the end of the ourrent year. Taxes atie are calculated by appiging the appropriata tan rate ta income After deducting allowable costa;
\[
\begin{equation*}
\text { [Taxes Due] }=\text { (tax rate }) \text { [Income }- \text { Deductions] } \tag{3}
\end{equation*}
\]

A deductible expense therefore reduces your Incame tax by (Eax rate)*(deduction). To place the expense on an after-ta\% basis, simply gubtract the cax savings from the otiginal expense Incurred:
\[
\left[\begin{array}{c}
\text { After-tax } \tag{4}\\
\text { Cost }
\end{array}\right]=\left[\begin{array}{c}
\text { Besore-tax } \\
\text { Cost }
\end{array}\right] \text { - (tax rate) }\left[\begin{array}{c}
\text { Before-tax } \\
\text { Cost }
\end{array}\right]
\]

Equation (4) can be reduced to.
\[
\left[\begin{array}{c}
\text { After-tax } \tag{5}\\
\text { Cost }
\end{array}\right]-\left[\begin{array}{r}
\text { Betore-tax } \\
\operatorname{Cost}
\end{array}\right](1-\operatorname{tax} \text { cata })
\]

Exampla 2
Property taxas on your 106 -acre tract of timberland are \(\$ 300\) par year. What is the sost on an after-tax basis if your marginal tax rate is 15 percent? Sitce property taxes can be expensed, the actual of effective cost is only:
\[
\$ 300(1-.15)=\$ 255
\]

If you had not incurred the \(\$ 300\) property tax expense, your tax bill wauld have been \(\$ 45\) higher, and the property takes therefore have an actual cost of \(\$ 255\).

Terms such as "fetual" cost and "effective" cost are aften used to denote Giter-tax costs After-tax costs reflect the crue cose of an itern of sarvice, since all potantial tax savings are subtracted fron the initial expense incyizeă. In the next sub-aection, capitalized costs are sonsiderad, and phrases like "actual" of "effective" cost refer to the after-tax present value, \(i_{1}\) 日, where all tax savings have been discounted to the present and subtracted from the initial experse.

Captitalized costs. In genaral, Iegitimate costs that oannet be Expensea ate capitalized for tax ptiposes Gapitalized costs are added to a capital account-- a specific recard of casts to be deducted Erom income in future years. There are four basic rypes of forest-relared expenses that must be capinalized. They represent Fout different types of capteal asstrs;
a. Absets like land that generally fó not depreciate--costs are deducted from income when the asset is sold,
b. Assets like buildings and equipgent that generally deprectace with rime--sosts are deducred oyer a number of yeats. The rumber of years and the schedule of depreclation (percentage of costy dadueted each year) are specifled by the lRs for structures and for alfferent types of gquipment.
c. ABsets like timber-costs of certain resource-based assets like timber, oil, and gas are deducted as che resource is used (depleted). A "depletion allowante" is the dollar amopnt that ean be deducted in a given year, and is hased on the percentage af the resource that was deplaced in that year, If 30 percent of a timber stand is harvested, for example, 30 percent of the capicalized costs may be deducted from income received; for a clearcut rimber sale, 100 percent of capitalized cosce are deducted, Specialized terms such as deplation rate, depletion unit, basis tor depletion, ete, are often used, but the basic procedure is simply to deduct coses as the resource is depleted.
d. Reforestation expenses-since 1980, special tax Imentives have been provided to encourage privace landowners to lmuest in reforestacian. There are specfifie limits, options, and guidelines, but the most common tax treatwent for quallfying expenditures is a 10 percent tax credit, and deduction of 95 percent of the cotal evpense (up to \(\$ 10,000\) par year). Coscs are reçovered by deducting \(1 / 14\) th of the ansts on the first year's tax recurn, I/7th of the coats on each of the text sid tax remurns, and the remainfor i/lath on the eighath rax return after the reforestation expense.

In general, landowners must keep separate capital açounts (racouds) for ezeh of the above types of forestry costs. In some cases, subatcounts are fecessaty ta accurately focord capital expenses--subascounts are kept for premerchantable and merchantable cimber, for example. For land costs or timber costs, the simplest approach for aftex-tax analysis is to deduct the appropriate onst from the income generated by the land sale or eimbar sale. In this maner; onsts sholld be deducted from tha revenue generated by the land of timber sale, and the remainder (net revenue) mulurified by (1 - tax rata) ta decemine the after-cax net revenue.

The following examples show how "effeativen costs are determined Eor equipment purchases and reforestation expenses. In general; the time value of money must be accounted for, and the after-tax cost is determined by subtracting the present value of current and future tax savings from the inirial expense.

After-tax present value of equipment cost. If a piclotp cruck is to be purchased for \(\$ 14,000\), and the buyer plans to deduct the costs using straight-1ine depreeiation aver 5 years (20 percent per year), what is the effective cost of the truck? tad raka - 34 , before-tax discounk raten = 10 percent).

Five dedicerions of \(\$ 2,800\) each are taken, and each deduction saves \((\$ 2,800)(34)\) - \$952 in trxes. The present value of the tax savings is:
\begin{tabular}{ccr}
Yeat & Tay Savingir & Prasent Vall \\
& & \(\$ 952\) \\
1 & \(\$ 952\) & \(\$ 952.00\) \\
2 & \(\$ 952\) & \(\$ 893.06\) \\
3 & \(\$ 952\) & \(\$ 837.77\) \\
\hline & \(\$ 952\) & \(\$ 785.90\) \\
& & \(\$ 737.24\)
\end{tabular}
\[
\$ 4,305,97
\]

The total present value of all tax sayings is \(\$ 4,205.97\), and che effective cost of the truck is therefore \(\$ 14,000\) - \(\$ 4,205,97-\$ 9,794,03\).

This axample illustrates how after-tak present yalues for equipment are calculated. For actual depreciation schedufes, current tar Information should be consulted.

\footnotetext{
*A before-zax discount rate of 10 percent is equal to an after-tax aiscount rate of 6,6 percent if the marginal tax rate is 34 . The present values in example 3 were salculated using 6.6 percent. After-tax inscount ratas are discussed in the next section (following Example 4).
}

After-tax present value of reforestation coste. Landowners wha qualify for reforestation tax incentives receive a eredit and 8 separate deductions, A landomer who spends \(\$ 10,000\) on reforestatlon, who clalms a 10 pexcent tax otedft, and who deducts 95 percent of the expense on the nexc eight tax zeturns has the follawing tax savings (tax rate \(=128\), before-tan discount ratet \(=10\) petcent)
jear
0
0
\(1 \quad(2 / 7)(59500)(.28)\)
\(2(1 / 7)(\$ 9500)(.28)\)
\(3 \quad(1 / 9)(\$ 9500)(28)\)
\(3 \quad(1 / 7)(\$ 9500)(.28)\)
\(5 \quad(2 / 7\rangle(\$ 9500)(.28)\)
\(5 \quad(1 / 7)(39500)(.28)\)
\(T(1 / 14)\langle 59500\rangle(, 28)\)

Tax Sayünes
\(\$ 1.000\)
190
380 380 380 380 380 \(38 n\) 190

\section*{Erescut Value*}
\begin{tabular}{r}
\(\$ 1,000.00\) \\
190.00 \\
354.48 \\
330.67 \\
308.46 \\
287.72 \\
264.42 \\
250.39 \\
116.29 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { Total Present Value of Tan Savings }-\$ 3,106,93 \\
& \text { Effective cost }=310,000 \sim \$ 3,106.93=\$ 6,893,07
\end{aligned}
\]

For landowiers sho receive government cost-shares for reforeetarion, the affective cost is further reducad tol (1 - s) (\$6,893.07), where is is the percentage of costs paid by a faderal or state progian.
*Ar after-tax discount raze of 3,2 pexcent was used, as discussed in the following seckion.

\section*{通tar-ras. Discouut Racas}

For interest incore that is taxable, your actual or after-tax intereat incoman is (From equation (2) i:
\[
\left[\begin{array}{c}
\text { After-tay interest } \tag{6}\\
\text { Incoms }
\end{array}\right]-\left[\begin{array}{c}
\text { Refore-tax interest } \\
\text { Income }
\end{array}\right](1-\text { sat rate })
\]

Interest income, of course, is ofter axpressed as a percent, and the aftertax interest rate sarned is the before tas rate multiplied by (1 - tax rate):
\[
\left[\begin{array}{c}
\text { After-tax race } \tag{7}\\
\text { of recuxn }
\end{array}\right]-\left[\begin{array}{c}
\text { Before-tax tane } \\
\text { of return }
\end{array}\right](1 \text { - tan rata })
\]

If taxes have been subtracted from forestry or othet cevenaes, the afterEax alternative rate of return is the appropziate giscounc rate. The after-tax Eece Is also the appropriste rate for discauntifg the tax savings from deductions of capitalized costs, Tha tax savings are comparable to afcer-tax reverues since they are savings that are not subject to addtennal taxes.

\section*{Example 5}

Your beforg-tax alcernative race of retorn is 9 percent, and your marginal tak race is 28 percent, What is your after-tak alcernative fata of return?
\[
(.09)(1-28)=6.48 \text { percent }
\]

\section*{Summary of After-tax Investment Analysis}

To account fat taxes in forescry or ather investment, analyses, place all costg and revenues on an after-tax basis, and oalculare ali present values using an after tax alternasive rate of retum. Specifically:
1. Convert taxable reventes to after-tax revenues;
(Aftrer-tax revenue) - (Before-tax revanue) (1 - tax rate).
2. If the taxahia rovenue is from a timber sale and a depletion allowance applies, the depletion allawance should be subrracted Eroin the cimber sala ineome before malriplyirs by (1 - tax race) -
3. If the canable tevenue is from the sale of land, or land and cimber together, deduct the cast fron reyenues before muItiplying by 61 tax rate).
4. For all costs othef than the capitalized sosts of land and/or timber, comert costs ró after-tax costs;
a. If the cost can be expensad, (After-tax cost) - (Before-tax east) (1 - tax rate),
b. If the coat must be capicalized IIke buildings, equipment, or reforestation coscs), calculate the after-cax present value of costs by discounting all tuture tax sayings ta the present and subtracking Frop the ofiginal expense incurred.
5. Dse an after-cax discount fate:
(After-tax discount race) - (Before-tax rate) (1 - tak rate).

\section*{VIII. INVESTMENI ANALVSTS - ACCOUNTING FOR INFLATION}

Inflation averaged about 7 pefcent buring the \(1970^{\prime} s\). That means prices in general doubled over the lo-yeat perlod: Something that cost \(51001 \pi 1971\) was ilkely co cost aroumd \(\$ 200\) in 1980.

Infiation is a general rise in prices ovet tive. These price thauges are measured by price tadexes (e.g., Consumer price Index or Wholesale Price Index), Frices and costs In Investment analysis gan ba expressed in curvent dol Lar prices or constant dollar prices.

Current iollar prices are the ackual marketplaca prdces sharged in any particular year. They inciude inelatlor. Constant dollar prices are flxed purchasing pawex dollars relative to a base gearm often, coartaut dollars are expressed in terms of 1967 prices. The effects of inflation are removed from constant dollats by indextng. Inaexing is accomplished by dividing the curtent price in a given year by the appropriate indes for that year. For example, the producer prica index (PPI) foz selected pears and current and constant dollar stumpage prices for sulithern pine sawtimber are given below (from Southern Jourtal of Applied Earestry (6):195-200).
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Teaz} & \multirow[b]{2}{*}{PPI} & \multicolumn{2}{|l|}{wifmber Stutpage Prices} \\
\hline & & Current & Constant \\
\hline 1967 & 100.0 & 38.3 & 38.3 \\
\hline 1970 & 110.4 & 44.1 & 39.9 \\
\hline 1973 & 134.7 & 93.4 & 69.3 \\
\hline 1976 & 183.0 & 87.0 & 47.5 \\
\hline
\end{tabular}

Constant doliars are obtained by dividing eurrent dollars by the price Iridex factor, The factor is the. PPI for the future yeer divided by the PPI for the base yeat. For example, the equscent dollaz price fas 1976 Is calculated by \(87.0 /(183.0 / 100.0)=47.5\).

A real price change occurs when a particular price changes relacive to other prices in the exanomy, That is, the price must change at a different rate than the general price level (general fate of Inflation). For example; assums that hardwond sawtimber stumpage priees have been Lnoreasing et an average rate of 8.5 percent per year bince 1960. For the same period, assume fardwoon pulpwand stumpage prices increaged it an average anoual rate of 2,8 percent, and thet the general inflation tate over that perfod was 5 percentr Til this example, sawtimber stumpage prices Increased at a faster rate than the general paice Ievel, For a seal price increase of over 3 pereanc Fujpwod arumpage prices increased, but real prices decreased by about 2 percent par gear.

Let's Look at the mathematies of inflation; letf
```

1 = madker interest rate,
r m real interess rave, and
f=Inflation rater

```

Ta see how the market interest rave is telarea to the real intareat rate and inflation, consider a value today (\(\eta_{0}\)) and what the value wanla be one year from today \(\left(V_{1}\right)\). If a real incraase occurs, the value in gne year is:
\[
V_{1}=V_{0}(I+v)
\]

If intiacion slso occurs, frosever, the walue in ohe jeaz would be:
\[
\bar{v}_{1}=V_{0}(1+x)(1+\bar{i}), \text {, } 25
\]
multiplying the tems in parentheses,
\[
\nabla_{1} * V_{D}\left(1+x+E+\tau E^{\prime}\right)
\]

We know that \(V_{1}=V_{0}(1+\) market interest rate \()\), so the marker rate of interest hould be:
\[
\begin{equation*}
I=I+I+X f \tag{19}
\end{equation*}
\]
```

For example, ff \& * 3 percent und \& = 5 perzant,
t-.03*.05*(.03)(.05)
=.0815
* 总 15 percent

```

If you want to ablve far the real rate or the tate of foflationt

Far exancle, \(18 \div=8.15\) percent and \(f=\) Spercent,
\[
\begin{aligned}
r & =\frac{1.0815}{1+05}=1 \\
& =.03 \\
& =3 \text { percent }
\end{aligned}
\]

How does all this affect inyestment analyses? The rule which must be followed in urder to account for inflation is:

If the discount rate IncIudes an inflation Factor, so must the estimared aseh flows. If constant dollar values are used in expressing Euture cash flows, fowever, then the tiscount rate used should be adjusted co. remove the effect of inflation.

\section*{Exannye 33}

You are cons dering buying land and converting in to a pine plantation. Site preparation and regeneration will cost \(\$ 50\) per acre. At age 35 you will harvest 10 MBF and 10 nords per acre. The srumpage price for sawtimber is \(\$ 240 / \mathrm{MBF}\) and \$is/cord for pulpwoof. Annual management costs and properzy taxes will be \(\$ 1.50\) per acre per year. What is the bare land value? The current interest rate is 11 percent.

It is not lnasual to get answers like thiz for bare land value calculations. What so wroag with the example? Constant 1984 prices were used, but a mazket interest rate chat Included inflatiou weढे used to discounc cash flaws. Real finterest tates have beer three to four percent over the last Eev Gecades. むet's cesolve the problum using a teal interest rate of 4 percent.
\begin{tabular}{|c|c|c|c|c|}
\hline Lear & Item & Amoilnt & Factor & Value at Year 35 \\
\hline 0 & Site Prep, & \$50,00 & 3.94608 & -\$197.30 \\
\hline 35 & Harvest & 2560.00 & 1.00000 & 2,560.00 \\
\hline \(1-35\) & Antual Gosts & 1.50 & 73.65210 & \(-110,48\) \\
\hline
\end{tabular}
\[
I_{e}=\frac{\$ 2,252,22}{(1,04)^{35}-1}=\$ 254.48
\]

The norrect bare land value is \(\$ 764,48\).

\section*{Prablems}
33. An investment in a forest property is expeated to return 3 percent In real texms aver the next 7 years. Inflation is expecred ra average 7 percent over zhe period. What is the market rate or nomimal rate of rerusn expected from the investinent?
34. A money niarket account will pay you 10 perpent over the gaxc 9 years, You expect Iaflartan to average 5 percent over the same period. What bill be yaur real rate of retari on the account?
IX. SPECIAL TOPICS

Several ropics require further development. Equivalence is an importans concept that was only given passing coverage in an earclier section. Contrnubus companifing will bs briefiy biscussed, Loak problems will finssh aut this gection.

\section*{Grailent Cash Flow Series}

Not all eash Elows are uniform; A conmon situation is a gradient cash flow series, where the bash Elow is expected to inerease of decrease by a Mat Fo m amount each compounding pefiod; In effect, two saparate cash flow series are present in gradient cesfif flow series problems! a unifarm serfes and a gradient series. The gradient serfas increases of decreases by a constant amount, "g", each compounding perlod.

Cousider the operation and malntenance expense for a small logging crew. The expense for year 1 is \(\$ 50,000\). Beginniug with year 2, due ro equipment deterioration, the expense is expected to increase by \(\$ 5,000\) a year until the and of year 6; when the equipment is retired. The cost of capital is '8 percent.

Figure 7 IIlugrates the cash flou serief. Notice that Figure 7 reptegents a compasite of a mifarm series and a gradient seriesi Figure 8 shows the components of the conposite cash flow series.

Tigure 7, Examele of gradient cash flow serles (composite of a fodfomi series and a gradient serieg?.

Figute B. Composite eash flow series broken duwn litit its component und form and gradient sertes.
1.et;
\(8=\) the amount of tnerease or denrease ia a cash flow gradient.
The present value of a gradtent cssh flow secios \(1=\) given by:
\[
\begin{equation*}
v_{\alpha^{*}} g\left[\frac{1.0-(1+\pi i)(1+5)^{-n}}{1^{2}}\right] \tag{20}
\end{equation*}
\]

The future value of a gradient cash flow series is given by?
\[
\begin{equation*}
\nabla_{n}=g\left[\frac{(I+1)^{\pi}-(1+n I)}{t^{2}}\right] \tag{24}
\end{equation*}
\]

The umfonto series gradient sonversion factor, the factor that converts a. gradiant series to a undform series, is given by:
\[
\begin{equation*}
a=g\left[\frac{1}{1}-\frac{n}{(1+1)^{n}-1.0}\right] \tag{22}
\end{equation*}
\]
\(j_{3} 10 \mathrm{~g}\) formila 20 , the present walue of the example gradtent cash Flow is
\[
\begin{aligned}
\nabla_{0} & =\$ 5,000\left[\frac{1.0-(1.48)(0.63017)}{0.0064}\right] \\
& =\$ 58,616.37
\end{aligned}
\]

पsing Eamula 21, the future value of the example gradient cash fluw is
\[
\begin{aligned}
v_{6} & =\$ 5,000\left[\frac{1.5869-1.48}{0.0064}\right] \\
& =\$ 83,495.56
\end{aligned}
\]

Using formula 22 , the uniform series that is equizalent to the example gradient series is;
\[
\begin{aligned}
\varepsilon & =\$ 5,000\left[\frac{1}{0,08}-\frac{6}{(1.08)^{6}-1.0}\right] \\
& =\$ 5,000(12.5-10.2237) \\
& =\$ 11,381: 73
\end{aligned}
\]

The present value of che \(\$ 50,000\) uniform serties nan be detemined from formale 4:
\[
\begin{aligned}
V_{0} & =\$ 50,000\left[\frac{(1.08)^{6}-1.0}{0.08(1.08)^{6}}\right] \\
& =\$ 231,343.98
\end{aligned}
\]

The future value pE che \(\$ 50,000\) unform series can be dekernitne fix Eormula 5:
\[
\begin{aligned}
v_{s} & =\$ 50,000\left[\frac{(1.08)^{6}-1.0}{0.08}\right] \\
& =\$ 366.796 .45
\end{aligned}
\]

The presant value of the composite cash flows serles \(15 \$ 52,616.37+\) \(\$ 231,143,99=\$ 283,760,35\). The future value of the composite eash flow series is \(\$ 83,495.56+\$ 366,796,45=\$ 450,292.01\). The compostre equivalent uniform eash flow is \(\$ 11,381.73+\$ 50,000=\$ 61,381.73\)

As a check, a uniform series of \(\$ \$ 1,381,72\) should be equivalent to the composite series present value of \(\$ 283,760.35\),
\[
\begin{aligned}
V_{0} & =\$ 61,381.73\left[\frac{(1.08)^{6}-1.0}{0.08(1.08)^{6}}\right] \\
& =\$ 283,760.35
\end{aligned}
\]

Example 34
You purchase 40 acres of land. The purctisse price is a sertes of payments of \(\$ 20,000, \$ 15,000, \$ 10,000\), and \(\$ 5,000\) in years \(t=3,4,5\), and 6 , tespectively, what is the present value of the cash flow at a percent Intereat rate? Figute 9 Illugtrates the cash flows of the example.

Uniform Series fradient Series

Figure 9. Example cash flow series.

Thas problem an be solved by deterainimg the present value of a aniform and gradient series. The present value of a uniform seriles of \(\$ 20,000\) payments at a 9 percent interest rate is given by formula 4 :
\[
\begin{aligned}
T_{0} & =\$ 20,000\left[\frac{(1.09)^{4}-1.0}{0.09(1.09)^{4}}\right] \\
& =\$ 56.794 .40
\end{aligned}
\]

Since the kirst payment af the anoutty gccurs at \(t=3\), the value of ""ر " is actually at \(t=2\). Thas, the value above munt be discounted for 2 years to abotain the actual yalue of \(v_{0}=\)
\[
v_{0}=\frac{64,794.40}{(1.09)^{2}}=\$ 54,536.15
\]

The present value of the gradient series is gipen by:
\[
\begin{aligned}
y_{\mathrm{Q}} & =\$ 5,000\left[\frac{1.0-(1.36)(0.708425)}{0.0081}\right] \\
& =\$ 22,556,61
\end{aligned}
\]
if In the gradient aeries alao occurs it \(t * 2\), Bo the above value must be alscounted for 2 years:
\[
V_{0}=\frac{\$ 22_{2} 556.61}{(1.05)^{2}}=\$ 18,985,45
\]

The presant vailue of the investment is the difference between the present value of the uniform and gradient series, or, \(\$ 54,536,15-\$ 18,985.45 \sim \$ 35,550.70\).

Gequetric Gash Flow Series
White Et al. (1977) developed the formulas necessary to analyze geometric cash flows. A geoneryic cash flow increases or decreases by a fixed percentage each conmounding perfod. Figure 10 f11ustrates such a cash Elow,

Flgure 10. Dash flow diegram of a gemetric eash flow series.

The present yalue of a geonetric cash flow seties, where "ri" te the Eltest payment in che series, and " \(j\) " equals the percentage increase or decrease tut the cash ilow between periods, is given by:
\[
v_{0}= \begin{cases}m\left[\frac{1-(1+j)^{n}(1+1)^{-r 1}}{j-j}\right] & \text { if } \tag{23}\\ a \neq j \\ \frac{n m}{1+1} & \text { if } \\ 1=1\end{cases}
\]

The future palue of a geometric cash flow series is given by:
\[
v_{n}=\left\{\begin{array}{cc}
{\left[\frac{(1+i)^{n}-(1+1)^{n}}{i-j}\right]} & \text { if } \tag{24}\\
0 \dot{n}+j \\
n m(l+1)^{n-1} & \text { if } \\
1=1
\end{array}\right.
\]

Example 35
Regeneration costs bave been Increasing 3 percent per yanar, A wodlands desiras to set aside a fund to pay regeneration cogts for the next 10 years. Regeneration costs next year will be \(\$ 320,000,00\). The \(\$ 2 \pi m^{\prime}\) cose of capieal is 11 percent. How much should be placed in the account :oday;
\[
\begin{aligned}
V_{U} & =\$ 320,000.00\left[\frac{1.0-(1.03)^{10}(1.11)^{-10}}{0.11-0.03}\right] \\
& =\$ 320,000.00\left[\frac{0.5267}{0.00}\right] \\
& =\$ 2,306,774.00
\end{aligned}
\]

\section*{Example 36}

Assume an annual paypent of \(\$ 1,000,00\) that increases by 1,0 percent annally, begining with the second year. The payments are deposifed for five years dutd an account anding 10 percent per year. What amount will be in the account at \(t\) \(=5 ?\)
\[
\begin{aligned}
V_{5} & =(5)(\$ 1,000,00)(1.10)^{2} \\
& =\$ 7,320,50
\end{aligned}
\]

\section*{Equivalence}

Two casif flow serifs are equivalent at a specilied interest rate if their present values ace aqual at the specified rate. If two eash flov serfes have equal present values at a spectfied interest rate, then theit values will be equal af any point in time at the specified Interest rate. Also, equivalent eash flow series will have equal uniform cash Flow eeries over the same time pertod,

\section*{Example 37}

Figure 11 shows two equivalent cash flow series. At 10 percent interest bath have the same present value (\(\$ 302.92\)). Noter also that the top casti fiow saries, since it is equivalent to the boctom uniform settes, can also be exptessed as a unfom 5-year cash flow serles of \$79.91. The present qalue of the top cash Elow series is:
\[
\begin{aligned}
\eta_{0} & =\$ 100.00+\frac{\$ 100,00}{(1.10)^{\top}}+\frac{\$ 250.00}{(1.10)^{3}}+\frac{\$ 200.00}{(1.10)^{5}} \\
& =\$ 302.32 .
\end{aligned}
\]

The equivalent unform cssh flow serdes can be obtained val Equation 13:
\[
\begin{aligned}
\xi & =\$ 302.92\left[\frac{0.10(1.1)^{5}}{(1.10)^{3}-1.0}\right] \\
& =\$ 79.91 .
\end{aligned}
\]

\(-\$ 100\)

Figure 11. Exraple equivalent casti flow seriea.

\section*{Continuous Compounding}

Throughout our previdus ilscussions, we have assumed that interent Is compousded of the fand of discrete periods, However, continuons compounding is alsa comon. Figure 1211 Iustrates that most interest is accumazated on a discrete bagls. However, some institutions, as a competitive tactic, do compound on a continuoue basis. For completeness, the formulas fof continuous compounding will be Itsted, Wh thout derivation.

Figure 12，Digerete versus conttrinous empounding．

できた！
\(q=\) the mominal annual interest rate，expressed as a decinat．
The present value of a single sum under continuous compounding is fiven by：
\[
\begin{equation*}
v_{0}=v_{n} e^{-q p} \tag{23}
\end{equation*}
\]

The furnre value of a single sum under conkluwous compgunding is given bys
\[
\begin{equation*}
\bar{v}_{n}=V_{0} e^{q \bar{u}} \tag{26}
\end{equation*}
\]

The effective imterest rare under continuous compousiditg ts given by：
\[
\begin{equation*}
t_{\text {effecnive }}=e^{a}-1 \tag{27}
\end{equation*}
\]

Example 38
\[
\text { If } \$ 1,000 \text { is placed in a sanimgs account thiat earns } 9
\] percent interest，componncied continuousIy，how much wili be in the aecount after 5 years？
\[
\begin{aligned}
V_{\mathrm{a}} & =51000\left\{e^{(0.09)(6)} 1-1,000 e^{(0.54)}\right. \\
& =1,726,01
\end{aligned}
\]

Vertey the result using farmula 25 .
\[
\begin{aligned}
V_{0} & =\$ 1,716,01 \mathrm{e}^{-(0,09)(6)}=\$ 1,216.01 \mathrm{R}^{\gamma \cdot(9827483)} \\
& =\$ 1,000,00
\end{aligned}
\]

What was the effectiva interest vate in this example?
\[
\begin{aligned}
& 1_{\text {effective }}=e^{0.09}-1=1.0941743-1.0 \\
& \quad=0.0942
\end{aligned}
\]

\section*{Add-on Intemest}

Addon interest is frequently used in financiog foans. The interest charge is computed at \(t=0\), so that the loan amount plus the added-an fnterest are repald in equal installmentg.

Example 39
You obralh a \(\$ 20,000\) loan frow a Sank. The finance charge is 20 percent, and is added an to the origitral anpunt. The total amount, loan plus add-on, is to be repeid fn 12 equal monthly installments. What are your monthly payments?
\[
\begin{aligned}
\text { Payments } & =\frac{\text { Loan }+ \text { Finanee Charge }}{12} \\
& =\frac{\$ 20,000+0.20(\$ 20,000)}{12} \\
& =\frac{24,000}{12}=\$ 2,000 \text { per moneh }
\end{aligned}
\]

If yau barrowed \(\$ 20,000\) and pald \(\$ 2,000\) per wonth for a year, the actual monzhly interest rate could be derived from the capiral recovery formula (Equation 6):
\[
a=\nabla_{0}\left[\frac{1(1+1)^{n}}{(I+1)^{n}-1}\right]
\]

In terms of the add-on interest example,
\[
\begin{aligned}
& a=\$ 2,000 \text { (payments per month), and } \\
& \nabla_{0}=\$ 20,000 \text { (received as a loan). }
\end{aligned}
\]

Substifuting those values into the capital recovery formila:
\[
\$ 2,000=\$ 20,000\left[\frac{1(1+1)^{12}}{(1+1)^{7}-1}\right]
\]

Where "i" is the monthly interest rate actually being pald on the loant We can estimate "in hy trial and orrot of by looking for the value \(\$ 2,000 / \$ 20,000=10\) in column 5 of Appendix A, Ear in \(=12\). The value, 10046. is found fot \(1=3\) percent (Appendix Table A3); the actual monthly interesc rate Is about 2.92 percent.

What is the nominal tate of tuterest?
\[
2.92 \times 12=35.048
\]

What is the effective annual rate of Interest?
\[
i_{\text {effective }}=(1.0292)^{12}-1
\]

\section*{Amortization}

When an investment is firanced by a Irana the amount of interest paid In partleular time pertods will affect Income taxes. Anortization Is a commo Einancial calculation and a Forest investoment analyst shauId be aware of the principles involved in detemining the principal amount and interest amount in loan payments.

If a loan is to be repaid in equal installonents, the amoune of the payment pan be determined with Equation b:
\[
a=v_{0}\left[\frac{1(1+1)^{n}}{(1+1)^{n}-1}\right]
\]

The amortization schedole for a Ioan of \(\$ 10,000\) to be repaid in 3 aqual annual paymants at 6 percent amaal interest pould be as follows
\begin{tabular}{|c|c|c|c|c|}
\hline Laxat & Annual Interest Charge & Amount orved & \begin{tabular}{l}
Equal \\
Annual \\
Payment
\end{tabular} & Balance, Endeote Year \\
\hline L & \$600 & \$10,000 & \$3,741 & \$6,859 \\
\hline 2 & 412 & 7,271 & 3,741 & 3,530 \\
\hline 1 & 212 & 3.742 & 3.742 & -0- \\
\hline
\end{tabular}

The aqual annual payment 1s;
\[
z=\$ 10,000\left[\frac{0.06(1.06)^{3}}{(1.06)^{3}-1.0}\right]=\$ 3,741,
\]

The amortization table for titis loan would bet
\begin{tabular}{rccc}
Year & \begin{tabular}{c}
Payments ta \\
Priacipal
\end{tabular} & \begin{tabular}{c}
Eayments \\
to Interest
\end{tabular} & Balance \\
1 & \(\$ 3,141\) & \(\$ 600\) & \(\$ 6,859\) \\
3 & 3,329 & 412 & 3,530 \\
3 & 3,529 & 212 & -0
\end{tabular}

The amount by whinh payment number "p" reduces the unpaid princtpal is siven by:
\[
\begin{equation*}
\text { Refuction in Princi.paI }=\left[\frac{A}{(1+1)^{\pi}-P+1}\right] \tag{28}
\end{equation*}
\]

Por exampla, the Elirst loan payment reduces the unpaid principal by:
\[
\begin{aligned}
\text { Reduotion } 10 \text { Principsi } & =\left[\frac{\$ 3.741}{(1.06)^{3}-1+1}\right] \\
& =\$ 3.141
\end{aligned}
\]

The amont of payneot " \(p\) " that corresponds to intereet on the inat is gtven by:
\[
\begin{align*}
\text { Interest Fayment } & =a\left[1-\frac{1}{(1+1)^{n}-p+1}\right] \tag{29}\\
& =\$ 600
\end{align*}
\]

Examgie 40
Develop an amortization table fes the Etrst 4 peyments on the following home martgage

Total Cost \(=\$ 60,000\)
Down Payment \(=\$ 20,000\)
Mortgage Rate \(=12\) 考巻 conpounded monthy
Terms: 30 years \({ }_{h}\) equal monthly payments
\[
\text { Payment }=\$ 40,000\left[\frac{\left(\frac{-1225}{12}\right)\left(1+\frac{-1225}{12}\right)^{360}}{\left(1+\frac{.1225}{12}\right)^{360}-1}\right]
\]
\[
=\$ 40,000(0.010479)=\$ 419.16 .
\]

Payments 10.
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Month} & \multicolumn{2}{|c|}{Paymerits 10.} & \multirow[b]{2}{*}{Balance} \\
\hline & Prancleai & \(\underline{\text { Interest }}\) & \\
\hline 1. & \$10.83 & \$408.33 & \$39,989:12 \\
\hline 2 & 10.98 & 408.22 & 39,978.27 \\
\hline 3 & 11.05 & 408.11 & 39.967 .18 \\
\hline 4 & 11.15 & 408.00 & 39,956.02 \\
\hline
\end{tabular}

Canada, iotin B., and John A. White. 1980, Capital investment dectsion analisis for management and ongtaeering, Prentice-hall, Inct, Englewoan ClifEs, N. J. 528 p .

Davis Kemnect P. 196G. Forest management; regulafion and valwacion (Second Edicion), MoGraw-illl Bock Gompany. Ner Kork. 579 ps

Guncer, Jotin E. , and Harcy 2. Handey, Jr, 29g4, Esientisis of forestry Investoment analyais. Oregon State Univ. Book Stare. 337 g .

Haney, H. i. 1985. A gulde to iocome tax records for rree farmers. Yirginia Coop. Eixt. Serv. Publ . 420-090, 70 pp ;

Moaky James \(E_{4}\), and Eminett E. Thampson. 1980. Anglyging Eotestry investinthts. Dept. For. Hissiscippl State Dintv. 51 p.
U. S. Forest Service 19g2. A guide to federal Income tax for timber owners, USDA. Far. Seru., Agric. Handhook No. 596, 74 pp.

Westor, J. Ered, and Eugene E, Brighan. 1972. Managerial finance (EOurtfe Effition) Folc. Rinehart and Winston, Inc., New York, 768 P-

White, John Ar, Marvin 日, Agee, and Senmeth E, Case, 1977. Principles of engineeriog economic analysis. John Wiley \(\&\) Sans, New York. 430 p .

Table di．Formpond Interest Multipliers，\(f=1\) 首
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{h} & \multicolumn{2}{|c|}{SINGLE SUM} & \multicolumn{4}{|c|}{Afinulal gentes} & \multirow[b]{2}{*}{7t} \\
\hline & Future Value & Fresent Value & Future Value & \[
\begin{gathered}
\text { Presimnt } \\
\text { yolue }
\end{gathered}
\] & 51 nking Fund & Capital Feconery & \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & \\
\hline \(\frac{1}{2}\) & 1.0199
1.9201 & 0．8009 & \(\frac{1}{2} .0000100\) & \[
\begin{aligned}
& 0.9991 \\
& 1.97 E^{2}:
\end{aligned}
\] & \[
\begin{aligned}
& 1.09012 \\
& 0.4975
\end{aligned}
\] & \[
\frac{1.0100}{0.5075}
\] & \(\frac{1}{2}\) \\
\hline 3 & 1.0307 & 1， 97706 & 3.0501 & 2．9410 & 0.3000 & 0.2466 & 3 \\
\hline 4 & 1.0496 & 93．9310 & 4．0．609 & J． 9029 & 0，3465 & P． 2562 & 4 \\
\hline 5 & 1．0510 & 9＋751： & 5.1010 & 4，BE34 & 0.1760 & 0.2060 & 3 \\
\hline 3 & 1.0615 & 0.9420 & b． 1520 & 5.7955 & 0.1635 & 0.12 S & 2 \\
\hline 7 & 1．0721 & 0.7327 & 7.2135 & 6.7282 & 0． 1386 & 0.1486 & 7 \\
\hline 3 & 1.0625 & 19．7235 & 9． 3857 & 7．6517 & Q． 1207 & 0.1203 & E \\
\hline 9 & 1.0937 & 0.9143 & 9，3685 & 8．5660 & Q． \(10 \leqslant 7\) & 9． 1157 & 5 \\
\hline 10 & 1．1046 & 0．7053 & 10．46こ2 & 9．4753 & 0.0956 & c． 1056 & 19 \\
\hline 12 & \(1+1157\) & 10．8963 & 11． 5668 & 10．3676 & 0.0685 & \(00_{+} 0965\) & 11 \\
\hline 12 & 1．1268 & 0．E日e74 & 12．68こ5 & 4．4，2551 & 0.0768 & Q． 0988 & 12 \\
\hline 13 & 1.1381 & 0.9787 & 13．6095 & 12．1337 & 0.0724 & 0.0824 & 13 \\
\hline 14 & 1.1495 & 9，3700 & 14．7474 & 13．0057 & D． 0 bs\％ & 0.0787 & 14 \\
\hline 15 & 1．1al0 & 1， 0.613 & 16．0869 & 13，9550 & 0.0621 & 0.9727 & 15 \\
\hline 16 & 1．1726 & 0． 8529 & 17．2579 & 14.7179 & 0.0579 & 0.0875 & 16 \\
\hline 17 & 1．1843 & 13， 0444 & 18．4304 & 15．5822 & 0.9543 & D．064\％ & 17 \\
\hline 1 19 & i．1961 & 13．8こ50 & 19.6147 & 16.5985 & 0．05：0 & D．0610 & 1日 \\
\hline 19 & 1.2091 & 12． \(8=77\) & 20． 5109 & 17．22b1 & Q．04E1 & \＄．0591 & 17 \\
\hline 20 & 1．2202 & 0.8195 & 22．0190 & 1日．1）455 & 13，0454 & 0．0．554 & 21） \\
\hline 21 & 1．2に行 & 0.8114 & 23． 3792 & 18．8570 & 0.0430 & 0.0530 & －1 \\
\hline 22 & 1.2447 & 0.8034 & 54．4716 & 19．6604 & 0.0405 & 0.12509 & 22 \\
\hline 25 & \(1+2572\) & 12.7954 & 25．7165 & 29.4558 & 0.0 E®9 & 0，134日？ & 5 \\
\hline 84 & 1.2697 & 0.7878 & 26．7\％ 55 & 31.2434 & 0.0571 & 15．19471 & 24 \\
\hline 25 & 1． 2824 & 0.7598 & 28，2432 & \(22.0=21\) & 0.0354 & 4.0454 & 25 \\
\hline 26 & 1．2935 & Q． 7720 & 57，5256 & 22，7852 & 0．0359 & 0.0427 & 36 \\
\hline 27 & 1.3087 & 0． 7544 & 30， 5209 & 23．5596 & 0.0324 & 9．0424 & 27 \\
\hline 28 & 1.3213 & 0.7568 & 23．1291 & 24.3154 & 0.10311 & 0.0411 & ¢ \\
\hline 29 & 1， 5.45 & 9.7295 & ご，4504 & 25．0658 & 0.0299 & D．0399 & 27 \\
\hline 30 & 1．こ479 & 0.7417 & 24．7545 & 25.9077 & 0.10537 & a．0．78 & S0 \\
\hline \＄1 & 1．3615 & 0．754k & 36.1527 & 28.5423 & 0.0277 & 0.0377 & 31 \\
\hline 32 & 1． 2749 & 0.7275 & 37．4941． & 27．2695 & 0.0267 & 0．0367 & 32 \\
\hline 33 & 1.3887 & 0.7201 & 58.9690 & 27．7997 & 0.0257 & 0，asw & 3 \\
\hline 34 & 1.4036 & 0．7130 & 40．2577 & 28．7027 & 0，0228 & 0.0348 & 34 \\
\hline 35 & 1.4156 & 0.7057 & 41.6603 & 29．40®6 & 0.0240 & 0.0540 & －5 \\
\hline 40 & 1.4889 & 0.8717 & 48．8964 & 32． 2347 & 0.0205 & 0.0205 & 49 \\
\hline 45 & 1.5646 & 0.5391 & 56.4911 & 36.0745 & 0.0177 & 0.0277 & 45 \\
\hline 50 & 1． 5446 & 9，6080 & b4．4EE2 & 30，1941 & 0.0155 & 9．0259 & 50 \\
\hline 55 & 1．7295 & 0.5785 & \(72.85=4\) & 42．1473 & 0.0157 & 12，0537 & 53 \\
\hline \(\therefore 2\) & 1.8167 & 12．5504 & 81.6696 & 44.9550 & 10.0122 & 2．0222 & （i） \\
\hline 35 & 1.4094 & 0． \(32=7\) & 90．7366 & 47．87風 & 0.015 & 0.00210 & 65 \\
\hline 70 & 2.14063 & d，498 & 110.6763 & 50.14 ag & 19.9079 & 6．0199 & 70 \\
\hline
\end{tabular}

Table A2．Kompormd Interest Multipliers， \(1=22\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{0} & \multicolumn{2}{|c|}{EINGLE EUM} & \multicolumn{4}{|c|}{ANNUAL SEAXES} & \multirow[b]{2}{*}{A} \\
\hline & Future Vaiue & Prasent Value & \begin{tabular}{l}
Future \\
Value
\end{tabular} & Present Value & Sinking Fund & Eapital Recovery & \\
\hline 1 & \[
1.0200
\] & \[
0.8^{2}
\] & \[
1.0900
\] & \[
0.98044
\] & \[
\frac{6}{5.0000}
\] & \[
1.0200
\] & 1 \\
\hline 2 & 1．2444 & 0.9612 & 2.0300 & 1.9416 & a．4951 & 0.5151 & 3 \\
\hline \(y\) & 1．051\％ & 0，9423 & 3.0604 & 2，8639 & 0 0， 3268 & 0.3468 & 3 \\
\hline 4 & 1．0824 & 0.9233 & 4． 1216 & 3.8077 & 0.2436 & 0.2326 & 4 \\
\hline 5 & 1． 10,41 & 0.7057 & 5.2040 & 4.7132 & 0．1722 & 0.2122 & 5 \\
\hline 6 & \(1.128^{2}\) & 0.8980 & 6.3095 & 5.6014 & 0．1985 & 0.1785 & 6 \\
\hline 7 & 1．1497 & 0.8706 & 7.4343 & t． 4720 & \(0.154=\) & 0.1345 & 7 \\
\hline a & 1.1787 & 0.8555 & 8． 5825 & 7.3255 & 0.1165 & 0.1585 & B \\
\hline 9 & 1．1751 & Q． 8 ¢ba & 6.7546 & 6． 1622 & 0.1025 & 0.1225 & 7 \\
\hline 10 & 1．2170 & 0.8203 & 10，9497 & 0．7826 & 0.0713 & 0.1113 & 10 \\
\hline 11. & 1．2434 & 0.8043 & 12． 5687 & 9.7968 & 0,0822 & 0． 1022 & 11 \\
\hline 12 & 1．26日？ & 0.71885 & 15.4120 & 10.5753 & 0,0746 & 0.0946 & 12 \\
\hline 13 & 1． 2973 & 0.7730 & 14． 4805 & 11.3483 & 0.0681 & 0.0891 & \(1 \pi\) \\
\hline 14 & 1.3175 & 0．7579 & 15.9739 & 12．1062 & 0.0626 & 0.0926 & 14 \\
\hline 15 & 1．5459 & 0.7430 & 17.2934 & 12． 18492 & 0.0576 & 0.0778 & 15 \\
\hline 16 & 1．3729 & 0.72184 & 18．6392 & 55，5777 & 0.0537 & 0.0757 & 16 \\
\hline 17 & 1．4902 & 0.7142 & 20，0120 & 14．3915 & 0.0500 & 0.0700 & 17 \\
\hline 18 & 1．4285 & 0． 7002 & 21．4122 & 14．7520 & 0.0467 & 0.0067 & 18 \\
\hline 19 & 1．45¿． & 0.5864 & 23．8405 & 15．6784 & 5，0438 & 0.06 －\({ }^{\text {a }}\) & 15 \\
\hline 219 & 1．4859 & 0.6730 & 24.2975 & 16.3514 & 0.0412 & 9．0612 & 20 \\
\hline 21 & 1，5157 & 0.5598 & 25．7932 & 17．012さ & 9，03日6 & 0.0588 & 21 \\
\hline 23 & 1．5430 & \(0.646 a\) & 27．2987 & 17．4．5ab & 0.0362 & 0.0566 & 22 \\
\hline 23 & 1．5767 & \(0.6 . \overline{3} 42\) & 28．3447 & 18.3923 & 0.0347 & D．0347 & 22 \\
\hline \(\geq 4\) & 1． 00984 & 0.6217 & 30．421日 & 18．9139 & 0． \(2=29\) & 0．0535 & 24 \\
\hline 55 & \(I=6406\) & 0.6095 & 52，0502 & 19． 2254 & 0．05i2 & 0.0512 & 25 \\
\hline 26 & \(1.67 \pm 4\) & 0． 5776 & 52． 57 ¢ \({ }^{\text {5 }}\) & 20.1210 & 0.0297 & 0.0477 & 26 \\
\hline 27 & 1.7069 & 0.5959 & 35，3442 & 20．7065 & 0.0283 & 0.0485 & 27 \\
\hline 25 & 1.7419 & Q．5724 & 57．0511 & 71－2812 & 0.0279 & 0.0470 & 23 \\
\hline 29 & 1.7758 & 0.5631 & 38.7521 & 21． 3443 & Q． 0253 & 0.0456 & 29 \\
\hline E0 & 1.8117 & Q．5521 & 40.5679 & & 0.0247 & 0.0447 & З 3 \\
\hline It & 1．8476 & 0.5182 & 42，3793 & 22．9377 & 0.9236 & 0.0456 & 31 \\
\hline 32 & 2．9345 & 0.5306 & 44．2569 & 23， 9695 & 0.0726 & 0.0426 & 3 \\
\hline 35 & 1.7222 & 0.5202 & 46.1114 & 23．7685 & 0.0217 & 0.0417 & 35 \\
\hline 54 & 1.9807 & 9． 5160 & 4B．03．36 & 24．4905 & 0，0208 & 2．0408 & 34 \\
\hline 35 & 1．9579 & 0.8092 & 49，9945 & 24．798s & 0.0200 & is．0409 & 35 \\
\hline 40 & 2－20ad & 6． 4529 & 69.4017 & 27，3554 & 0.0166 & 1， 0.0566 & 40 \\
\hline 45 & 2．4376 & D． 4102 & 71.8904 & 29，4901 & Q． 12139 & 0．035\％ & 45 \\
\hline 90 & 2．3916 & 0．5715 & 34．5790 & 35． 3536 & O． 0111 t & 0.0316 & 50 \\
\hline 55 & 3.9717 & 0.3365 & 514．5851 & 35．1747 & 0.0102 & 0.0501 & 55 \\
\hline 60 & 3． 3810 & 0.3048 & 114.0510 & 34．7609 & 0．Dugee & 0.0298 & 60 \\
\hline 65 & & 9．2761 & \(131.1=55\) & 36．1974 & 0．9076 & 9．0276 & 65 \\
\hline 719 & 5．9995 & 0.2509 & 149，9772 & E7．49E6 & 0.60057 & 13． 02367 & 70 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{n} & \multicolumn{2}{|c|}{SINELE SUM} & \multicolumn{4}{|c|}{AMNUAE SERIES} & \multirow[b]{2}{*}{\(\square\)} \\
\hline & \[
\begin{aligned}
& \text { Future } \\
& \text { Vaiue }
\end{aligned}
\] & \[
\begin{gathered}
\text { Prssent } \\
\text { Value }
\end{gathered}
\] & Future Natufe & \[
\begin{gathered}
\text { Present } \\
\text { Value }
\end{gathered}
\] & Sinking Fund & Capital Recovery & \\
\hline & & 2 & 13 & 4 & 5 & 6 & \\
\hline 1 & 1.0000 & 0.9709 & 1． 0000 & 0.9709 & 1.0000 & 1．0300 & 1 \\
\hline ＊ & 1.0509 & 0.9425 & 2，10300 & 1.9135 & 0．4926 & － 5 S23 & E \\
\hline 3 & 1.0927 & 0.9151 & 3．0909 & 2.8286 & 0． 3235 & 0.3505 & \(\square\) \\
\hline 4 & 1．125s & 0，8565 & 4．1836 & 3．7171 & 0.2390 & 0，2690 & d \\
\hline 5 & 1.1593 & & 5.3091 & 4.5797 & 0． 1984 & 0． 2134 & 5 \\
\hline 6 & 1.1941 & 0.8375 & 6． 4688 & 5.4172 & \(0.154{ }^{\text {c }}\) & 0.1546 & 名 \\
\hline 7 & 1．22r9 & a．81こ1 & 7.8625 & 6．2303 & 0.1305 & 0.1605 & 7 \\
\hline 9 & 1．2849 & 0． 7894 & 8．8923 & 7.0197 & 0.1125 & 0，1425 & a \\
\hline 7 & 1．3048 & 0.7664 & 16．1591 & 7.7861 & 0．0984 & 0.1264 & 7 \\
\hline 10 & 1.3439 & 0.7441 & 11．4539 & 8．5302 & 0,0972 & 0．1172 & 213 \\
\hline 11 & 1.3842 & 0． 7224 & 12．8078 & 9.2526 & 0.0781 & 0． 1081 & 11 \\
\hline 12 & 1．4258 & 12.7014 & 14.1720 & 9.9540 & 0.0705 & 0.1005 & 12 \\
\hline 13 & 1．46as & 0.6810 & 15， 1 178 & 10.6350 & 0.0640 & 9.0940 & 12 \\
\hline 14 & 1.5126 & 0，0611 & 17．0263 & 11.2961 & 0.0585 & 0.0085 & 14 \\
\hline 15 & 1.5590 & 0．6419 & 18．5989 & \(11.937 \%\) & 0.0538 & 0.0658 & 15 \\
\hline 15 & 1.5047 & 0． 6232 & 20.1569 & 12.5611 & 0．0476 & 9，0796 & 16 \\
\hline 17 & 1．652E & 0.6050 & 21.7616 & \(13.16{ }^{\text {1 }}\) & 0.0460 & 0.0760 & 17 \\
\hline 18 & 1.7024 & 0.5874 & 24．4144 & 15，7535 & 9.0427 & 0.0727 & 13 \\
\hline 19 & 1.7535 & 0，5703 & 25． 5169 & 14.3238 & 0.0378 & 0.0858 & 19 \\
\hline 20 & 1． 0061 & 0.5537 & 26，9704 & 14．9775 & 0.0372 & \(0.067=\) & 20 \\
\hline 21 & 1．860．7 & 0.5375 & 28， 6745 & 15.4150 & 0.0347 & 0.0445 & 21 \\
\hline 22 & 1.9161 & Q． 5219 & 30.5368 & 1.5 .9369 & 0.0327 & 0．0627 & 22 \\
\hline 3 & 1.9706 & 0.5067 & 32，4529 & 16．4436 & 0.0300 & 0.0608 & 23 \\
\hline 24 & 2．0ご8 & 9.4917 & 34，4765 & 16.9355 & 0．0290 & 0.0590 & 24 \\
\hline 25 & こ．095］ & 0.4774 & 36.4593 & 17.4131 & 0.0274 & 0.05074 & 25 \\
\hline 26 & 9．150a & 0.48 .37 & Јe． 5530 & 17．8768 & 9，0299 & 0.0 ¢57 & 26 \\
\hline 27 & 2．2213 & 0.4502 & 40．7096 & 18．3270 & 0.024 c & 0.0546 & 27 \\
\hline 28 & 2．2879 & 0.4371 & 42．9709 & 19.7641 & 0.0250 & 0.053 \％ & 38 \\
\hline 29 & 2． 5 5és & 0.4243 & 45.2188 & 17.1865 & 0.0221 & 0.0581 & 29 \\
\hline उ00 & 2．4273 & 2．4120 & 47.5754 & 19.6004 & 0.0210 & 0.0510 & 20 \\
\hline 31 & 2．5001 & 0.4000 & 50.0027 & 20.0004 & 0,0200 & 0.0500 & 31 \\
\hline こะ & 2．5781 & 0.38 ez & 52．5027 & 30.3898 & 0.0199 & 0.0490 & 32 \\
\hline 35 & 2．6525 & 0.3770 & 55.0778 & 20.7696 & 0.0182 & \(0.048 \%\) & 35 \\
\hline 34 & 2.7319 & 0.3560 & 57.7502 & 21.1518 & 0.0173 & 0.0475 & 54 \\
\hline 35 & 2，8135 & 0.3554 & 60.4521 & 21．4972 & Q，0165 & 10．0465 & 55 \\
\hline 40 & 3．2620 & 0.3066 & 75．4012 & 23．1148 & 0.015 & 0.0435 & 40 \\
\hline 45 & S．7816 & 0.2644 & 92．7148 & 24.5187 & 0，0108 & 0.0403 & 45 \\
\hline 50 & 4． 5839 & 0.2281 & 112．7768 & 35.7298 & 0.0099 & 0.10389 & 51 \\
\hline 55 & 5.0922 & 0.1769 & 156．0716 & 26.774 .4 & 0.0073 & 0.0372 & 55 \\
\hline 60 & 5.0916 & 0.1697 & 153,0554 & 27．675 & 0.0081 & 0．0561 & （1） \\
\hline 65 & 4．8300 & 0，2464 & 194． 3227 & 39． 4529 & 0．0051 & 0.0351 & 65 \\
\hline 30 & 7．9178 & 0．1205 & 330，3740 & 29.1234 & 0.0045 & \(0.024 \%\) & 70 \\
\hline
\end{tabular}

APPERDIX A
Table 84, Compouna Thterest Mulefplievs， 1 m hy
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{n} & \multicolumn{2}{|r|}{SINGLE SJM} & \multicolumn{5}{|c|}{AMNUAL SERIES} \\
\hline & Finewre Malue & Fresent Vazue & Futhere Vm\＆u & Fresent Value & 5 ink2ng Fund & Eapl tal Fecaugry & \(\overline{7}\) \\
\hline 1 & 1．04999 & \[
0.9
\] & \[
1.0000
\] & \[
0.9615
\] & \(\frac{5}{1.0000}\) & \[
\frac{6}{1.0400}
\] & 2 \\
\hline 2 & 1．0日it & 0.9248 & E． 9400 & 1．98e1 & 0.4902 & 0.5302 & 2 \\
\hline 3 & 1． 1249 & 9． 18970 & 3．1716 & 2．7751 & 10.3203 & 0.3603 & \(\pm\) \\
\hline 4 & 1．1399 & 0.3546 & 4.2495 & 5，6209 & 0.2355 & 0.2755 & a \\
\hline \(\xi\) & 1．2167 & 0.8219 & 5，4123 & 4． 4518 & \(0.184 \%\) & 0.2246 & \％ \\
\hline － & 1． 265 & \(0.790 \%\) & b．63E0 & 5.2421 & 0.1508 & 0.1700 & b \\
\hline 7 & 1． 5159 & 0.7899 & 7．8965 & 6．0021 & 0． 1266 & D． 1 dab & 7 \\
\hline B & 1． 3 星古 & 0.7507 & \％．2142 & c． 7327 & 0.1085 & 9．14日5 & E \\
\hline 5 & 1.4230 & 0．7026 & 10．592E & 7.4353 & 0.0445 & a．IJ4S & 9 \\
\hline 10 & 1．4902 & 0，675 & 12．0061 & 8． 1109 & 0.065 & \(0,12 \pm 3\) & 10 \\
\hline 11 & 1．5．595 & 0.6476 & 13．4863 & E．7605 & D．0741 & 0,1241 & 11 \\
\hline 12 & 1．6近 & 0.6245 & 15．0258 & 9，3851 & 0.0686 & O． 20 年 & 13 \\
\hline 12 & 1． 2651 & 0.3006 & 16.8268 & 9．7856 & D． 00021 & 0.1001 & 15 \\
\hline 14 & \(1.7 \pm 17\) & 0，5775 & 18． 2917 & 10.5351 & 0.0547 & 0.0947 & 14 \\
\hline 15 & 1．0007 & 0.555 & 20.0236 & 11． 5184 & 0.047 F & 0.9899 & 15 \\
\hline 12 & 1.9730 & 0． 5039 & 21． 2245 & 11．6523 & 0.0458 & C．0958 & 16 \\
\hline 17 & 1.7479 & 0.5154 & 25.6975 & 12． 2657 & 0，0422 & 0.0822 & 17 \\
\hline 18 & こ．4258 & 0.45 .36 & 25， 4454 & 12.6593 & 0.0390 & 0.0790 & 18 \\
\hline 17 & 2．106日 & 0.4746 & 27，6712 & 13.1339 & 0．0， \(0^{\text {a }}\) & 0.0761 & 19 \\
\hline 79 & 2．1911 & 0.4564 & 29．7791 & 13．5903 & Q．0こら大 & 0.0 .1736 & 20 \\
\hline 21 & 2． 2768 & 0．4388 & 31.9692 & 14.0292 & 0.0315 & 0.0713 & \(\underline{21}\) \\
\hline 22 & 2． 3699 & 0.4220 & 34．2479 & 14．4511 & 0.0293 & 0.0482 & 22 \\
\hline 23 & 2． 4647 & 0.4057 & 56，6179 & 14．854日 & 9．0075 & 0.09673 & 23 \\
\hline 24 & 2．565\％ & 0.3901 & う0，093t & 15． 3470 & 0.0254 & 9，0656 & 24 \\
\hline 20 & 2，b，55s & 0.3751 & 41.6459 & 15．¢2こ1 & 0.0240 & 0.0640 & 35 \\
\hline 26 & 2．7フニ5 & 0． 3607 & 44.3117 & 15．7828 & 0.0226 & 0．0626 & 26 \\
\hline 27 & 2．9834 & 0.34 －8 & 47，0142 & 16．3296 & 0.0212 & 10．0312 & 27 \\
\hline 2舀 & 2． 9967 & \(0.5 こ ろ 5\) & 47．987\％ & 16．6651 & 0.0201 & Q． 0800 & 79 \\
\hline 29 & Fil 12 E & 0.2207 & 玉2．9662 & 16.7837 & 0,0189 & 0.0985 & 29 \\
\hline 30 & 5．2434 & 0.3083 & 56.0849 & 17．2920 & 0.0178 & 0.0578 & \(=0\) \\
\hline 51 & ごさすご & 0.2965 & 39． 32 BE & 17．5885 & 0.0149 & 0．0句高 & 31 \\
\hline 52 & 3． 50.981 & 0.2851 & 52．7614 & 17．日735 & 0.0159 & 0.0559 & ここ \\
\hline 35 & 5．6434 & 0.2741 & 66.2075 & 18.1976 & 0.0151 & 0.0551 & 50 \\
\hline 34 & 做，7943 & 6． 2535 & 69．857m & 1日．4112 & 0,0143 & 0.01543 & 34 \\
\hline 55 & 5，9461 & 0.2554 & 73．6551 & 18． 5 －46 & 0．07\％ & 0.0536 & 35 \\
\hline 40 & 4.0019 & 0.2083 & 95．0254 & 18．79こ日 & 0.0105 & 0.0505 & 49 \\
\hline 45 & 5.8412 & 0.1712 & 121．0290 & 20．7200 & 0，0085 & 0.04 ES & 45 \\
\hline 50 & 7.1067 & 0.1407 & 155． 3669 & 21．43～2 & 13．9906 & 12． 014 ¢ & 50 \\
\hline 55 & 8． 6454 & 0.115 ？ & & ご． 1096 & 1，0052 & 0．1，45 & 55 \\
\hline 60 & 10.5176 & 0.15951 & 307.9705 & 23． 625 & 0，0042 & 0.0442 & 60 \\
\hline bs & 12.7987 & \(\dot{0}\) ，07E1 & 294．7679 & 25.19467 & 12．0034 & 0.01454 & 65 \\
\hline 70 & 15．ぶフさを & 0． 01942 & 364,7896 & 2 E .5945 & 56.9077 & 0.0427 & 70 \\
\hline
\end{tabular}

Tanle As．Gompound Incersest bultipliers，\(\underline{\underline{L}=5}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{n} & \multicolumn{2}{|r|}{SINELE SUM} & \multicolumn{5}{|c|}{ANAUAL SEFIES} \\
\hline & Future Valtue & Fresent Value & Futire Yalua & Fresent Val물 & Sinking Fund & Capatal Recavery & n \\
\hline 1 & \[
1,05000
\] & \[
0.7524
\] & \[
1,3^{3}
\] & \[
0.9524
\] & \[
1.0000
\] & \[
1.0500
\] & 1 \\
\hline 2 & 1.4025 & 0.7070 & 2.0500 & 1．8594 & 0.4979 & \(0.5=78\) & 2 \\
\hline 3 & 1．1576 & O．6\％3E & 3.1525 & 2.7237 & 0.3172 & 0.3672 & 3 \\
\hline 4 & 1，2155 & 0.6277 & 4.5101 & 5.5457 & 0.2320 & 0.3824 & 4 \\
\hline 5 & 1．2763 & 0.7835 & 5．525 & 4，3295 & 0， 1 1910 & Q． 2315 & 5 \\
\hline b & 1，3401 & 0.7462 & c． 8019 & 5．0757 & 0.1470 & 0.1970 & c \\
\hline 7 & 1．4071 & 0.7107 & 8，1420 & 5.7864 & 0.1228 & 0． 1728 & 7 \\
\hline 8 & 1．4775 & a． 5788 & 9.5491 & 6.4032 & 0.1047 & 0.1547 & 8 \\
\hline 9 & 1．5515 & \(0.64 A 6\) & 15．0265 & 7．1078 & 0,0907 & 0.1407 & 9 \\
\hline 10 & 1．5289 & Q，613？ & 17． 5777 & 7.7217 & 0.0799 & 0.1295 & 10 \\
\hline 11 & 1.7195 & 0.5847 & 14.2068 & 日．3064 & 0.0704 & 0.1294 & 12 \\
\hline 12 & 1.7959 & 0．556 & 15.9171 & 日． B 632 & 0．DEAE & 0.1129 & 12 \\
\hline 13 & 1． \(\mathrm{Eg} \mathrm{S}^{\text {b }}\) & 0，5303 & 17.7129 & 9．3936 & 0.0565 & 0.1065 & 13 \\
\hline 14 & 1． 9797 & 0.5051 & 19．598b & 9．9786 & 0，0910 & Q． 1010 & 14 \\
\hline 15 & 2．0789 & 0.4910 & 21，5795 & 10.3796 & 0.0463 & 0.13963 & 15 \\
\hline 16 & 2．1829 & 0.4591 & 25． 6574 & 10． 10578 & 0.0423 & 0.9933 & 15 \\
\hline 17 & 2．2929 & 0.4563 & 25．8403 & 11.2741 & D．dant & 0.0 e 0． & 17 \\
\hline 18 & 2.4056 & 0.4155 & 29，1723 & 11．6896 & 0．0355 & 0.0655 & 17 \\
\hline 19 & 3． \(5=69\) & 0.5957 & 30.5389 & 12．0est & 19.0527 & 0．0827 & 17 \\
\hline 20 & 2．6533 & 0.3769 & 73．0259 & 12.4622 & 0.0302 & 0.0802 & 20 \\
\hline 21 & 2． 7800 & \(0.35 E 9\) & 55.7192 & 12.8211 & 6.0280 & 0.0780 & 21 \\
\hline 37 & 2．925 & 2． 3417 & ЈE，5¢51 & 13，1030 & 0.0269 & D． 2740 & 22 \\
\hline 20 & 3.12715 & 9．3256 & 41.4304 & 12．4936 & Q． 0241 & 6． 20741 & 23 \\
\hline 24 & \(3.3-51\) & 10． 2101 & 44.5015 & 15.7986 & Q．0225 & 0.0725 & 24 \\
\hline \％5 & 3.3 E63 & 0.2953 & 47.7270 & 14．2737 & 0.0210 & D． 0710 & CE \\
\hline 26 & 3．555\％ & 0.2812 & 51.1153 & 14.375 & 0.0196 & 9.0676 & 26 \\
\hline 27 & 3.7334 & 0.2678 & 54，4690 & 14.6430 & 0.0185 & 0.0683 & 27 \\
\hline 2日 & 5.7206 & ¢． 2551 & 58，4034 & 14．）． m8：\(^{\text {a }}\) & 0.0176 & & 20 \\
\hline 39 & 4．11．61 & 0.2429 & 62.3225 & 15.1411 & 0.0160 & O．126EO & 50， \\
\hline 50 & 4．3219 & 0.2314 & 56． 4386 & 15.3724 & 0.0151 & 0.09651 & 30 \\
\hline 31 & \(4.5 \leq 80\) & 0.2204 & 76．7606 & 15.5929 & 0.0141 & B． 0642 & 31 \\
\hline 5 & 4． 7649 & 0.2097 & 75．2986 & 15，9027 & 0． 0133 & 0.065 & 35 \\
\hline 3 & 5.0032 & 0.1998 & 90.0635 & 16． 0025 & 0.0125 & 0.0625 & 35 \\
\hline 34 & 5．2535 & 0.1904 & 85．9667 & 16.1979 & 0.0118 & 0.0516 & 34 \\
\hline 35 & 5.5160 & 0.1613 & 90． 3290 & 16．3742 & 0.0119 & 0．0．017 & 35 \\
\hline 40 & 7．0400 & 0.1420 & 120．7995 & 27． 7591 & 9．0093 & 0.0503 & 42 \\
\hline 45 & E．\％85\％ & 0.1115 & 157．bpmy & 17.7741 & 0.01263 & 0.0363 & 45 \\
\hline 50 & 11．4674 & 0.0972 & 209． 3970 & 18． 2559 & 0，004园 & 0.0548 & 50 \\
\hline 53 & 14．635a & 0.10683 & 272.7115 & 1 18．4．335 & 0.0037 & 0．05こ7 & 55 \\
\hline 60 & 1日，¢7¢5 & 0.0535 & －53．5918 & 18．9393 & 0.0028 & 0.0508 & 60 \\
\hline 65 & 23,8351 & 0.0419 & 456．7754 & 19．1611 & 0.0022 & \(0.05 \sim 2\) & 65 \\
\hline 70 & 50．4222 & 0.0029 & Seย．5249 & 19．2427 & 0.0917 & 0.0527 & 70 \\
\hline
\end{tabular}

APPEMTK A
Table Aó Compoumi Interect Mulripliers，\(\frac{12}{}=6 \mathrm{~F}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{7} & \multicolumn{2}{|c|}{SINELE SUM} & \multicolumn{5}{|c|}{ANHLIAL EEFIES} \\
\hline & Future Yalue & Fresent Value & Futdre value & \[
\begin{gathered}
\text { Fresent } \\
\text { valite }
\end{gathered}
\] & 5inkTng Fund & Eepital Fiecovery & n \\
\hline 1 & 1．0500 & \[
0.74=4
\] & \[
\begin{gathered}
3 \\
5.0000
\end{gathered}
\] & \[
0.9434
\] & \[
4.9500
\] & \[
1.5600
\] & 1 \\
\hline 2 & 1．1236 & 17．8900 & 2.0600 & 1， 8354 & 0.4954 & 0.5454 & 2 \\
\hline こ & 1.1910 & 0.8396 & こ．1836 & 2.6530 & 0.3141 & 0.5741 & 5 \\
\hline 4 & 1． \(2 \frac{1}{6}=5\) & 10．7921 & 4． 3746 & Ј． 4651 & 0． 2286 & 0.3856 & 4 \\
\hline 5 & 1．こち日z & 0.7433 & 5.6371 & 4.2124 & 0.2774 & 0.2374 & 5 \\
\hline 5 & 1．41日5 & 0.7050 & 6.9753 & \(4.917 \%\) & 0.1434 & Q． 2034 & 6 \\
\hline 7 & 1． 5036 & 0.0 ¢51 & 8．393日 & 5.5824 & 0.1191 & 0.1791 & 7 \\
\hline 3 & 1．573E & 0.6274 & 9.8975 & 4．3072 & 0.1010 & 0.1610 & 8 \\
\hline 9 & 1.6895 & 10． 5817 & 11.4713 & 6.9017 & 0.0870 & 0． 1470 & 9 \\
\hline 10 & 1．780日 & 0.5594 & \(13.180 日\) & \(7.3 \leqslant 01\) & a． 0757 & 0.1359 & 10 \\
\hline 11 & 1．日¢日年 & 13．5266 & 14．9712 & 7．8869 & 0，066 \({ }^{\text {a }}\) & Q．126日 & 11 \\
\hline 17 & 2． \(\mathrm{OL}_{2} \sim\) & 0.4970 & 16．8699 & 5， 3938 & 0.0593 & 0.1293 & 12 \\
\hline 13 & 2．1329 & 1．46E5 & 18． 0821 & 6，8537 & 0.0530 & 0.2130 & 13 \\
\hline 14 & 2．2605 & 13．4．433 & 21． 5159 & 9．2950 & 0.0476 & 0.1076 & 14 \\
\hline 15 & 2．3956 & 0．4173 & 23．2759 & 9.7122 & 0.0430 & 0.1030 & 15 \\
\hline 16 & 2．540\％ & 0.3936 & 25． 5725 & 10.1059 & 0.0390 & 0.9996 & 16 \\
\hline 17 & 3．6928 & 0． 2714 & 28． 2128 & 10.4775 & 0.0354 & 12.0954 & 17 \\
\hline 18 & 2.8543 & 0．38\％\％ & 30．7056 & 10.8276 & 0.0324 & Q． 0924 & 18 \\
\hline 19 & 3.0356 & 1）． 2305 & 35．7579 & 11.2581 & 0.0296 & 6．0903 & 19 \\
\hline 30 & こ． 2071 & 0． 3119 & 36.7 ¢5s & 11.4699 & 0.0272 & 0.9872 & 20 \\
\hline \＃1 & 3.3996 & 0．2942 & 39.7927 & 11.7641 & 0.0250 & 0.0856 & 21 \\
\hline 72 & 3．60～5 & 0． 2775 & 43.3972 & 12，9416 & 0．0250 & 0.0820 & 35 \\
\hline 22 & & 刀．361日 & 46．7957 & 12.3234 & 0.0210 & 0.0815 & 0 \\
\hline 24 & 4． \(4749^{\circ}\) & 9． 2.276 & 50．8155 & 12．5504 & 0.0127 & 0.81797 & 24 \\
\hline 25 & 4.2917 & 12， \(2=30\) & 54． B （274 & 12．7834 & 0.01597 & 0．07日 & －5 \\
\hline 26 & 4， 5494 & 19．2196 & 59.15 年 & 1こ，00ここ & 0.0169 & 0.0769 & 26 \\
\hline 27 & A． \(\mathrm{E} 2 \mathrm{\sim} 2\) & a． 2074 & 23， 7057 & 13,2103 & 13．0157 & 0.0757 & 27 \\
\hline 78 & 5.1117 & D． 29.956 & 68，5289 & 13．4062 & 0.0146 & 0.07746 & 28 \\
\hline 29 & 5． 4184 & a，1846 & 73． 3 397 & 13.5007 & Q． 615 F & 12．0736 & 29 \\
\hline 312 & 5.7475 & 0.1741 & 79．195宔 & 13．\(\overline{\text { ¢ }}\) ¢ 98 & 0．1126 & 0．0726 & 319 \\
\hline 21 & 6． 7381 & 0.1643 & 84．E015 & 15．7291 & O．0118 & 6．0718 & 31 \\
\hline \(\triangle\) & b．4504 & Q． 1550 & 90，8996 & 14．0840 & 0.0112 & 9.6710 & 52 \\
\hline F2 & 6． 8406 & （1．1462 & 97.3430 & 14．2ご2 & 19．0103 & 0． 01701 & 33 \\
\hline 34 & 7.2510 & 0．1379 & 104．1905 & 14.3691 & 0， 21076 & 0.0698 & 54 \\
\hline 35 & 7－88． 1 & の，1501 & 111.4345 & 14，4982 & 4.9070 & \(0.089{ }^{\text {c }}\) & 35 \\
\hline 49 & \(10 .-2957\) & 0.0772 & 154.7616 & 15．0465 & 19， 010.65 & 0.0655 & 49 \\
\hline 45 & 13，7646 & ¢，0727 & 219，74．519 & 15，455日 & 1）．0047 & 0． 01647 & 45 \\
\hline 50 & 19，4291 & 6．0542 & 299， 3.31 & 15.7517 & 13． 101534 & 0.6654 & 50 \\
\hline 55 & 24.656 & 12.0406 & 174．1708 & 15．2905 & 0.0025 & \(0,1,635\) & 5 S \\
\hline 612 & 22．7日7 & 1， 0.0005 & 5下，126\％ & 16．1014 & 6.0919 & 12．0625 & 60 \\
\hline 65 & 44.1448 & 9．0こご， & 717．0803 & 1台，2991 & 0.0014 & 9.96614 & bs \\
\hline 719 & 59.0757 & 1）． 010137 & 967．7294 & 16．2845 & 0.0010 & 0.0 OJ & 70 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{7\％} & \multicolumn{2}{|r|}{5iNGLE SUM} & \multicolumn{4}{|c|}{ANNUAL SENIES} & \multirow[b]{2}{*}{\(\square\)} \\
\hline & FuFure Value & Fresent Value & Future value & Present Value & Sinking Fund & \begin{tabular}{l}
Capital \\
Fercuary
\end{tabular} & \\
\hline 1 & \[
1.0700
\] & \[
0.7296
\] & \[
1+0000
\] & \[
0.9346
\] & \[
\frac{5}{1.01000}
\] & \[
1.0700
\] & 1. \\
\hline 2 & \(I+1447\) & 0.9734 & 2，0700 & 1． 8080 & 0，4851 & （1）．5521 & \(\Sigma\) \\
\hline 3 & 1．ここち¢ & 0.8165 & 3.2149 & 2．6243 & 0.3111 & 0.3811 & 3 \\
\hline 4 & 1．ご0日 & 0.7527 & 4． 4399 & 3，3873 & 0.2252 & 0.2952 & 4 \\
\hline 5 & 1．4026 & Q．7120 & 5.7507 & 4.1002 & 0． 1737 & 9． 2439 & \＄ \\
\hline b & 1.5007 & \(0.666=\) & 7.1503 & 4．7665 & 0.139 E & a． 7088 & 5 \\
\hline 7 & 1．SOSE & 19．6227 & 6． 6540 & 5． 389 & ن． 1156 & \(0.185 b\) & 7 \\
\hline 日 & 1．7193 & 0.5820 & 10．2598 & \(5.971 \pm\) & 0.0975 & 0.1675 & G \\
\hline 7 & 1．6505 & 0.5439 & 11.7780 & 6.5152 & 0，0835 & 0． 1555 & 5 \\
\hline 10 & 1.7873 & 0.51785 & 15．5165 & 7.0236 & 0.0724 & 9，1424 & 10 \\
\hline 1 \(\ddagger\) & 2． 1049 & 0.4731 & 15.7836 & 7． 4987 & 0.0634 & 0．12－4 & \(1 \pm\) \\
\hline 12 & 2． 2532 & 0.44419 & 17．88es & 7．9427 & 0.0557 & 77.1257 & 12 \\
\hline 13 & 2． 4098 & 0,4150 & 20.1407 & E．3577 & 9，0497 & 0.1197 & 13 \\
\hline 14 & 2.5785 & 0． 3678 & 22． 5505 & 9．7455 & 9，0．0445 & 0． 11243 & 14 \\
\hline 19 & \(2.759 \%\) & 0.5224 & 25． 1291 & 9．1077 & 0.0399 & 9．209E & 13 \\
\hline 14 & 2．7592 & D．उこa？ & 27．9891 & \(9.44 \pm 7\) & 0． 2.0555 & 13． 1059 & 16 \\
\hline 17 & 3．15日g & り，ご1号 & 20．8403 & 9.7632 & 13．0こ24 & 0.1054 & 27 \\
\hline 18 & 5.17777 & 9． 2955 & 33.9991 & 10．0591 & 0,0294 & 13.12994 & 18 \\
\hline 15 & 2． 61.65 & 0.2765 & 37.3790 & 10.3536 & 0，026日 & 0．0768 & 19 \\
\hline 20 & J－6697 & 0． 2584 & 40，9953 & 10.5940 & 0.0244 & 12． 19944 & 20 \\
\hline 21 & 4． 1408 & 0.2415 & 44．8652 & 10，日ず5 & 0.0523 & O．5¢ ご & 21 \\
\hline 27 & 4．4304 & Q．22S7 & 49.0953 & 11.0612 & 6.0204 & 0.109194 & 72 \\
\hline 25 & 4.7405 & 0.2109 & 5．5．4562 & 11.2727 & Q．01日7 & 9．98日7 & ご \\
\hline 24 & 5.0724 & 9.1971 & 58， 1769 & 11．4693 & 0.0172 & 0.9875 & 24 \\
\hline 25 & 5.4774 & 9，1842 & 63.2451 & 11.6536 & 0， 0158 & 0.0885 & 29 \\
\hline 26 & 5．3074 & Q－1725 & 68．4766 & 11.8259 & 0.0146 & 0，0946 & \(2{ }^{\text {c }}\) \\
\hline 37 & 6． 2159 & 0.1097 & 74，4849 & 11．4685 & 0.0154 & 9．98この & 27 \\
\hline 29 & 3． 5498 & 2.1504 & 80.8776 & 12.1371 & 8． \(21=3\) & 0.0824 & 29 \\
\hline 8 & 7．1143 & 0.1406 & \(8 \overline{7} .3467\) & 12.2777 & 0.0114 & 0.9814 & 29 \\
\hline 30 & \(\overline{7}, 5123\) & 0,1314 & 94.4499 & 12．4090 & 0.01516 & 0.0803 & 30 \\
\hline 31 & 9． 1451 & D． 1208 & 102.0752 & 12.5318 & 0.0099 & 0．079E & 31 \\
\hline 浣 & 8． 7153 & 0.1147 & 110.5184 & 12．6456 & 0.0041 & 0． 2791 & 32 \\
\hline 35 & 9.3254 & D． 2072 & 118．93こ6 & 12．735日 & D．0064 & 9.9784 & 3\％ \\
\hline 24 & ¢．7731 & 0.1002 & 126．2590 & 17．8549 & 0.0078 & 0.0774 & 34 \\
\hline 35 & 10，6706 & 0.0937 & 138．2571 & 12.9477 & 0.0072 & 0.6772 & 35 \\
\hline 40 & 14.9745 & 0.0068 & 199． 6355 & 13．ざロ & 0.00513 & 0.0 .0750 & 49 \\
\hline 45 & 21.0075 & 0.0476 & 2日S．7200 & 13．6055 & 0.0035 & 0.975 & 45 \\
\hline 50 & 29.4571 & 0,0339 & 404． 5304 & 13，3007 & 1）．0025 & 0.0725 & 50 \\
\hline 55 & 41.3151 & 0.10242 & 575.9302 & 12．9399 & 5． 2017 & 0.0717 & 35 \\
\hline S0 & 57．54d & a，017 & 613．5229 & 14.0392 & 0.0912 & 6． 01312 & 60 \\
\hline 65 & 81，ニ7さ & 0.0123 & 1146，7590 & 14.1399 & 0.0019 & 0.0709 & 65 \\
\hline 79 & 115．9898 & 0.9098 & \(1214-1400\) & 14.1394 & 9， 00095 & 0． 97706 & 70 \\
\hline
\end{tabular}

Table AB．Compound Incerest Multipliers；\(i=\) 的
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{n} & \multicolumn{2}{|r|}{SINSLE SUH} & \multicolumn{4}{|c|}{ANMLAL SER，IES} & \multirow[b]{2}{*}{\(\pi\)} \\
\hline & Future Yaluer & \[
\begin{aligned}
& \text { Present } \\
& \text { Value }
\end{aligned}
\] & Future Value & Present valde & Sinking Fund & Cmpltal Recovery & \\
\hline 1 & 1. obocg & \[
0.8^{2} \approx 59
\] & \[
1.000101
\] & \[
4.9259
\] & \[
1.0000
\] & \[
\text { 1. } 0800
\] & 1 \\
\hline 2 & 1，1664 & 0.0575 & 3．OE，90 & 1．₹曰云 & 0．4803 & c．5608 & 2 \\
\hline 3 & 1． 2587 & 0.792 l & 3． 24.44 & 2．5751 & 0.3080 & 0． 5880 & 3 \\
\hline 4 & 1．34\％ & 0.7250 & 4． 5961 & 3． 5121 & 12.2215 & 0.3019 & 4 \\
\hline 5 & & 6． 1.880 & 5． 9666 & 3.9927 & 0.1705 & 0． 3505 & \(=\) \\
\hline 6 & 1.5867 & 0.6202 & 7，－535 & 4.8227 & 0.1353 & 0.3163 & 8 \\
\hline 7 & 1．． 7150 & 0.585 & 9．9228 & 5． 2064 & 0.1121 & D．1721 & 7 \\
\hline 园 & 1．8599 & \(0.540=\) & 10．6356 & 5.7466 & 0.0940 & 0.1740 & \(\varepsilon\) \\
\hline P & 1． \(7.9 \%\) & 9．5002 & 15．4ETE & 6.2469 & 0．0801 & 0.1601 & 9 \\
\hline 10 & 2，15E9 & 0.4632 & 14，4日6E & 6.7101 & 0.0690 & 6． 1449 & 19 \\
\hline \(1 \pm\) & 2．5316 & 0.4289 & 16． 6455 & 7．1390 & 0，0601 & Q． 1401 & 11 \\
\hline 12 & 2．519＝ & 0.3977 & 19．977： & 7.5361 & 0.0537 & 0.1375 & 12 \\
\hline 25 & －2．746 & 10．3677 & 21．4953 & 7．9036 & 0，0765 & 0.1265 & 13 \\
\hline 14 & 2． 2.275 & 0.3425 & 24． 2149 & 8． 2442 & 0.0412 & 0.1213 & 14 \\
\hline 15 & ふ．1732 & 0.3152 & 27．1521 & a，5505 & 0.0366 & 0．116日 & 15 \\
\hline 14 & 3.4359 & 0.2719 & 50，7243 & 9．9514 & 0.05350 & 6.2130 & 16 \\
\hline 17 & －2．70196 & 0． 2703 & ここ．7595 & 7．1216 & 0.0296 & 0.1096 & 17 \\
\hline 1日 & T，94ber & 0.2502 & 37．4505 & 9.3717 & 0，02－\({ }^{2} 7\) & 0.1067 & 19 \\
\hline 19 & 4，2127 & 10． \(2=17\) & 42.4463 & 9． 6036 & 0，0241 & 0.1041 & 19 \\
\hline 20 & 4． 2610 & 0.2145 & 45,7620 & 7．8181 & 0.0215 & 0.1019 & 26 \\
\hline －1 & 5．n0．3E & 0.1987 & 50.4030 & 10.0268 & 0.0198 & 0.4998 & 21 \\
\hline 2\％ & 5.43165 & 0．1935 & 55， 456 B & 10.3007 & 8， 0180 & 0．09E0 & コニ \\
\hline 27 & S，E745 & \(9.170=\) & 640.975 & 19．3711 & 0．0184 & 0.0964 & 25 \\
\hline 74 & 6．3412 & 0.1577 & 46．7348 & 10．SE9日 & 9.0150 & 0.0950 & 24 \\
\hline 35 & E，日4Es & \(0.146 \%\) & 75．1960 & 10，6748 & 1．0157 & 0.0957 & 35 \\
\hline ¢3 & 7． 2964 & 0．1752 & 79，9545 & 10.8100 & 0.0275 & 10．0975 & 26 \\
\hline 27 & 7 ，PEPI & 0．1252 & 87． 3569 & 10， 0552 & 0． 2114 & 0．0914 & 27 \\
\hline 28 & 8． 5271 & 0.1159 & 75． 3397 & 12.0511 & 0.0105 & 0.0805 & 28 \\
\hline \(\pm\) & 9．0175 & \(6.107 \%\) & 103． 7660 & 11．1584 & 号，0¢9\％ & 4． 0996 & \(\pm 9\) \\
\hline 5 & 10．065 & 0． 209794 & 113．29－3 & 11.2578 & 9.0098 & & 313 \\
\hline 31 & 19，867\％ & C． 11.15 & 125.5469 & 1．5．598 & 0.0081 & 0.08 El & 51 \\
\hline \％ & 11．-571 & 0．）＊ig゙こ & & 11．4．250 & 9．0075 & 19.0875 & 52 \\
\hline 5 & 12．9751 & 0.0789 & 145，9506 & 11．Sis？ & \(0,00,65\) & 0.0185 & 3 \\
\hline 24 & 13．5601 & 0，0730 & 158，62b\％ & 11． 5569 & 0． \(0.016=\) & 1，1，986 & 34 \\
\hline \(\bigcirc\) & 14.7054 & 0． 2675 & 1テニ． 1179 & 11.0546 & 0．005日 & 0． 0 ess & \(\pm 5\) \\
\hline 40 & 21，－7545 & 9，M446 & 259，0569 & 11．724 & 0.0025 & 0.0369 & 46 \\
\hline 45 & 31． 2010 & 0．071 & －6，5nse & 12．1084 & & 0．19日2b & 45 \\
\hline 50 & 46， 7017 & 0． \(\mathrm{cos}_{2} \mathrm{~L}\) & 鸟こ，7711 & 12， \(2=5\) & Q．0017 & 0.0817 & 50 \\
\hline 5 & 6e， 9146 & 0.0145 & E4E，¢ニ47 & 12．736 & 0．60212 & 9．0612 & 5 \\
\hline 60 & 161．\(=575\) & 19，0095 & 1253,2160 & 12， 2756 & 0.0003 & 0，90\％ & 6i） \\
\hline 35 & 14日，7日覓 & 8．0．1950 \(\%\) & 1947．2500 & 13．416＠ & 4－60005 & 0.000 .3 & 6 \\
\hline 76 & こ13131969 & 0． \(0004=\) & フ721．0日60 & 1こ．44こ9 & 0.1 mocis & 0.0 eri4 & 72 \\
\hline
\end{tabular}

APPENDLX A
Table as．Compound Incerest Vultipliers，\(i=9{ }^{\circ}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{II} & \multicolumn{2}{|r|}{STAGLE SUH} & \multicolumn{5}{|c|}{ANNLJAL SERIES} \\
\hline & Fiture & Fresent Value & Fature Value & Present & Sinking & Capltal Rectuer & \％ \\
\hline & Malue & －value & & & & & \\
\hline 1 & 1．3900 & 0.7174 & \[
1.00100
\] & \[
Q+9574
\] & \[
1+0000
\] & \[
1.0 \frac{B}{1} 130
\] & 1 \\
\hline 2 & 1．1as2 & 9． 3417 & 2． 0900 & 1．7591 & 0.4785 & Q． 5695 & 2 \\
\hline 5 & 1．355\％ & 12．77ニ＝ & \(\checkmark .5781\) & 2，Sid & 0.3051 & 0.3551 & \(\stackrel{\square}{4}\) \\
\hline 4 & 1，4116 & 9．708．4 & 4.5731 & 3． 3547 & 0.2197 & 0.3087 & 4 \\
\hline 5 & 1．506b & Q． 6497 & 5．7847 & 3．8日57 & 0.1671 & 0.2571 & 5 \\
\hline 6 & 1．6771 & 0.5458 & 7．5235 & 4．4939 & Q， 1327 & 0.3297 & 6 \\
\hline 7 & 1．B2Es & 0.5470 & 7． 2004 & 5.0530 & D． 1087 & 0.1987 & 7 \\
\hline 8 & 1．9926 & 0.5019 & 11.0355 & 5． 5.548 & 0.09797 & 0.1607 & 日 \\
\hline 7 & 2．1719 & 12，4604 & 13.9310 & 5.9932 & 0.0768 & 0.1609 & 4 \\
\hline 10 & こ， 3674 & 0．4224 & 15．1929 & 4．4172 & 0.0659 & 0.1580 & 10 \\
\hline 11 & 2.5804 & 0.2075 & 17，5605 & 6． 8057 & 0.0569 & 0.2469 & 12 \\
\hline 12 & 2．a127 & 0.3555 & 20．1407 & 7．1607 & 0.0497 & 0.1397 & 12 \\
\hline 12 & 5．0659 & 0.5262 & 22.9554 & 7.4989 & 0.0435 & 0．10こ6 & 13 \\
\hline 14 & 3.5417 & 0.2997 & 26．0192 & 7.768 2 & 0.0394 & \(0.1 \geqslant 84\) & 14 \\
\hline 15 & 3， 442 & 0.2745 & 29．3609 & B． 0407 & 0.0541 & 0.1241 & 15 \\
\hline 14 & 3.9703 & 0.2517 & 3\％－0054 & E．3126 & 0．0300 & 0.1303 & 15 \\
\hline 1.7 & 4，3276 & は，こご11 & 36．9757 & B．5436 & 0.9770 & 0.1270 & 17 \\
\hline 1 白 & 4.7171 & 0． 2130 & 41，3014 & B．7356 & D． 0232 & 0.1142 & 18 \\
\hline 19 & 2．1417 & 0.1945 & 46.01 ES & 日． 7591 & Q． 2217 & 0.1117 & 17 \\
\hline 30 & 5． 20444 & 0． 1794 & 51.1602 & 7，1285 & 0.0175 & 0.1095 & \(\geq 0\) \\
\hline 21 & 6．10日日 & 0.1657 & S6．7645 & 9.2982 & 9．12175 & D． 1076 & 21 \\
\hline －2 & －． 5586 & 19．1502 & 82，8734 & 9．4424 & 0.0159 & 0.1459 & 22 \\
\hline 37 & 7.2579 & 9，1ご家 & 69.5 .220 & 9．5日02 & 0.0144 & 12． 1544 & 25 \\
\hline 24 & 下． 5111 & 12． 1264 & 76.7899 & 7．706á & 2．01313 & Q． \(30 \sin\) & 24 \\
\hline \(\underline{15}\) & 9，ba＝ & Q． 1160 & B\％．7910 & 7． 8226 & 0．0219 & 15.1518 & 35 \\
\hline 36 & 9.3992 & 0.1054 & 93，3241 & 9.9290 & 0.0107 & 0.1097 & 24 \\
\hline 27 & 10.2451 & 9．0976 & 102.7233 & 10．p2bd & 0.0097 & Q．0597 & 27 \\
\hline 28 & 14．1672 & 10．0895 & 112.9684 & 10.1161 & 0.00919 & O．079\％ & 28 \\
\hline 37 & 12.1722 & 9，0922 & 134．5355 & 10．1963 & 0.9081 & 0.69881 & 79 \\
\hline 30 & 1こ．2677 & 1）．0754 & 135.3077 & 10．2737 & Q． 01072 & Q． 0975 & 20 \\
\hline 31 & ＋4．4618 & 12．0691 & 149,5754 & 10.3428 & 0．0067 & 0.0967 & \(\square 1\) \\
\hline 22 & 15．7634 & 0.0634 & 164，Q372 & 10.4062 & 0.0091 & O．0961 & 32 \\
\hline 35 & 17．1921 & 0．05a2 & 179．B00k & 10．4544 & 0.0056 & 0.12956 & 33 \\
\hline 34 & 18．7さ84 & 0.0554 & 196．9937 & 10.5178 & 0.0051 & 0.0951 & 34 \\
\hline 35 & 20.4240 & 9，0490 & 215.7111 & 10.5660 & 0.10946 & 0.09746 & 55 \\
\hline 40 & \＄1，4095 & 9．0518 & 537．8日31 & 20.7574 & 0.0050 & 0.0935 & 42 \\
\hline 45 & 46． 3274 & 13．0307 & 525.8596 & 10．6日1＝ & 0.0019 & 0.0917 & 45 \\
\hline 50 & 74.3577 & 0.01 .74 & 815．605 & 10．7617 & 0.0012 & 0.10912 & 50 \\
\hline 55 & 114．7035 & i）00987 & 1260．0950 & 11．13146 & 0.0008 & 0.0708 & 55 \\
\hline 60 & 174．9319 & 92.0057 & 1944．7970 & 11．04日 & 0.0005 & D． 0705 & 60 \\
\hline 65 & 270，9468 & 0，9037 & 2998． 2979 & 11.9709 & 0.01003 & 0.0902 & 45 \\
\hline 70 & 414.7314 & 9，0924 & 1＜19，\(=369\) & 21.0844 & 9．000\％ & 0，2902 & 79， \\
\hline
\end{tabular}

Table AlD．Compound Interesc Multipliers，\(i=108\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(\pi\)} & \multicolumn{2}{|r|}{SIMTELEE SUTA} & \multicolumn{4}{|c|}{ANMULAL SEFIIES} & \multirow[b]{2}{*}{II} \\
\hline & \[
\begin{aligned}
& \text { Future } \\
& \text { value }
\end{aligned}
\] & Fresent valua & Future Valde & Fresent Value & Sinking Fund & Capital Kecovery & \\
\hline 1 & & 0．0001 & 1.300 & －4091 & \[
5
\] & & \\
\hline 2 & 1.1000
1.2100 & 0.9091 & 1.00000 & 0.8091 & 1.00100 & 1－1010 & 1 \\
\hline 3 & 1．3ご家 & 0.7513 & z．31015 & 2．486？ & 0． 3021 & 0．4021 & 5 \\
\hline 4 & 1．4641 & 4． 6830 & 4.6418 & 2． 1699 & 0.2155 & 0． 3155 & 4 \\
\hline 5 & 1．6．195 & 0.6209 & 6.1051 & こ． 790 E & 0.1236 & 0． 2638 & 5 \\
\hline E & 1.7716 & 0，5645 & 7.7156 & 4．3555 & 0.1796 & 0.2395 & 4 \\
\hline 7 & 1.9487 & 0．5122 & 9．4E72 & 4.8684 & 0.1054 & 0.2054 & 7 \\
\hline 9 & 2． 1436 & 0.4665 & 11.4559 & 5.3549 & Q． 6974 & 0.1974 & \(\square\) \\
\hline 4 & 2．0579 & 0．4241 & \(16.579 \%\) & 5.7590 & 0.0756 & a．1736 & 9 \\
\hline 10 & \(2.59 \% 7\) & 12． 3855 & 15.9574 & 3．1＊46 & 0．0627 & 0.1627 & 10 \\
\hline 11 & 2． 35.1 & 0， 3055 & 18.5012 & 6.4951 & 0.6549 & 0.1540 & 11 \\
\hline 12 & 3．13日4 & 19．3186 & 21.3847 & E．8237 & 0.0468 & 0.1489 & 12 \\
\hline 15 & 2．45ご & 13．2997 & 24．S工27 & 7． 10.34 & 0.0490 l & 0.1408 & 13 \\
\hline 14 & 5．7975 & ¢\％26こう & 27．9756 & 7．5667 & 0.0357 & 0.1357 & 14 \\
\hline 12 & \(4.17 \% 2\) & 13， 2394 & 31.7725 & 7, bi）b1 & 0.0315 & 0.1515 & 15 \\
\hline 16 & 1．5950 & 0.2176 & 15．7477 & 7.897 & 0.0276 & D．127E & \(1{ }^{18}\) \\
\hline 17 & 5.0545 & D． 1979 & 40.54 .47 & 8．0216 & 0.0247 & 9．1247 & 17 \\
\hline 1 B & E． 5599 & 0.1799 & 45．5072 & a． 5014 & 0.0215 & \(0.121 \%\) & 1 A \\
\hline 19 & 6．1150 & 0,1405 & 51.1591 & E． 5647 & 0.0185 & 0.1195 & 18 \\
\hline 20 & 5．7ニフラ & 13．14日6 & 57.2750 & 6． 515 L & 0.0175 & 0.1175 & 29 \\
\hline 21 & 7 －400\％ & a，1，－51 & 64．0025 & 5． 6487 & 0.0136 & 0.1256 & 21 \\
\hline \(3 \square\) & B． 1405 & \(0.12=3\) & 71．4029 & 8．7715 & \(9.0 \pm 40\) & 0.1148 & 32 \\
\hline 35 & 3．9547 & 0.1117 & 70.5451 & 0．8832 & 6，0126 & 0.1126 & 36 \\
\hline 27 & \％．8497 & ¢．1015 & 88． 4974 & E．9147 & 2．0112 & D． 1115 & 24 \\
\hline 25 & 10，3547 & 9，1923 & ¢日．3471 & 5.07705 & 0.0102 & Q． 1102 & 55 \\
\hline 26 & 11．719\％ & 0．08，\({ }^{\text {a }}\) & 107． 2 E1E & 9.1609 & 0．90072 & 0.1092 & －3 \\
\hline 27 & \(13.1100^{\prime}\) & 19．036 & 121．1000 & 9.2372 & \(0.000 \%\) & Q．1083 & 27 \\
\hline こ日 & 14．4210 & 9，1969\％ & 1.34 .2100 & 9． 31086 & 9．9075 & 0.1075 & 28 \\
\hline 29 & 15.9 ごっ & 0.0030 & 148．62314 & 9，3696 & A．13967 & 0.16 b & 29 \\
\hline 32 & 17， 1794 & 0.9573 & 164，4941 & 9,4285 & 0.0061 & 0．1061 & 51 \\
\hline 41 & 17.174 .4 & 0.0521 & 181．9475 & 9．4770 & 0.0055 & 9.1055 & 51 \\
\hline －－ & 21．1150 & 0．0474 & 201.1379 & 9.5264 & 0.0050 & 0.1050 & E2 \\
\hline 5s & 25． 225 & 10．04\％1 & 22\％． \(251 \%\) & 9.8694 & 0,0045 & 0.1045 & ふ心 \\
\hline 3.4 & 25， 5477 & 0．0091 & 245． 4768 & 9.8083 & 0.0041 & 0． 1041 & 54 \\
\hline －5 & 28， \(10 \%\) & 万．0．5S & 271．0243 & 8.6442 & 0.0037 & O． 10 cor & 5 \\
\hline 4 & 45．－257 & 0．5ices & 44こ．5723 & 9．7771 & 0.0025 & 0.1025 & 40 \\
\hline 45 & 72.893 .5 & 0.015 & 71日．P0\％ & 9.7628 & 0.0014 & 0.1014 & 45 \\
\hline 50 & 117．6797 & 0.6085 & 1163．9\％90 & 9.9148 & 0.0049 & 0，19080 & 50 \\
\hline 55 & 169．0597 & \(0 \cdot(10)=\) & 180\％，3730 & 7．7471 & 0.0005 & Q． 10005 & 55 \\
\hline 边 & 304．4日L9 & 0．4025 & 3054.8176 & 9．9675 & 0.3005 & 9\％ 1500 & 60 \\
\hline 65 & 490， 5712 & 9． 0.0092 & 499\％．7120 & 9.8796 & 9．0002 & \(0 \cdot 1002\) & 65 \\
\hline 36 & 789，7478 & \(0.001=\) & 7987． 4720 & 9．707\％ & 0.0001 & 0，1001 & 70 \\
\hline
\end{tabular}

APPENTIX A
Table Ath，Compound Zarerest Malcipliers，i＝11＊
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{［} & \multicolumn{2}{|r|}{Statat 5 Sum} & \multicolumn{4}{|c|}{ANHUAL SERIES} & \multirow[b]{2}{*}{เ} \\
\hline & Future Vatue & Fresant YaIue & Future value & Frasent Value & 5inkang Fund & Caplcal Fecaverv & \\
\hline 1 & \[
1.1109
\] & \[
0.020
\] & 1． 01090 & \[
0.9009
\] & \[
\frac{5}{1.00100}
\] & \[
1.1150
\] & 1 \\
\hline 2 & \(1 \times 2=\)－ & \(0.81 \pm\) & 2.1100 & 1．7125 & 0.4759 & \(0.58=7\) & ） \\
\hline 3 & 1．3676 & 0.7312 & 3.5421 & 2.4457 & 1．\({ }^{\text {N0，}}\) & 2．4992 & 3 \\
\hline 4 & 1．5181 & 0.6587 & 4.7097 & 3．1024 & 10．2123 & 0．ごここ & 4 \\
\hline 5 & 3：6851 & Q． 5935 & 6． 2278 & 3． 6959 & 0.1506 & 10．2706 & 5 \\
\hline 4 & 1． 0704 & 0.5345 & 7.915 & 4， 3505 & 0.1254 & 0．2364 & 6 \\
\hline 7 & 2.0762 & 0.4617 & 9.7833 & 4．7122 & 0.7022 & 19．2122 & 7 \\
\hline 8 & ㄹ．3045 & 0．4525 & 11．8594 & 5．1461 & 0.0843 & 19．174．2 & 日 \\
\hline 9 & 2，9580 & 0.5909 & 14.1640 & 5，5370 & 0.0706 & 0.1806 & 7 \\
\hline 10 & 2.8574 & 0．\＃Scz & 14.7220 & 5.8872 & O．0SqE & D． 1689 & 112 \\
\hline 11 & 5．151日 & \(10.317 \%\) & 19.5614 & 6.2005 & 0.0512 & 0.1611 & 11 \\
\hline 12 & ¢． 4985 & 0.2558 & 22， 2132 & 6.4924 & 0.0440 & 0． 1540 & 12 \\
\hline 13 & 3． 8835 & 0.2575 & 26．2116 & 6.7499 & 0.0393 & Q．14日2 & 1\％ \\
\hline 14 & 4． 51134 & 0．2Jこ0 & 50．0949 & 6.9819 & 0.0322 & 0,1436 & 14 \\
\hline 15 & 4．7846 & 13． 3998 & 34.4054 & 7.1909 & 0.0291 & Q．13F1 & 15 \\
\hline 16 & 5.3145 & 0.1383 & 39．1700 & T． 3792 & 9.0255 & 0.1558 & 16 \\
\hline 17 & 5． \(\mathrm{BH}_{4} 1\) & 13． 1695 & 44， 5006 & 7.5488 & 0.0225 & \(0.1 \geq 25\) & 17 \\
\hline 10 & b．5456 & 0.1559 & 512.3959 & 7．7016 & 0.015 E & 0，1299 & 1 1a \\
\hline 19 & 7，2630 & 0． 2.157 & S6． 9895 & 7.8273 & 0.0176 & D． 1276 & 19 \\
\hline 20 & 8.0623 & 9.120 & 64．2026 & 7．9833 & 0.0156 & 0.1256 & 29 \\
\hline 31. & 8.9492 & 0.1117 & 72.2652 & E． 2751 & 0.0138 & Q． 125 B & 21 \\
\hline 25 & 9．9356 & 13.1507 & 感1，2145 & Q． 1757 & 0.012 J & 9．1220 & 25 \\
\hline 15 & 11．0865 & 9．0907 & 71．1475 & E． 2364 & 0,0110 & Q． 1210 & 二： \\
\hline 34 & 12． 359 & Q．0日t 7 & 102.1742 & 9．3491 & 0．0098 & 0，1199 & 24 \\
\hline 25 & \(1=.5 \mathrm{ess}\) & 0． \(07 \% 6\) & 114．4150 & E． 4217 & 0.0087 & D． 1157 & 25 \\
\hline 26 & 15.0799 & D．OStz & 127．9998 & 9．4891 & 0.0078 & 0.1178 & 26 \\
\hline 37 & 10．73日 & 6，059\％ & 143.0766 & 6． 5478 & 0．0070 & 0.1170 & 2 r \\
\hline 29 & 18.5799 & \(0.053 E\) & 159， 5173 & 9．60t6 & 0.0063 & 9，1165 & 28 \\
\hline \(\therefore 9\) & 21， 4.525 & 0.0495 & 179.3972 & B，8501 & 0.005 & 0.1156 & 29 \\
\hline 36 & 23．8Rㄲ & 1． 0.0437 & 199.0209 & 日．6953 & 12.0950 & Q． 1150 & 30 \\
\hline \(=1\) & 25．4105 & 0.0594 & 221.9132 & 8．7351 & 0.01945 & 0.1145 & 31 \\
\hline 32 & 28． 2056 & 0.0555 & 247．こ257 & 8.7686 & 12.0040 & 0.1140 & 32 \\
\hline 33 & 51.5093 & 0，0319 & 275.5192 & R．8005 & 19，04\％6 & 0.1136 & 35 \\
\hline 24 & 34．7521 & 9．¢2E9 & 305．8375 & Q． 8395 & 0.005 & 0.1125 & 34 \\
\hline 35 & 38.5749 & 0.0559 & 341.5896 & E， 3553 & 1）．0027 & Q． 1129 & 35 \\
\hline 49 & 65.00009 & 0． 015 年 & 581．82b1 & 日．9511 & 0.0017 & 0.1127 & 40 \\
\hline 45 & 109.5505 & 0．0091 & 996.0 可 & 9.8077 & 15．0019 & 0.1110 & 45 \\
\hline 50 & 174.5649 & 9.0054 & 1568．7710 & 9.9417 & 0.0006 & 0． \(110 \%\) & 50 \\
\hline 55 & 311.0925 & 15．0032 & 2815． 2050 & F．0617 & 1）． 00004 & 0.2104 & 55 \\
\hline 519 & 324，0573 & 0.0019 & 4755．4日70 & 9.9776 & Q． p （9）2 & 0.1102 & 60 \\
\hline ¢5 & 툽T， 0671 & Q． 0011 & B01E．79\％0 & \(9.980{ }^{\text {a }}\) & 0．00001 & 9.1192 & 65 \\
\hline 70 & 1499，0190 & D． 01007 & 43518． 3600 & 7． 4 日as & 0.00901 & 0.1201 & 70 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{n} & \multicolumn{2}{|c|}{SIVELE SLM} & \multicolumn{4}{|c|}{AINALIAL SEPIES} & \multirow[b]{2}{*}{\％} \\
\hline & Future value & Present Walue & Future Value & Fresent value & Sinking Furd & Capatal Recovery & \\
\hline 1 & \[
\frac{1}{1.12000}
\] & \[
\frac{2}{0.8929}
\] & \[
\text { 1. } \frac{3}{3}
\] & \[
0.8925
\] & 1．05000 & \[
\text { 1. } i_{2}^{2} 013
\] & \(\pm\) \\
\hline 5 & 1.2544 & 0.7972 & 2． 5300 & 1.6921 & 0.4717 & 0.5917 & 2 \\
\hline \(\approx\) & 1． 4949 & 0.7118 & 3.3744 & 3，4016 & 0.2965 & \(0.416 \%\) & \\
\hline 4 & 1.5735 & 0.6355 & 4.7793 & 3．0373 & Q．2092 & 0.3292 & 4 \\
\hline 5 & 1．7．G20 & 0.5674 & 6.3528 & こ．6048 & 0． 1574 & 0.2774 & 5 \\
\hline 2 & 1， 9758 & d．50jed & 日．11Eこ & 4.1514 & 0.1232 & D．3432 & 4 \\
\hline 7 & 9.2167 & 0．4525 & 10．0899 & 4．50．\({ }^{\text {a }}\) & 0.0991 & 0． 2191 & 7 \\
\hline B & 2．47sa & 0.40 .55 & 12． 3975 & 4.9675 & 0.0915 & 0.2013 & B \\
\hline 9 & 三．7731 & 0.3606 & 14.7757 & 5．32Es & 0.0677 & 0.1277 & 5 \\
\hline 110 & こ． 205 E & Q． 3220 & \％7，54日7 & 5．6502 & 0.0570 & 0.1773 & 12 \\
\hline 11 & J．4795 & Q，2fis & 20.6546 & 5．7377 & 0.0484 & 0.1694 & 11 \\
\hline 12 & 5．9940 & Q． 25.57 & 24.1201 & b． 1944 & 0.0424 & 0.1614 & 17 \\
\hline 13 & 4．36－5 & 1． 2397 & 28， 9 ¢7 & d． 4235 & 0.0557 & 0.1557 & 23 \\
\hline 14 & 4．8日71 & 0.3046 & 52．5926 & 6．5392 & 0.0507 & 0.1507 & 1 A \\
\hline 15 & 5.4736 & 0.1837 & 77，2707 & 6． 8109 & 0.0258 & 0． 1465 & 1． \\
\hline 16 & ¢，1304 & d）．1631 & 42．7533 & 6.7740 & 0，023－4 & 0.1424 & 16 \\
\hline 17 & －\％8bal & 0，1456 & 46．883？ & 7． 1176 & 0.12205 & 0．1405 & 17 \\
\hline 15 & 7． 2900 & 0．15ib & 55． 7447 & 7 －3497 & 0,0177 & 0.1577 & 12 \\
\hline 17 & 日．A12e & iv． 15 台1 & 60．430\％ & 7．3656 & 0．0．015e & 2． 4 ，Exa & 19 \\
\hline 20 & 9.6463 & 8， 10.57 & 72．0524 & 7．7694 & 0.6159 & \(0.15=9\) & ＝10 \\
\hline －1 & 40， \(30 \% 8\) & 0.9826 & 日1． 6987 & 7.5020 & 0．0122 & \(0.1 \pm 92\) & 21 \\
\hline 22 & 12．100\％ & f，0826 & 92，50， & 7.1446 & Q．0109 & 0．1300 & 35 \\
\hline ご & 13．552 & 0.6758 & 104．8020 & 7.7184 & 0.00976 & 0.1296 & 2 \\
\hline 立9 & 15.1780 & 14，0659 & 118．15咢 & 7.7643 & 0．0．095 & 0．12日 & 34 \\
\hline 25 & 17．000\％ & U． 0588 & & 7．日4， & 0.0075 & 9.1273 & 55 \\
\hline 2b & 15－15461 & 0,0525 & 150.8559 & 7． 1955 & 0.0037 & 9．5こち下 & 26 \\
\hline 27 & 21.3249 & P． 9467 & 167． 2740 & 7.9426 & 0，505 & 0．1357 & 27 \\
\hline 25 & 2J．anz？ & 0.03419 & 170.6959 & 7.9844 & 0．4053 & 0.1252 & 2 B \\
\hline 29 & 20．1479 & 0.0374 & \(214.5 日 28\) & a．0219 & 6.15 Pa 7 & 9，124 & 39 \\
\hline 50 & 푸． 95 禺 & 0，0， 04 & \(241.35 ン 7\) & Q．0552 & 0.00121 & 0． 1241 & 30 \\
\hline 51 & －2． 5551 & Q，9298 & 271． 29 こt & B．0850 & 0． 50.27 & 隹：2ご & 31 \\
\hline 32 & 二小，5317 & 0．026c & 304.9477 & a．itle & 0.60035 & Q．1ごべ & E2 \\
\hline 35 & 42.0925 & 0．0183日 & 542.4295 & 8． \(1=54\) & & 9．1 \(2=37\) & 103 \\
\hline \(\because 4\) & 47.1425 & 0.6212 & 584.5210 & 日． 1563 & 0.10086 & 6． 1225 & 34 \\
\hline 55 & 5こ．7996 & 0.0187 & \(431.60=5\) & G．I753 & 而，Dozz & 9．1习ゴ & 35 \\
\hline 48 & 田，9510 & 0.0107 & 767， 12914 & 日． 24.51 & 0.602 & \(0.121=\) & 49 \\
\hline 45 & 165．9876 & 0． 20.061 & 158日，こ560 & E． 2025 & 0.60007 & 19．1267 & 45 \\
\hline 50 & 294，00こ2 & 9.0055 & 2700.0190 & e． 31345 & 9．000\％ & Q． \(1=24\) & 50 \\
\hline 55 & 509． 3204 & 0.0020 & 4256．00950 & 日．-170 & 2．0402 & 隹1202 & 55 \\
\hline do & 897．59b9 & \％\％ 19012 & 7471． 3410 & 8． 2249 & 0.0601 & 9，1201 & 60 \\
\hline 05 & 1591.3720 & 0.9096 & \(1217 \%\) P409 & 9．\％2日1 & 0.0001 & a． 1201 & \\
\hline 70 & －737，8040 & 0.00994 & ミ゙ッさずご， 00 & 8．-295 & ， & \(19+120 \mathrm{r}\) & 70 \\
\hline
\end{tabular}

\footnotetext{
＊smallet than DODI
}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(\pi\)} & \multicolumn{2}{|c|}{STIGLE SUM} & \multicolumn{5}{|c|}{Andulal SEFTES} \\
\hline & Futare Nalue & \[
\begin{gathered}
\text { Present } \\
\text { Value }
\end{gathered}
\] & Future Value & Fresent
Value & 5inking Fund & \[
\begin{aligned}
& \text { [apyta! } \\
& \text { Fecover. }
\end{aligned}
\] & n \\
\hline 1 & \(\frac{1}{1.1500}\) & \[
0.2^{2}
\] & \[
1.00300
\] & \[
0.8 \mathrm{~B} 90
\] & \[
\text { 1. }{ }^{3} 0000
\] & \[
1.1500
\] & 1 \\
\hline \(z\) & 1.2769 & 0.7801 & 2.1300 & 1， 6 ¢ 61 & 0.4695 & 0.5995 & \(=\) \\
\hline 3 & 1．44릉 & 0.6951 & 3.4067 & 2．3612 & 0.2935 & 0，4285 & 2 \\
\hline 4 & 1． 3005 & 0．alz & 4.8496 & 2.7745 & 0.2962 & \(0 . こ こ 62\) & 4 \\
\hline 5 & 1，5434 & 0．54］a & 6.9805 & 3，5172 & a． 1543 & 0．2543 & 5 \\
\hline b & 2，98376 & 0，4812 & 9.5057 & 3．9675 & 0.1202 & 0.2502 & b \\
\hline 7 & 2． 3586 & 19.4251 & 10.4047 & 4.4226 & 0.0761 & 0．25t1 & 7 \\
\hline E & 2．isse 4 & 1， 3.36 ？ & 12．7517 & 4．7789 & 0.0784 & 0.2084 & 8 \\
\hline 9 & 2．0640 & 0.5327 & 15.4157 & 5，4317 & a，0649 & 9． 1949 & 7 \\
\hline 119 & － 20440 & 5． 2946 & 19．4197 & 5．42i2 & 0.19543 & 0.1645 & 10 \\
\hline 11 & 3． 0259 & 13，2607 & 21.8143 & 5．6569 & 0.0450 & 0.1758 & 11 \\
\hline 12 & 4.5345 & 0．2307 & 25.6502 & 5．917b & 0.0359 & 0.1690 & 12 \\
\hline 12 & 4.9969 & 0，2042 & 79．9047 & c． 1218 & 0.0534 & 0.1654 & 13 \\
\hline 14 & 5，5348 & 6．1007 & 34.8897 & 6．3025 & 0.0287 & 2，1597 & 14 \\
\hline 15 & b． 2543 & 0.15979 & 40.4174 & b． 4624 & 0.02247 & 9．1547 & 15 \\
\hline \(1{ }^{1}\) & 7，0675 & 0.1415 & 46， 4717 & 3．6059 & 0.0214 & 12.1514 & 16 \\
\hline 17 & 7.9861 & 6． 1252 & \(5 \% .7390\) & 6． 7291 & \(0.018{ }^{\text {a }}\) & \(0 \cdot 1486\) & 17 \\
\hline 18 & 7.0245 & 0.1108 & b1．7251 & 6，日 099 & 0．0162 & 0.146 & 19 \\
\hline 19 & 10.1974 & 0.0961 & 70，7494 & 6.9380 & D．0141 & 0．1441 & 19 \\
\hline 20 & 11．5231 & 0.0869 & 80.9468 & 7.0248 & Q：0124 & 0.1424 & 76 \\
\hline 21 & 15.3811 & 0.0769 & 92.44979 & 7.1015 & 9．9190 & 0.1408 & 31 \\
\hline 22 & 14.7138 & 0.0650 & 105.4909 & 7． 1695 & 12.0095 & 9.1575 & 22 \\
\hline 23 & 16．62．sa & 0.0601 & 120.21848 & 7．2297 & 0.0003 & 0.15 ea & －s \\
\hline 24 & 19．7981 & 0.0532 & 136．E514 & 7．2929 & 0.09075 & 12．10゙5 & －9 \\
\hline 25 & 21． 2305 & 9．0471 & 135.6194 & 7.5500 & 0.0294 & 0．2こち4 & 25 \\
\hline 28 & 25.7905 & 12.0417 & 176．8500 & 7.5717 & 9，0057 & Q． 2357 & －s \\
\hline 27 & 27．1093 & \(0.036 \%\) & 200， 4404 & 7.4084 & 0.0050 & 0.1350 & 27 \\
\hline 28 & 30.6505 & 0.0326 & 232．9497 & 7.4412 & 0.0044 & 0.1547 & 29 \\
\hline 39 & 34.8158 & 9，0289 & 258，585： & 7.4701 & 0.0059 & 0.1539 & 29 \\
\hline 30 & 39.1159 & 0.0256 & 295.1970 & 7．4957 & 0.00 ず & \(0.15=4\) & 30 \\
\hline 31 & 4．4．2098 & 0，025 & S32．3148 & 7.519 .5 & 0.0400 & 0.1330 & 51 \\
\hline 22 & 49.9479 & 0.0200 & 576．5157 & 7．5383 & 0.0027 & \(0.15=7\) & 35 \\
\hline \(3{ }^{2}\) & 56.4402 & 0.0177 & 426.4627 & 7． 5560 & 0.9025 & \(0,15 \geqslant 3\) & 33 \\
\hline 34. & 6 S .7714 & 0.0157 & 463.9029 & 7.5717 & 0.0021 & 0.1321 & 54 \\
\hline 35 & 72.0684 & 6．0157 & 546． 5805 & 7.5956 & 0.0011 & O． 1518 & 25 \\
\hline Si） & 132．7日14 & 0.0075 & 1013.7030 & 7.63544 & 0.01210 & 0.1519 & 40 \\
\hline 45 & 244．64162 & 0.0041 & 1874．1530 & 7．96at & 0.9005 & a． 1 mas & 45 \\
\hline 50 & 450.735 & 0.0002 & 5459．5020 & 7.6753 & 0.00095 & 0.1205 & 50 \\
\hline S5 & 850.4505 & 0，0012 & 6－80，3979 & 7.6834 & 0.0002 & 0.1302 & 55 \\
\hline 36 & 1530.0500 & 0.0007 & 11761．9300 & 7.6873 & 0，0001 & 15，1301 & 819 \\
\hline 65 & 2817.0180 & 0.0004 & 21677.0700 & 7.6896 & ＊ & 0.1200 & 65 \\
\hline 70 & 5195.9590 & 0.0002 & J9945．0302 & 7.6501 & ＊ & 0.1500 & 70 \\
\hline
\end{tabular}
＊smaller thatz ． 0001

Table AIG．Compound Interest Mulpipliers， \(1=14_{n}^{*}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{T1} & \multicolumn{2}{|c|}{SINTSLE GUM} & \multicolumn{5}{|c|}{ARNUAL SEFIES} \\
\hline & Futura valu星 & Fresanc Valwe & Futuire Value & Frgent value & S！तk2ng Fina & Capzzal Recovery & n \\
\hline & 1 & 2 & 3 & \(\stackrel{\square}{ }\) & 3 & 4 & \\
\hline 1 & 1． 1409 & 0.8772 & 2．0000 & 0.6772 & 1.0000 & 1． 1400 & 1 \\
\hline 2 & 1．2946 & 0.7695 & 3.1409 & 1．6457 & 0.4673 & 0．307 & z \\
\hline \(\sim\) & 1．4815 & 18.6750 & 3： 4386 & 2． 3216 & 0.2707 & 0.43077 & ＋ \\
\hline 4 & 1． y （890 & 0，5921 & 4．7211 & 2．9157 & 0.2032 & \(0.543 \%\) & 4 \\
\hline 5 & 1．7254 & 0，5184 & d． 6191 & 3.43 .31 & 0.1513 & \(0.291 \%\) & 5 \\
\hline 6 & 2.1750 & 9．455b & 9．5355 & \(\overline{\text { creal }}\) & 0.1172 & 0．2572 & 古 \\
\hline 7 & 2．507\％ & 10．こ¢口¢ & 10.7205 & 4．2893 & 0.0932 & 0，2352 & 7 \\
\hline 8 & 2．85こ5 & 0.3596 & 12.2538 & 4． 6518 & 0.0751 & 0.2156 & 9 \\
\hline 5 & \(\overline{3}_{\sim} 5515\) & 0．3075 & 16.0853 & 4． 7464 & 0．0622 & 0．2022 & 9 \\
\hline 10 & こ．7072 & 19， 2697 & 19.5373 & 5．ご年 & 0.9517 & 0.1917 & 312 \\
\hline 1.1 & 4．こセち2 & 9．376t & 23． 1448 & 3．4537 & 0.04 .34 & 0.18 E 4 & 12 \\
\hline 12 & 4．317？ & 1）．2076 & 27.27018 & 5． 6605 & 0.0367 & 0.1767 & 12 \\
\hline 12 & 5，4924 & \(0.18 \geq 1\) & 32，09日7 & 5．8424 & 0.0 .212 & 0.1712 & 1.2 \\
\hline 14 & b． 2610 & 9，1597 & 37．3811 & 4．0021 & 0.0266 & Q． 2666 & 14 \\
\hline 35 & 7.1579 & 9． 2491 & 45.8424 & 6.1422 & D．0238 & 0,1628 & 15 \\
\hline 16 & 9，537 & 6．1ご星 & 50.9804 & t． 2655 & 0.0196 & か．159b & 16 \\
\hline 17 & 9.2765 & 0，107日 & 59．1176 & 8.3708 & \(0.016^{\circ}\) & 0.1569 & 17 \\
\hline 19 & 10．579\％ & 0.18998 & 68． 5941 & 6． 4374 & 0.0146 & 9.1546 & 19 \\
\hline 19 & 12.0557 & 0．0．05ニロ & 7E，9592 & d． 5504 & 0.0127 & 9．15こ7 & 17 \\
\hline 29 & 12， \(74 \%\) & 5.40729 & 91．0248 & 6． S231 \(^{\text {a }}\) & 0.0120 & 1，1510 & 29 \\
\hline － 1 & 25．6676 & \％，DiESE & 10.14 .7684 & e． 2879 & 0.0695 & 0． 1985 & 21 \\
\hline 20 & 17.9510 & C． 0.0549 & 120，4350 & b． 7.427 & 0.008 & i3） 1485 & 22 \\
\hline ご & 二0， 2010 & 0.0491 & 12日，ミロ｜ & b．7021 & 0.0072 & 0.1772 & － \\
\hline 24 & 20．21ここ & \(0,0,4 \geq 1\) & 158，5597 & 6.8351 & 0.0063 & 19，1442 & 54 \\
\hline & 26．4619 & 0．a．う大E & 181， 876 & 6.8727 & 0． 0125 & 9．1455 & 25 \\
\hline 26 & －u． 1665 & 0.0051 & 208．－ 209 & b． 70162 & C． 13024 B & 0．144E & 23 \\
\hline 27 & 54， 2809 & 0.0291 & 259．4794 & b．93E\％ & 0.0042 & 0．1442 & 27 \\
\hline 28 & 39.2045 & 0.0255 & & A． 7607 & 0.0037 & \(0 \times 14 こ 7\) & 28 \\
\hline \(\underset{\sim}{C T}\) & 44．6901 & D．0224 & 312．0969 & 6.9836 & 0．00こ\％ & 0．1432 & 29 \\
\hline 人） & 50.9502 & 13.10195 & 356．7969 & 7． 0027 & 0.04026 & \(0.14=9\) & 32 \\
\hline 21 & 5E，98に & 6．0172 & 4197.7571 & 7，0197 & 0.0025 & c． \(14=5\) & 31 \\
\hline むこ & ¢0．\(=14 \mathrm{~B}\) & 0.0151 & \(465 . \mathrm{BEO2}\) & 7.0350 & 0.00021 & 0.1421 & 二2 \\
\hline W & 75．4E47 & 0，013 & 572.0551 & 7．0482 & 0.0015 & 0.1417 & 3 \\
\hline 54 & Báa 0528 & 0.0118 & 607.8200 & 7.0595 & 13．0016 & 0.1418 & 54 \\
\hline 35 & ¢ 8.1002 & \(0.010=\) & 69JiSTRA & 7，07008 & D． 00.14 & 0.1014 & 5 \\
\hline 45 & 19日，89こ6 & 0.0092 & 124\％， \(5=50\) & 7.2050 & 13．0007 & Q． 1407 & 45 \\
\hline 45 & ふ6ず 4 プワ & 9．90207 & 2500，36 & \(7.1=0 \pi\) & 0． 000604 & D． 1493 & 45 \\
\hline E） & 700；こごく1 & 0．b014 & 4994，523！ & 7．1572 & 0． 0.002 & 0.1410 & 50 \\
\hline 55 & 1245． 25761 & 8.0064 & 962こ．1－7 & 7，1376 & A，0001 & 0.1401 & E\％ \\
\hline 46 & \(2595.920 \pi\) & 0.0004 & 18505.1404 & 7.1401 & \(4 \times 0001\) & 0.1401 & 80 \\
\hline 85 & 4996． 2215 & \(0.00{ }^{0.05}\) & & \(7-1414\) & \(*\) & 0.1400 & ¢5t \\
\hline 70 & ¢ごらざ，64971 & 0.00091 & & 7.1421 & ＊－ & 0.3409 & 76 \\
\hline
\end{tabular}
＊amaller than ，0001

\section*{Appendix A}

Table A15．Compourd Interest Mulcipliers，童 \(15 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(=\)} & \multicolumn{2}{|c|}{STNELE Sum} & \multicolumn{5}{|c|}{AENHYAL SERIES} \\
\hline & Fstrure yElue & \[
\begin{aligned}
& \text { Present } \\
& \text { Valua }
\end{aligned}
\] & Future value & Fresent Value & 5ink： 1 ng Fund & Capitel Recovery & 7 \\
\hline 1 & \[
1.1 \frac{1}{5} 9 y^{3}
\] & \[
0.9676
\] & \[
3.0 \frac{1}{2} 106
\] & \[
9.8626
\] & \[
1.0000
\] & \[
1.2 \stackrel{\hbar}{506}
\] & 1 \\
\hline 2 & 1．3－255 & 9．7581 & 2． 2500 & 3． 3257 & 6，4651 & C，64＊ & 2 \\
\hline 7 & 1．5209 & 0.6575 & 2．4725 & 2.3935 & 0． \(286 \%\) & Q．4380 & \\
\hline 9 & 1.7900 & 0.5718 & 4， 5934 & 2． 8550 & 0.2065 & 9．559， & ＋ \\
\hline 5 & － 110114 & 12．4973 & 6． 7434 & 2． 5532 & 0.1483 & 0.2953 & 5 \\
\hline \(\stackrel{5}{6}\) & ごこ1ご & 0．4323 & 8.7507 & 2．7945 & Q． 1142 & 9． 2642 & \(t\) \\
\hline ？ & 2． 6600 & 0.3757 & 11．1066日 & 4． 1504 & 0.0904 & 9.2404 & \(\overline{7}\) \\
\hline 日 & 7．0590 & 0.3249 & 15.7268 & 4.4875 & 0.0729 & 0.2299 & 9 \\
\hline 9 & 5.5179 & a． 2843 & 16，7855 & 4．7716 & 0.0996 & 0.2996 & 9 \\
\hline 10 & 4.0456 & 0.3472 & 20． 1137 & 5．9188 & 0．04\％ & 0.1997 & 10 \\
\hline 11 & 4.4524 & 0.7147 & 24.3475 & 5.2537 & 0．0411 & 0.1911 & 11 \\
\hline 12 & \(\cdots 350 \mathrm{~L}\) & 0.1867 & 29.0017 & 5.4204 & 9．0．345 & 0.2845 & 15 \\
\hline 15 & －． 2528 & 0.1625 & 34． 3519 & 5． 5831 & 0.0291 & 0.1751 & 15 \\
\hline 13 & 7.0757 & （9．1412 & 40.5047 & 5.7245 & 0．0247 & 0.1747 & 14 \\
\hline 15 & 日．1371 & \(0.17 \% 9\) & 47.5804 & 5.9474 & 0.0210 & 0.1712 & 15 \\
\hline 16 & 9.3576 & 0.1069 & 55.7375 & 5.9542 & 0．12179 & Q． 1679 & 16 \\
\hline 17 & 10.7017 & 0.12979 & 65.0731 & 6.12472 & 0.12154 & 0.1654 & 17 \\
\hline 18 & 27.2755 & 13.0808 & 75． 2364 & t．1280 & Q．016\％ & 19．1555 & 19 \\
\hline 19 & 14．3519 & \(0.1270=\) & 98．2118 & \＆．1982 & 0.0215 & 19.7612 & 19 \\
\hline 20 & 16． 56.65 & Q．0．11 & IDE，4．436 & d． 2593 & 0.0048 & 0．1598 & 20 \\
\hline 21 & 15，8こ15 & \(0.05 \div 1\) & \(11 \mathrm{~B}, \mathrm{a101}\) & 6． 5173 & 0.0084 & 0.1584 & 21 \\
\hline 32 & 21.6447 & 0．0462 & さこ7．6516 & b． 3597 & Q．9192t & 0．157\％ & 32 \\
\hline 25 & 24．6915 & 0.10402 & 159．2764 & 6.3988 & 0.0006 & 0.156 & 23 \\
\hline 24 & 28．6252 & 9.0547 & 184.1679 & E．4．355 & 0.0654 & 0.1554 & 24 \\
\hline 25 & 32.7170 & 0.10504 & 212.7930 & b．4541 & 0.00947 & a． 25.47 & 25 \\
\hline 35 & 37．9563 & 1）， 9244 & 245.7120 & 6． 4906 & 15.9041 & 1） 1541 & － \\
\hline 27 & 40，55\％ & 15，0230 & 293．56日E & d． 5135 & D．065s & 0．1535 & 27 \\
\hline 2日 & \％ 5.0056 & 1），0200 & 32rid241 & 6． 33.35 & 0.00251 & \(0,15 \sim 1\) & 29 \\
\hline 79 & 57.5755 & Q． 0174 & 577．1697 & b． 5509 & 0.0027 & Q．15ニ7 & 29 \\
\hline 30 & S6．211日 & 9，0151 & 424，7453 & S． 5660 & 0.002 & 0，1523 & 30 \\
\hline \(\geqslant 1\) & 76.14 年 & 0.0135 & 500．9570 & 3． 5791 & \(1 i_{4} 0030\) & 13． 1520 & 31 \\
\hline 52 & 97．5651 & 0.0114 & 577.1005 & 6．5905 & 0.0017 & a． 1517 & E3 \\
\hline こ & 100以－675 & 0.0099 & 404． 60.55 & 6． 2005 & Q． 1015 & 10.1515 & 5 \\
\hline 34 & 115.3048 & 0.0085 & 765.3655 & 6． 2072 & 12．001 & 6．151F & 54 \\
\hline －s & 150．1755 & 13，0078 & 981． 1701 & E． \(\mathrm{B}_{1}=6\) & 0.0021 & 9，1511 & －2 \\
\hline 40 & & 19.0037 & 1779．0990 & 5.3416 & 0.10006 & 0.1506 & 4.1 \\
\hline 45 & \＄58．7695 & 0.0019 & －585．12日0 & 6． 6.545 & 6.0005 & Q． 1505 & 45 \\
\hline 50 & & Q．0009 & 7217.7170 & b．¢avs & 0．0901 & \(0 \cdot 1501\) & SQ \\
\hline 35 & 2179.6230 & 0.0405 & 14524．1500 & 5． 6536 & 0.00101 & 0．1501 & 55 \\
\hline 30 & 45133．9990 & 13.0002 & 29219.9900 & 4． 4 ¢5： & ＊ & 9.1509 & 30 \\
\hline 35 & 日日27．7日70 & 0.0001 & 3日77日．58\％9 & 2． 6659 & ＊ & \(0 \cdot 1 \pm 00\) & 65 \\
\hline 70 & 17755．7200 & 0.9001 & 11827 L －\({ }^{0}\) & 6.6663 & ＊ & 0.1500 & 70 \\
\hline
\end{tabular}
＊smaller than ； 0001

APGEMDIK 4
Table flo．Compound Interest Toltiplaes， \(\mathrm{E}=16 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{II} & \multicolumn{2}{|c|}{EJUELS SUG} & \multicolumn{4}{|c|}{ANNUAL SEFIES} & \multirow[b]{2}{*}{Ir} \\
\hline & Furure yatue & Fresisent vallia & Future Value & Fresent Value & Sinling Fund & Cap1tal Resorsply & \\
\hline 1 & \[
\frac{1}{2.150 \%}
\] & \[
0+86 \geq 1
\] & \[
1.0000
\] & \[
0.8621
\] & \[
\frac{3}{1.0000}
\] & \[
1+1 \leqslant 00
\] & 1 \\
\hline 2 & 1． 2.356 & 0． 743 C & こ． 1600 & 1． 6052 & 0.4630 & \(0.6 \leq 50\) & 2 \\
\hline \(=\) & 1.5699 & 19．6405 & 5．5056 & 2．2459 & 0.2953 & \(0.943 \%\) & 2 \\
\hline 4 & C．910 & 0．5523 & 5．10685 & 2．7982 & 0.1974 & 0， 3574 & 4 \\
\hline 5 & \(\pm .140 \%\) & 0.4751 & 6， 6771 & 3．2743 & 0.1454 & D． 3054 & 5 \\
\hline 6 & 2.4304 & 9.4193 & 日． 9775 & 3.4847 & 0.1114 & 0.3714 & 6 \\
\hline 7 & ごセごっ & 13.053 & 11．41こ9 & 4.0386 & 9．0076 & 0.2476 & 7 \\
\hline \(\theta\) & 2.2794 & 0.3050 & 14.2401 & 4．3436 & 0.0763 & 0.2302 & 8 \\
\hline 9 & 3.8020 & 0.2630 & 17.5185 & 4.6065 & 0.0571 & 0.2171 & 9 \\
\hline 10 & 4.4114 & 12． 2267 & 21.3215 & 4，8532 & 0.0469 & 0.2069 & 10 \\
\hline 11 & S．1176 & 19.1954 & 25.7329 & 5.0296 & 0.0389 & 0.1789 & 12 \\
\hline 37 & 5.7860 & 0.1685 & 30.8502 & 5．1971 & 0.0324 & 0．1924 & 12 \\
\hline 12 & & 10.1452 & 36，7862 & 5.3425 & 0.0272 & 0．1875 & 12 \\
\hline 1.4 & 7.9875 & 0.1237 & 45.6720 & 5.4675 & 0.0229 & 0.1 209 & 14 \\
\hline 15 & 9．2̇55 & 0.1079 & 51． 1595 & 5．3755 & 0.0198 & 9，1794 & 15 \\
\hline 16 & 10．74日0 & 0.0930 & 60.9250 & 5.6685 & 0． 0164 & 0． 1764 & 10 \\
\hline 17 & 72.4377 & ¢．HJU2 & 71.6730 & 5．74a7 & 0.0140 & 0.1740 & 17 \\
\hline 18 & \(14.46=5\) & 9．0691 & \＃4．1407 & 5.8170 & 0，0115 & 0.1719 & 18 \\
\hline 19 & 16.7765 & 0.050 d & 98． 90.52 & 5．日775 & 0.0105 & 6： 1701 & 19 \\
\hline 20 & 19，4607 & 2.0514 & 115.5797 & 9，9288 & D．09a7 & d． 1287 & 20 \\
\hline 21 & 22.5745 & \(0.044 \%\) & 134．8404 & \(5.97 \% 1\) & 0.6974 & 0.1274 & 21 \\
\hline \(\cdots\) & こ．．18く号 & 0,0593 & 157.4148 & 6.0113 & 13． 0.964 & 0.1664 & ご \\
\hline 25 & & Q，0ミニ7 & 193．6012 & 6．01442 & 6． \(0_{\text {cose }}\) & d．1－54 & 27 \\
\hline 24 & 二゙ッニこ54 & 6.0254 & 215－9774 & d． 45720 & 0.19447 & 0.1647 & 34 \\
\hline 25 & 40．B742 & 0.0245 & 249.2128 & 3．0971 & （0．004） & 0.1640 & 25 \\
\hline 26 & 47．4142 & Q，it211 & 290.7128 & －． 11 an & 0.80024 & c．1324 & \(2{ }^{1}\) \\
\hline 27 & 55．0005 & 9．19］日 & 537.5020 & A． 1364 & 0.0030 & 6． \(16=0\) & 37 \\
\hline 29 & 63．8004 & 0.0157 & 392.5023 & b． 1920 & b， 6005 & 0.1525 & 29 \\
\hline 29 & 74.0064 & D． 3125 & 456.3927 & b，165 & \(0.002 \%\) & 6．1＝ 22 & －9 \\
\hline 20 & 95．8479 & Q．9126 & S30．3111 & b． 1772 & 0.0018 & 0.1617 & 30 \\
\hline J1 & 90．5EET & 13．0100 & 616.1608 & 6． 1872 & 9． 9015 & 安，2b1t & 教 \\
\hline ziz & 115.5195 & 6， 01027 & 715.7455 & e． 1959 & 0.0014 & 0.1614 & ご \\
\hline 22 & & 9.0075 & 831．2060 & 6． 3034 & 0．0012 & 8＋1612 & 3 \\
\hline 34 & 155.44 .20 & 9.9004 & 765．3886 & \＆． 2078 & 0.0010 & 0.1619 & 34 \\
\hline 35 & 130．7128 & 0.0055 & 1129.71180 & B． 2150 & 0．0ipora & 2）． 2609 & 6 \\
\hline 40 & 779． 720 & 0．015ze & 2300.7545 & 5.3505 & 9.09414 & 0.1504 & （40） \\
\hline 45 & 795．4424 & \(0,001=\) & 4965．2659 & 4．2421 & 0.00002 & 9， 2002 & 45 \\
\hline 50 & 1670， 01010 & cr．000e & 10455.8300 & －． 24 ES & D． 0001 & 2． 13012 & S1， \\
\hline 55 & 35，69，041\％ & 6，500 & 21975.2600 & b． 2482 & ＊ & 0.1800 & 55 \\
\hline 6\％ & 7こ70．1500 & 0.0001 & 4615\％．40ric & b． 2492 & \(=\) & 1）． 1600 & 60 \\
\hline ¢S & 1E47\％， 5000 & 9，potel & \(9874 \% .1209\) & d． \(249 \%\) & 年 & 6，1 2000 & － 5 \\
\hline 70 & コニ512． \(1760 \%\) & ＊ & 295290.35 & c， 2495 & \(\pm\) & 0.1600 & 70 \\
\hline
\end{tabular}

\footnotetext{
＊smaller than ．0001
}

Table 417．Compound Incarest Nulicipllers \(+=17 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{71} & \multicolumn{2}{|r|}{SINGLE SUM} & \multicolumn{4}{|c|}{GNNLFAL SERIES} & \multirow[b]{2}{*}{II} \\
\hline & Foture Valua & Fresent
Value & Future Yalue & Fresent
Value & \[
\begin{gathered}
\text { Sinking } \\
\text { Find }
\end{gathered}
\] & Capital
Fecavery & \\
\hline 1 & \[
\frac{1}{1.1700}
\] & \[
\text { c. } 3.2547
\] & 1．06092 & \[
0.8547
\] & \(\frac{1.8000}{3}\) & \[
1.1760
\] & 1 \\
\hline \(\stackrel{3}{3}\) & 1． 5.589 & 1，T20s & 2.1700 & 1.5852 & 6，4608 & & \(=\) \\
\hline z & 1．6016 & 0.6245 & 5.5239 & 3.2096 & 0．2856 & 12．4586 & a \\
\hline 4 & 1． 275 ¢ \({ }^{\text {a }}\) & 0．5377 & 5． 1405 & 2． 7452 & 0.1945 & 0.3045 & 4 \\
\hline 5 & 2．1924 & 1）．4361 & 7.0149 & 3． 1995 & 0.1426 & 9， \(21 \geqslant 6\) & 5 \\
\hline \(s\) & －3，505 & 0． 2998 & 7． 2061 & 3，5892 & 0.1086 & 0.2736 & \(\stackrel{\rightharpoonup}{2}\) \\
\hline 7 & \％，0012 & 1． 2322 & 11．7720 & 5．9234 & 0.0845 & \(0.254 \%\) & 7 \\
\hline E & 3，5115 & 0.3848 & 14．7730 & 4.3072 & 0.0477 & 0.2277 & 5 \\
\hline 9 & 4． 2084 & 0.2434 & 18．2日4\％ & 4．4596 & 0.0547 & 0.2347 & 9 \\
\hline 15 & 4．8063 & 0．2090 & 22，3931 & 4． 2586 & 0.0447 & 0.2147 & 10 \\
\hline 12 & \％．6240 & 0.1779 & 27．1999 & 4． 5354 & 0.0350 & 0.2048 & 11 \\
\hline 12 & 4． 5808 & 0，1520 & 22．8235 & 4.9854 & 0.0305 & 0.2005 & 12 \\
\hline 13 & 7.6997 & 0．1299 & 39．4540 & S．1103 & 0.0254 & Q． 1754 & 12 \\
\hline 14 & 9.9075 & 0.1110 & 47.1027 & 5．2293 & 0,0212 & 9．1912 & 14 \\
\hline 15 & 10.5387 & 0.0949 & 56.1101 & 5，3242 & 0.0179 & a．1日7日 & 15 \\
\hline 16 & 12，3505 & 9，0eli & 66.8488 & 5．405： & 0.0150 & 0.1950 & 16 \\
\hline 17 & 14．4285 & 10，9693 & 76．9791 & S． 4746 & 0.0127 & 0.1827 & 17 \\
\hline 19 & 15.8789 & 0.0572 & 92，405 & 5．5359 & 0.0107 & 0.1907 & 13 \\
\hline 19 & 19.7484 & 0.0508 & 114.2843 & 5.5845 & 0.0091 & 0． 0.1791 & 19 \\
\hline 20 & 25． 2050 & 0.045 & 130.0329 & 5.6279 & 0．0077 & 0.3777 & 20 \\
\hline 21 & 27.0325 & 0.0070 & 153,1384 & 5．6849 & 10．0005 & 0.1765 & 21 \\
\hline 23 & 31.6 どロ & 0.0516 & 120．1729 & 5，6564 & 19，005 \({ }^{\text {a }}\) & 0.1756 & 22 \\
\hline 23 & 57．0062 & 0.0279 & 211.3012 & 5.7234 & 0，0047 & 0.1747 & 2 \\
\hline 24 & 45.2975 & 0，प0： & 208．8074 & 5.7465 & D，01940 & 0.1743 & 24 \\
\hline 25 & 50，0578 & Q．0197 & 292，1047 & 5．7862 & 0．0033 & 0.175 .4 & 25 \\
\hline 26 & 59．26\％ & 0.0169 & 542．7625 & 5.7831 & 0.9039 & 0.1729 & 35 \\
\hline 27 & 69．2455 & 0， 01214 & 402.0321 & 5.7975 & 0.0025 & 0． 1725 & 27 \\
\hline 25 & 91.1342 & 6．03\％3 & 472.3775 & 5． 10097 & 0.0021 & c． 1721 & 29 \\
\hline 27 & 94．9270 & 0.0105 & 542．5117 & 5.8204 & 0.0019 & 0.1718 & 29 \\
\hline 30 & 121.0076 & 13.9096 & 697，4396 & 5.9294 & 0，0015 & 0．1715 & 30 \\
\hline 31 & 129．0455 & 0.0077 & 756.5032 & 5.8371 & 0.0012 & 0．1712 & 31 \\
\hline \(z \sim\) & 152.0335 & 0.9006 & 898． 4498 & 5．9437 & 0.0011 & 0.2712 & 32 \\
\hline 53 & 177．8625 & 0.0036 & 1040．4850 & 5.6493 & Q．0010 & 0.7710 & 55 \\
\hline 54 & 208.1255 & 9．004E & 1216． 3 ato & 5.8541 & 9．0pue & 0.170 E & 34 \\
\hline －5 & 24， 5035 & 0.0041 & 1424． 4900 & 5．8562 & 0.0007 & 0.1707 & －5 \\
\hline 40 & 525．9663 & 9，0017 & 3154.5190 & 5．071 & i）， 200 cs & 0.2705 & 40 \\
\hline 45 & 1179．4780 & 0.0009 & bat9． 2590 & 5.877 & Q． 60001 & 12.1701 & 45 \\
\hline 50 & 2566－2130 & 0.0094 & 15099－4900 & 3.8901 & 0.15002 & 9， 1781 & 50 \\
\hline 55 & 5625.2889 & 0.0002 & 35089，7200 & 5.9512 & ＊ & 0，1709 & 55 \\
\hline 60 & 12355.8490 & 0,0031 & 72554，7400 & 5.8919 & ＊ & ＋2． 1790 & bob \\
\hline －5 & 27044．5706 & ＊ & 159079．90 & 5.8621 & \(*\) & 0.1700 & 65 \\
\hline 70 & 59293．8500 & ＊ & 348981，50 & 5．8323 & ＊ & 0.1700 & 70 \\
\hline
\end{tabular}

\footnotetext{
3 staallar chan． 0001
}

APPENDIX A
Table A18．Compound Ineereat Hulcipliers； \(1=180\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{［} & \multicolumn{2}{|c|}{SIMGLE SLM} & \multicolumn{5}{|c|}{GNHUAL SEFTES} \\
\hline & Future Volue & Fresent Value & Futura Value & Présent value & 51のk．1ng Fund & Capical Recruafy & I \\
\hline 1 & \[
1.1800
\] & \[
\frac{7}{3.6475}
\] & \[
1.0040
\] & \[
8.8475
\] & \[
1.0969
\] & \[
1+1800
\] & 1 \\
\hline \(z\) & 1．3924 & 9．7132 & 2,1300 & 1．5c5s & 0.4317 & 0，603 & \(=\) \\
\hline 3 & 1．648．9） & 19．E9E6 & 3.5724 & 13．1743 & \(0,279{ }^{\circ}\) & 0.4597 & 3 \\
\hline 4 & 1．7350 & 0.513 l & 5.2154 & 2． 6991 & 0.1517 & 0． 3.717 & 4 \\
\hline 5 & 2． 2878 & 0，4371 & 7－1542 & 3．1272 & 0.1598 & 0.3158 & 5 \\
\hline E & 2．\({ }^{\text {－}}\) & 0.3764 & 9.4420 & 3． 4976 & प． 1035 & 9， 3 930 & 6 \\
\hline 7 & Z．1955 & 12．3129 & 12． 1415 & 3．8115 & 0.0824 & 0.2624 & 7 \\
\hline a & 3．7509 & 0.2060 & 15． 5 & 4.0776 & 0.0653 & 0． 2452 & 8 \\
\hline 9 & 4． 4.355 & 0.2355 & 17．085 & 4.30 .36 & 0.0524 & 0.2324 & 9 \\
\hline 18 & 5， 253 & 0.1711 & 23.5217 & 4.4941 & 19．0435 & 0.2255 & 10 \\
\hline \(1 \pm\) & 6．1759 & O．1619 & 39．755 & 4.6560 & 0．034a & 0.2148 & 11 \\
\hline 12 & 7．2376 & \(0.2 こ ク ニ\) & 34．9311 & 4.7932 & 4.0285 & 0． 2096 & 12 \\
\hline 15 & 6． 5894 & \(0.115 \%\) & 42.2187 & 4． 9095 & 0.0237 & 0.2057 & 13 \\
\hline 12 & 10，1477 & 0.0985 & 50．Stal & 5．0081 & 6.0197 & 4.1997 & 14 \\
\hline 15 & \(11.77=0\) & 0.0855 & 60．965 & 5．8014 & Q，Q1ea & Q． 1764 & 15 \\
\hline 16 & 14．1270 & 10．18709 & 72，9391 & S． 1024 & Q，01 77 & 0.1737 & is \\
\hline 17 & \(16.67 こ ゙\) & 10，10690 & 日7．dEEk & 5． 22 こ5 & 0.6115 & 0.1515 & 17 \\
\hline 18 & 17,675 & 9.6518 & 103.7404 & 5． 2752 & Q．cripa & 0.1856 & 19 \\
\hline 19 & ご．こ145 & 0.0431 & 1こら，4157 & 5， 2162 & 0.10091 & 0.1881 & 19 \\
\hline 20 & ご，ち¢ご & 9，9365 & 146．A2E1 & 5．5527 & 1）．0058 & 9．1日6E & － \\
\hline \(=1\) & ご，3¢0． & 0，0， 0.19 & 174．0212 & 5．3057 & 0.0095 & 0.1057 & \(\underline{1}\) \\
\hline 72 & こa．1421 & 0.052 & 206．3456 & 5．4097 & 0.0048 & 9，184日 & ご \\
\hline 2\％ & 48.10077 & 0．0ごの & 144． \(4 \mathrm{e7}\) & 5，4321 & 0.00441 & 0． 2841 & E\％ \\
\hline \(\pm 4\) & 5w． 5091 & （0．61E日 & 289．4947 & 5.4507 & 0，940285 & 0.18 .5 & 24 \\
\hline \(\square 5\) & 62． 6667 & 9．0．0160 & 347．60－9 & 5.4649 & 0.0929 & \(0.18 \%^{\circ}\) & 25 \\
\hline 36 & 7\％．9747 & 0.10138 & 405．2727 & 5．42194 & 0.0025 & 0.1525 & \(\cdots\) \\
\hline 27 & 197．2590 & 0.0125 & 479.2219 & 5.4917 & 0． 12021 & Q．1日21 & 37 \\
\hline I8 & 102.7667 & 7． 0.097 & 565.4817 & 5.5015 & 0.0018 & ci．1913 & こ5 \\
\hline 29 & 121,5067 & \(0.000=\) & 667，44es & S．509日 & 0.0015 & 0.1815 & 39 \\
\hline 59 & 143． 37.19 & 9．4070 & 796.7493 & 5． 21.6 & 9．0033 & \(0.181=\) & \(\pm 0\) \\
\hline 31 & 169.1776 & 4． 0.0057 & 954．2202 & 5．5ラミ7 & 0.0011 & 0．1011 & 31 \\
\hline 32 & 159－3＝0 \({ }^{\text {a }}\) & 18．0056 & 1123．4990 & 5．5277 & D． 060 \％ & 0.2809 & \(\pi\) \\
\hline 35 & 205.5630 & 12．0042 & 1305，1239 & 2． 5320 & 0.0008 & 0．180日 & 35 \\
\hline 5i4 & 277－984 & 1）． 0005 & 182日． 6910 & 5． 5056 & Q． 01000 & 0.1856 & 24 \\
\hline \(-5\) & －27．9979 & 0.0050 & 181日－65S\％ & 5． 5.886 & C． 4000 s & Q． 2 日05 & \(=5\) \\
\hline 40 & －50．3500 & 0.6015 & 4163，玉220 & 5．5437 & 8．500 & 12． 2902 & 481 \\
\hline 45 & 1710．d9819 & \(4+0006\) & 9551，5－7PQ & 5．5523 & 0.6401 & 9，1601 & 45 \\
\hline 511 & －9さ下， 6890 & 14． 2000 & 2181\％．156\％ & 5.5351 & ＊ & 0.1800 & \\
\hline 5 & 日984，9b心n & 0.0001 & 49710.5360 & S． 5549 & ＊ & D． 1860 & 5 \\
\hline 64 & \[
20555.21013
\] & ＊ & 114150.120 & 5.5533 & \(*\) & 10，1890 & 60 \\
\hline 65 & 47025.3500 & ＊ & 361246,40 & 5.5554 & ＊ & 0.1800 & 65 \\
\hline 70 & 107582，600 & ＊ & 597675．60 & 5.3355 & ＊－ & 0.1802 & 70 \\
\hline
\end{tabular}

\footnotetext{
＊smaller tajar ．0001
}

Interzat Mulivaifgr．Terminating．Pariadic Seriea．
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{ta} & & \multicolumn{2}{|r|}{\(\underline{2}=3 \pm\)} & \multicolumn{2}{|r|}{\(i=\mathrm{er}^{2}\)} & \multicolumn{2}{|r|}{\(1=12 \%\)} \\
\hline & & Futura & Frasent & Future & Presant & Future & Prasent \\
\hline & \(\star\) & \[
\begin{aligned}
& \text { Yalue } \\
& \text { la }
\end{aligned}
\] & \[
\begin{array}{ll}
\mathrm{Val}_{22}
\end{array}
\] & value ib & Value
\[
2 b
\] & Valble 15 & yalue Ze \\
\hline 2 & \(z\) & 2.6816 & 1，7794 & 2．1664 & \(1+5724\) & 7． 2584 & 1． 4 2－27 \\
\hline 2 & 3 & 2．1249 & \(4.679 \%\) & 2． 2597 & 1．4240 & 2.4047 & 2，21日 9 \\
\hline \％ & 4 & \(2.159 \%\) & 1．Ses5 & 2， 3605 & 1． 2755 & 2．5753 & 1． 31374 \\
\hline \(\ddot{z}\) & 5 & 2.2167 & 1， 7975 & 2．4675 & 1．1438 & 2.763 & 0．日a¢4 \\
\hline 2 & 10 & 2.4802 & 1．1220 & 5． 1589 & 0.6775 & 4． 10.58 & 0.4256 \\
\hline 2 & 20 & －1F11 & 0． 6047 & 5.6610 & 0.2606 & 10.4463 & 9． 1144 \\
\hline \(\underline{\square}\) & 35 & 3.6658 & 9． 5154 & 7.8485 & 0，1673 & 18.0061 & dioces \\
\hline 3 & 30 & 4． 2454 & 0．4034 & （1，19627 & \(0.109 \%\) & 30．9599 & 13．057\％ \\
\hline 2 & 55 & 4．94iJ & 3， 2176 & 15，7854 & 0.0723 & \(55.799 \%\) & 9， 0192 \\
\hline 2 & 40 & 5.3010 & 0．ड517 & 22．7245 & 0，0481 & 94．0510 & （6，0169 \\
\hline 3 & 2 & 3.2517 & 2．S697 & E．SISq & 2．7225 & \(E .9279\) & 1.7595 \\
\hline 5 & 2 & －2702 & \(2.381 \%\) & 3． 9466 & 1.720 .5 & 4．T788 & 1.5790 \\
\hline 2 & 4 & －．5084 & 2． 2101 & 4， 2114 & 1.8724 & 5．0494 & 1.2768 \\
\hline 3 & 5 & FL6909 & 2．0528 & 4.6293 & 1．4590 & 5． 5685 & 2.9781 \\
\hline \(=\) & 10 & 4.6714 & 1．4402 & 7.8199 & 9.7771 & 1ら．7521 & \(0.457 \%\) \\
\hline 3 & 20 & 7.7921 & 93．7翟7 & 27． 2855 & 0.2705 & 103.6973 & 0.1155 \\
\hline 3 & 35 & 10.775 & 0.54 Ea & 54.7502 & 0.1705 & 307，9022 & 0.15023 \\
\hline 3 & 20 & 14．76．20 & 13.4327 & 112． 5109 & D． 1192 & 929．5588 & 0．0345 \\
\hline 5 & こ5 & 20.5177 & D． 3557 & 254．2923 & 9．0720 & 2941.5990 & 12，015 \\
\hline \(\sim\) & 40 & 工6．B50 \({ }^{\text {a }}\) & 6， 2007 & 474．6806 & 0.0482 & 9752．550 & 9．0100 \\
\hline 4. & 2 & 第，5159 & 8． 3009 & 5．11．38 & こ．フ¢2日 & 5．8017 & 2.5452 \\
\hline 4 & 2 & A． 1125 & 3． 1065 & 5.8456 & 2.3514 & 7－1518 & 1． \(8=57\) \\
\hline 4 & 4 & 5．1395 & 2． 74.40 & 8．7296 & 1．9645 & 9．7455 & 1．4572 \\
\hline 4 & 5 & 5.4978 & 2evor & 7，9094 & 1．6736 & 11.2419 & 1．1759 \\
\hline 4 & 10 & 7.7149 & 1，t485 & 17．6925 & 0.8231 & 4．3．75こ1 & 15．4679 \\
\hline 4 & 20 & \％E， 5117 & 12， BO 31 & 128.6429 & 9．27ア6 & 11101.0940 & Q． 1156 \\
\hline 4 & 25 & 27.7177 & 0． 5164 & 575．9555 & 0,1709 & 5220．0590 & 0,0625 \\
\hline 4 & 30 & 49，E82－ & 0．4417 & 1131.2380 & 0.1103 & 27620，4500 & 0.0 .345 \\
\hline 4 & 35 & 81．9545 & \(0 . \sim 580\) & 3406,5749 & 0.0725 & 1．30935． 4500 & 13.0195 \\
\hline 4 & 40 & 159.5150 & 0，362s & 19747．7100 & O．1340\％ & 814432．3000 & 9，0109 \\
\hline 5 & 3 & 5.985 & 5.9757 & b． 9647 & \(3.7=60\) & E． 2777 & 2， \(365=\) \\
\hline 5 & 3 & 6． 4145 & 5． 5619 & 日． 303 B & 2．6Jta & 14．13478 & 2．01E4 \\
\hline 5 & 4 & 7．0124 & 3． 29004 & 10，1555 & 2.1799 & 15.975 & 2.5424 \\
\hline \(\pm\) & 5 & 7.08009 & 2．894．3 & 12．7619 & 1.9296 & 20.9880 & 1．2346 \\
\hline 5 & 10 & 12．7158 & 1．789\％ & \(39+6677\) & 0.6 里43 & 536.7351 & 1．47－2 \\
\hline 5 & 201 & 41.5615 & 0．82j？ & 690， 5988 & 0.2730 & & 0.1157 \\
\hline 5 & 25 & 回它－ニッ5 & 0.5989 & 2575， 7840 & 0.1710 & 88742．3200 & 0.0525 \\
\hline 5 & 30 & 159.5445 & 13.4445 & 11594 － 2000 & 0.1102 & 953500．b0100 & 0.00 .45 \\
\hline 5 & 55 & 524－4こ90 & 0.3391 & \(51255.580 \%\) & 0.0725 & & 0.0195 \\
\hline 5 & 40 & 670.8041 & 9，2630 & 252440.20000 & 19.0483 & 75783750.50 & 6． 6.10 y \\
\hline
\end{tabular}

Interest Muttipligrs．Perpetual Perladic series．
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\pi\) & 5 \(24 \%\) & \(\mathrm{i}=6 \mathrm{t}\) & \(i=8 \mathrm{C}\) & \(\mathrm{i}=19 \mathrm{~m}\) & \(i=12 \%\) & \(i=14 \%\) & \(1=16 \%\) & \(n\) \\
\hline \(=\) & 12．25491 & 日．9906\％ & 6．949\％ & 4．73170 & 2． 9.51082 & 2． 6.577 B & 3． 19852 & 2 \\
\hline \(\checkmark\) & 8． 20977 & 5，20517 & こn 5 5042 & E．02115 & 2.75959 & 2．07665 & 1．792日s & 3 \\
\hline 4 & 5.38725 & 5．Bpaco & こ． 7 フ401 & 2．15471 & 1．74．362 & 1．45146 & 1，25゙u57 & 4 \\
\hline 5 & & 2．956al & ล．12070 & 1．853797 & 1.51275 & 1． 0 9ens 6 & 6．909EI & 5 \\
\hline \(\frac{1}{2}\) & 2．78905 & －．－9\％\％a & 1，70354 & 1．27607 & 1，02683 & 0． 0 自684 & Q，67619 & 6 \\
\hline 7 & 5．20524 & 1，9exsf & 1，49190 & 1．05495 & Q．855\％日 & 0.66506 & 9，54758 & 7 \\
\hline E & 2．715こら & 1.58372 & 1．1751日 & 5， 87444 & 0.67752 & 0.5 － 977 & 0.451090 & E \\
\hline ¢ & 2．0625z & 1．450．7 & i． 00109 & b．75641 & Q，56359 & 0．44406 & 0.55677 & 8 \\
\hline 78 & 2．98ここを & 1． 36447 & 9． 3 3297 & Q：b2743 & 0，474日7 & 0.36938 & Q．2721こ & 10 \\
\hline 11 & 4．日g＝7， & 1.1175 & 0.750 .95 & 6． 5.593 & 0.40346 & 9，3ive\％ & 9，24295 & 11 \\
\hline 12 & 1．66－381 & 0.78795 & 0．65E49 & 0.46765 & 0.30531 & 0.36192 & 0.20259 & 12 \\
\hline \(\ddagger 3\) & 1．30－59 & 9．日a゙3 7 & 9． 56152 & 0，40779 & 0.37731 & 0.22260 & 0.16990 & 13 \\
\hline 14 & 1．－tan 7 & 0.7730 E & 6，51621 & 0.35748 & 0.25726 & 12.19097 & 0． 14311 & 14 \\
\hline 15 & \＄． 24850 & 8.71605 & 0.46057 & 0.31474 & 9， 212354 & 0．16292 & 0.12093 & 15 \\
\hline 16 & 1． 1455 & 6， 64920 & 0． 412 L & 0.27817 & 0．19492 & 19．14012 & 0.10259 & 16 \\
\hline 17 & 2.05470 & 0.59075 & 9.37057 & 0.24664 & 0.17047 & 0.12082 & 0．0872d & 17 \\
\hline 18 & 0 ，72．4日 & 9，5302g & 0.35578 & d． 21930 & D． 14949 & 9.10449 & 0．074こ8 & 1 E \\
\hline 17 & Q．705．42 & 61.49368 & 10．30160 & 0．17547 & 0，13173 & 9，07045 & 0．19bごS & 17 \\
\hline \(\pm 6\) & 19．E5054 & i）． \(4=308\) & 0．27315 & a． 17460 & －10．11566 & 0，07847 & Q． 05417 & 29 \\
\hline 82 & \(0.75=04\) & 0.41674 & 0.34790 & 0． 515624 & 10． 102000 & 9＋0b日13 & 9， 9,4635 & 21 \\
\hline 22 & Q． \(72=977\) & 0， 38489 & 0．2－549 & 0． 140205 & 0.09009 & 0，05931 & 9）． 0.5670 & ご \\
\hline ご & の，おきごち & 19， 354 乐 4 & 0.20528 & 0.12572 & 0.07967 & 0.05165 & 0．0546， & \\
\hline 24 & 19103967 & べ，こここの日 & 0.18722 & 0.11300 & Q． 27050 & 6．04502 & 10．62921 & 24 \\
\hline 25 & \(0^{+1}+30050\) & 13，00678 & 0.17098 & a． 10108 & 0.98250 & 0.05927 & 0.02568 & 55 \\
\hline 26 & 6,58417 & 1）－25174 & \(0.150 \pi 4\) & 0.90157 & 0.05543 & 0.05429 & 0.02150 & －6 \\
\hline 27 & 9，50， 0 & 0．28162 & 4．14510 & 0．08259 & 0.04920 & 6． 02995 & 0． 21.85 & \(\cdots\) \\
\hline 28 & \(9.5 \mathrm{yc}=\) & & 0.15812 & Q． 07451 & 0．04370 & 0.02617 & 0.01592 & 2E \\
\hline 27 & & 12－こご込 & 9．1302\％ & 0.06720 & 0.0 .3684 & 0．822799 & 0.61570 & 二F \\
\hline 38 & 6，47575 & 0．210ez & 0.110 .34 & 0.06079 & 0.02453 & 0.02002 & 0.61179 & 30 \\
\hline 31 & a． 4215 & 0.19654 & 0.10154 & 0.05490 & 6． 013072 & 0.01752 & 0． 010104 & －1 \\
\hline \(こ 2\) & On P 97\％ & 0．1837 & 12． 199514 & 6．04972 & 0.92754 & \(0.815 \%\) & Q．019875 & 32 \\
\hline ら & 3． 77759 & 万．171\％ & 0.99565 & 0.04499 & 0.0245 .4 & 0.01543 & 10，06752 & 5 \\
\hline 3.4 & 9.35797 & 0.15907 & 0.07509 & 0.64074 & 0.021 ET & O．9517a & 9．060547 & 34 \\
\hline 35 & 6， 2584 & \(4 \cdot 14950\) & 4，197254 & Q． 2.26890 & 0.01931 & 0.21030 & Q．0nseg & 55 \\
\hline \(4{ }^{2}\) & 0． 26.408 & 0.10769 & 0,04825 & 10，0こ255 & 0．0198d & W．005－2 & 0.012265 & \(4{ }^{4}\) \\
\hline 45 & C． 30055 & 0．19783．4 & 9．0さこご & 12.01291 & 0．0661．4 & 0.00776 & C． \(0 \cdot 1526\) & 45 \\
\hline 50 & d．1e276 & 0． 0.02746 & Q，0217 & 0．00850 & 3． 0.0347 & 91， 06143 & n．00000 & 50 \\
\hline 55 & 9＋120\％日 & 0，14， ²\％\(^{\text {a }}\) & \(0.19247 \%\) & 0，00532 & 0.90147 & 9， 0,6674 & 0，bupze & 55 \\
\hline －41 & Q．L2SOE & 19．03512号 & 0.019897 & 6． 20050 & a，P2122 & 6，irsose & 6． 0 ， 0 N2 4 & 60 \\
\hline 65 & 9．09475 & 0．0ご18 & 0.001677 & 15，10520a & E，54906E5 & 0． 900929 & 0． 0 ¢，006 & 55 \\
\hline 70 & Q，9066 & \(0.017 ニ 2\) & \(8,5 \times 400\) & i， 1292127 & \(0 \times 090956\) & 0.60010 & 9． 940050 & 70 \\
\hline
\end{tabular}

\section*{Desivations of Compound Interest Formias}

Heceli the earlier notation:
\(V_{Q}\) a the presant value of a sum of money
\(\mathrm{V}_{\mathrm{b}}=\) the future value of a sum of money
1 - the intereet rate, expresged as a decimal
ni F the number of compoundiag periode
\(a=\) the amount of a uniform pertodic or anmal cost or revedue
5. - the nuber of years bempen periodic coses of revenues

\section*{Present Value of a Teruinating Annual Serfes}

In general, the procedure for calculating the present पelue of a terminathug amual serles of cagcs of revenues is to discount each payment to the present, or:
\[
\begin{equation*}
V_{0}=\frac{a}{(1+1)^{3}}+\frac{a}{(1+1)^{2}}+\frac{a}{(1+1)^{3}}+\cdots,+\frac{a}{(1+1)^{\pi-2}}+\frac{a}{(1+1)^{n}} \tag{D1}
\end{equation*}
\]

Multiply both sides of equation Di by \((1+1)\) :
\[
\begin{equation*}
y_{0}(1+i)=a+\frac{a}{(1+1)}+\frac{a}{(1+2)^{2}} *+\cdots+\frac{a}{(1+i)^{n+i}} \tag{D2}
\end{equation*}
\]

Wottite châr equations D1 and D2 fave monerous terme in camon and that if equarion DI is subtracted from squation D2 the expression will be simplified to:
\[
\begin{equation*}
V_{0}(1+1)-v_{0}=a-\frac{a}{(1+1)^{n}} \tag{D3}
\end{equation*}
\]

Simple factorlig produces:
\[
\begin{align*}
& v_{0}[(I \div 1)-1]=a\left[1-\frac{1}{(1+i)^{n 2}}\right] \\
& v_{0} 1=a\left[1-\frac{1}{(1+1)^{n}}\right] \tag{D4}
\end{align*}
\]

Dividing both sides of equatlon DA by \(\mathrm{in}^{\text {th }}\) produces
\[
\begin{equation*}
\nabla_{0}=a\left[\frac{(1+i)^{2}}{1(1+1)^{n}}-\frac{1}{1(1+1)^{n}}\right] \tag{D5}
\end{equation*}
\]

Comblring cermis produces the fomula for the preseat value of a terminating annual serles:
\[
\begin{equation*}
V=a\left[\frac{(1+i)^{\pi}-1}{i(1+1)^{\pi}}\right] \tag{176}
\end{equation*}
\]

\section*{Future VaLué of a Terminating Annual Series}

If generel, the procedure for aaleulating the Euture walue of a terminating antual series of costs or revenues is to tompound each payment to year in (except the last payment which occurs at year " \(n\) "), Nate that the first payment is peceived at the end of year 1 , so ther it is compounded for \(n-1\) years. Then, the future value of a rerminating angual geries is:
\[
\begin{equation*}
\psi_{n}=a+a(1+1)^{2}+a(1+1)^{2}+\ldots+a(1+1)^{n-1} \tag{D7}
\end{equation*}
\]

Noltiplying borh sides of equation 27 by (I + 1) produces:
\[
\begin{equation*}
\nabla_{i}(I+i)=a(1+i)+a(1+i)^{2}+\cdots+a(1+1)^{n} \tag{DB}
\end{equation*}
\]

To simplify, substract (D7) from (D8):
\[
\begin{equation*}
y_{n}=(l+1)-v_{n}=-a+a(1+1)^{n} \tag{DY}
\end{equation*}
\]

Simple factoring produces:
\[
\begin{equation*}
y_{a}[(1+1)-1]=a\left[-1+(1+1)^{n}\right) \tag{inio}
\end{equation*}
\]

Combining terms:
\[
\begin{equation*}
v_{n i}(i)=a\left[(1+1)^{\pi}-1\right] \tag{D1.1}
\end{equation*}
\]

Solving for \(V_{n}\) produces the formug for the future value of a teminating amul series:
\[
\begin{equation*}
v_{n}=a\left[\frac{(1+1)^{n}-1}{1}\right] \tag{D12}
\end{equation*}
\]

\section*{Sinking Fund Facter}

The annual savings needed ta accumulate a spedfle capital sum "n" years in che fisture can be derived from the formala for the future value of a terminatint antual series. Equafion D12 1s;
\[
v_{n}=\left[\frac{(1+1)^{n}-1}{2}\right]
\]

Solving for at
\[
\begin{align*}
& a=\frac{v_{n}}{\frac{(1+1)^{n}-1}{i}} \\
& a=v_{n}\left[\frac{1}{(1+1)^{n}-1}\right] \tag{B13}
\end{align*}
\]

Capital Recovery Formula
The amual series of payments aeeded to repay a given sum within a spectific time perlod can be derived from the formula for the present value of a teminating annol sertes, fomula Das
\[
V_{0}=a\left[\frac{(1+1)^{n}-1}{i(1+i)^{n}}\right]
\]
\(501 \mathrm{vI口g}\) for d:
\[
\begin{align*}
& a=\left[\frac{0}{\frac{(1+1)^{n}-1}{n}} \frac{1(1+1)^{n}}{}\right] \\
& a=v_{0}\left[\frac{1(1+i)^{n}}{(1+1)^{n}-1}\right] \tag{0}
\end{align*}
\]

Present Vallue of a Termithating Periodic Seties
The procedure for calculating the present value vf a terminating perfodic sezias is so ilscount each perdinitc payment to the present,

0 T
\(V_{0}=\frac{a}{(1+i)^{2}}+\frac{a}{(1+1)^{2 t}}+\frac{a}{(1+i)^{3 t}}+z=+4 \frac{a}{(1+1)^{\pi}}\)
Multiply bach sides of equation D. 5 by \((1 \rightarrow 1)^{2}\) :
\({ }^{4} 0(1+1)^{t}=a+\frac{a}{(1+i)^{2}}+\frac{a}{(1+1)^{2 \pi}}+\ldots s \frac{a}{(1+i)^{n-t}}\)
Notice that equations (D15) and (D16) have numeroue tems in compril and thet if (015) is subtracted from (D 16) the expression is simplified. Subtract (D15) fran (Dló):
\[
\begin{equation*}
v_{0}(1+1)^{t}-v_{0}=a-\frac{a}{(t+1)^{n}} \tag{D17}
\end{equation*}
\]

Simple factoring produces:
\[
\begin{equation*}
\left.{ }_{70}[1+2)^{2}+1\right]=a\left(1-\frac{1}{(1+1)^{n}}\right) \tag{D18}
\end{equation*}
\]

Solving For \(\mathrm{V}_{0}\) :
\[
\begin{equation*}
v_{0}=a \frac{1-\frac{1}{(1+1)^{n}}}{(1+1)^{t}-1} \tag{D1.5}
\end{equation*}
\]

Multiply the fraction in (DI9) by \(\frac{(1+4)^{\mathrm{n}}}{(1+1)^{m}}\), or \(1=\)
\[
\begin{equation*}
v=a\left[\frac{(1+i)^{n}-1}{\left[(1+i)^{2}-1\right](1+i)^{n}}\right] \tag{D20}
\end{equation*}
\]

Equation D20 is the formula for the present value of a remmating periodtc series.

\section*{Future Value of a Terminating Periodie Series}

To obtain the furnare value of a temineting pertodic series at costs or revenues, pach payment or recelpt (except the last ope which bocurs at year "n") must be rompounded to year "a". Note that the firgt payment. is received at the end of the the period, so that it is compounded for rit years. Then, the future walue of a terwinating periadic series is:
\[
\begin{equation*}
N_{i}=2+a(1+5)^{2}+a(1+i)^{2 t}+i+a(1+i)^{\pi i-t} \tag{D21}
\end{equation*}
\]

Wultiplying both sides of (021) by \((1+i)^{t}\) produces:
\[
\begin{equation*}
v_{n}(1+1)^{2}=a(1+1)^{t}+a(1+1)^{2 t}+\ldots+1+(1+1)^{n} \tag{122}
\end{equation*}
\]

To simplify, subrract (B21) from (D22):
\[
\begin{equation*}
F_{11}(1+1)^{t}-\psi_{\pi}=-a+a(1+1)^{n} \tag{D23}
\end{equation*}
\]

Simple factoring produces:
\[
\begin{align*}
& \left.V_{n}=[1 * 1)^{2}-1\right]=a\left[-1+(1+1)^{n}\right] \\
& V_{n}\left[(1+1)^{2}-1\right]=2\left\{(1+1)^{n}-1\right\}
\end{align*}
\]

Solving for \(v_{n}\) gives the farmala for the future value of a periodic series:
\[
\begin{equation*}
\nabla_{n}=a\left[\frac{(I+1)^{n}-1}{(I+1)^{2}-1}\right] \tag{D25}
\end{equation*}
\]

\section*{Present Volue of a Perpetual Annual Series}

A perpetual annual series consists of a series of costs of tevenues (a) occurring bue year apaxt for an infinite number of years () , Recall the formula for the present value of a ferminating annuad serier (eq̧uation D6);
\[
\nabla_{0}=\left[\frac{(1+1)^{n}-1}{1(1+1)^{n}}\right]
\]

In the case of a perpetual amual series, n equals infitity (a \(=\)). When \(n\) : , equation \(\mathbf{n 6}\) can be expreseed as:
\[
v_{0}=\frac{a}{I}\left[\frac{(1+1)-1}{(1+1)}\right]
\]
or:
\[
\begin{equation*}
V_{0}=\frac{a}{1} \lim _{n \rightarrow \infty} \frac{(1+i)^{n}-1}{(1+i)^{n}} \tag{026}
\end{equation*}
\]

As \(n\) approaches infinity, the cerm \(\frac{(1+i)^{\pi}-1}{(1+i)^{n}}\) approaches i, or \(\frac{110}{n}\)
\(\frac{(1+1)^{12}-1}{}=1\). Thus, the formula for the present walue of a perpetual \((1+1)^{\pi}\)
annual geries is :
\[
\begin{equation*}
U_{0}=\frac{a}{i} \tag{02.7}
\end{equation*}
\]

Forula 027 gives the present value of a slagle sum that is equivalent to perpetual annual income or cost erream at a specified interest rate. Notice fhist as the tme horizon is increased, the value of the rasidual incone atream becomes negligible.

\section*{Present Value of a Perpetual Periodjc Serlea}

Becall equarion D20, the formule for the prasent value of of teminal periodie series:
\[
V_{0}=a\left[\frac{(1+1)^{n}-1}{\left[(1+1)^{2}-1\right](1+1)^{n}}\right]
\]

In tidje case n goes to Infintty and eqcetion D20 oan be uritren as:
\[
\begin{equation*}
V_{0}=a\left[\frac{(1+1)-1}{\left[(1+1)^{2}-1\right](1+1)}\right] \tag{D2S}
\end{equation*}
\]
ot:
\[
\begin{equation*}
\nabla_{0}=a\left[\lim _{1+\infty} \frac{(1+1)^{n}-1}{\left[(1+1)^{t}-1\right](1+1)^{2}}\right] \tag{D29}
\end{equation*}
\]

Separating the tems that contiln \(u\) :
\[
\begin{equation*}
V_{0}=\left[\frac{a}{(i+1)^{2}-1}\right]\left[\lim _{n \rightarrow \infty} \frac{(1+i)^{n}-1}{(i+1)^{n}}\right] \tag{1030}
\end{equation*}
\]

Ls \(n\) approaches inf inlty, \(\frac{(1+1)^{n}-1}{(1+1)^{n}}\) approanhes 1 . sp (D30) reduces to the Eqnula for a perpetual periodje series:
\[
\begin{equation*}
V_{0}=\left[\frac{a}{(1+1)^{2}-i}\right] \tag{D31}
\end{equation*}
\]

\section*{Appendiz E. Solutions ta Eroblems}
\[
\begin{aligned}
& \text { i. } V_{7}=V_{0}(L+1)^{I I} \\
& =\$ 800.00(1.11)^{7} \\
& =\$ 800,00(2,0762) \text { From columin 1. Appanddx Table A11 } \\
& =\$ 1,660.96 \\
& \text { z. } V_{O}=\$ 100,000 \times \frac{1}{(1.05)^{9}} \\
& =\$ 100,000(0.6446) \text { from columa 2, Appendix. Table A5 } \\
& =\$ 64,460 \\
& \text { 3. } y_{a}=\$ 160 \times \frac{1}{(1.07)^{11}} \\
& \text { - \$160 (0.4751) fran columin 2, Appendix Table A7 } \\
& =\$ 75,02 \\
& \text { 4. } v_{6}=\$ 6,500(1,07)^{6} \\
& \text { - } \$ 6,500(1.5007) \text { Erai collumi it Appendix Table A7 } \\
& =\$ 9.754 .55 \\
& \text { 5. } \pi_{3}-\$ 2,500(1.10)^{8} \\
& =\$ 2,500(2.1436) \text { Eriga colum 1, Appendix Table A10 } \\
& =\$ 5,359.00 \\
& \text { 6. } \nabla_{0}=\$ 100,000 \times \frac{1}{(1.08)^{10}} \\
& \text { e } \$ 100,000(0.4632 \text {) Erdu column 2. Appendik Table Ad } \\
& =\$ 46,320 \\
& \text { 7. } i_{14}=\$ 10.00 \times(1,06)^{14} \\
& =\$ 10.00(2,2609) \text { from colume } L \text { Appendix Table AG } \\
& \text { * } \$ 22.61
\end{aligned}
\]
g. \(v_{0}=\$ 380,000 \times \frac{1}{(1.10)^{2}}\)
\(=\$ 380,000(0.3264)\) from colums 2, Appendedx Table Al0
\(=\$ 364.032\)
7. \(V_{21}=81,000(1.01)^{30}\)
\(=\$ 1,000(1,3478)\) from columen Is Appendix Table Al
\(=\$ 1,347.80\)
15. FOD 18\% APR:
\[
\begin{aligned}
I_{\text {eff fective }} & =(1.015)^{12}-1 \\
& =19.55 \%
\end{aligned}
\]

Fa工 \(21 \%\) APR;
\[
\begin{aligned}
t_{\text {erfentive }} & =(1.0175)^{12}-t \\
& =23.145
\end{aligned}
\]

IL. \(y_{0}=\$ 3.50\) (11.4699) Erom column 4; Apperutix A6
- 840.14 per acre
12. \(\nabla_{0}=\$ 750.00(3.7908)\) Erom column 4. Appendix Table A1.0 \(=\$ 2,843.09\)
13. \(y_{0}=(1,750 \mathrm{ac}-1(\$ 3.00 / \mathrm{ac} . / \mathrm{yr}).(12.4622)\) Eroni columan 4 Appendix \(=\$ 65,426.55\)
14. \(V_{20}=\underset{\text { Table A5 }}{(1.750 \mathrm{ac} .)}(3.00 / \mathrm{ac} . / \mathrm{yc}\rangle,(33.0659)\) from column 3 . Appendix \(=\$ 173,595.98\)
15. \(a=(\$ 25,000)(0.2187)\) Eram columa 5, Appendid Table \(N 0\)
\[
=\$ 5,467,50
\]
16. (\(\$ 220,000)(0.2092)\) fion column 5, Appenaix Table A12
- \(\$ 45,024.00\)
17. \(a=\$ 120,000(0.22292)\) Erga columi 6, Appendiz Table A9 \(=\$ 25+748.00\)
18. \(\mathrm{a}=\$ 88,000(0.1256)\) from coluon à, Appendit: TaOle ALA \(=\$ 11,052,80\)
19. \(V_{0}=\frac{\$ 2.00}{.08}=\$ 25.00\)
20. \(v_{0}+\frac{\$ 100,000}{.04}=\$ 2,500,000\)
21. \(V_{C O}=\$ 1.18,900(0.50032)\) from Appendis \(C\)
- \(\$ 59,489.24\)
22. \(v_{0}=\$ 200,000(.07254)\) frow Appendix. 6
\(=\$ 14,508.00\)
25. Payback Period \(-\frac{\$ 275,000}{\$ 25,000}=7\) years

24, Payback Period \(=4\) years
25. NEV \(=-\$ 25,000+\frac{\$ 9,000}{1,07}+\frac{9,000}{(1,07)^{2}}+\frac{9,000}{(1,07)^{3}}\)
\(=-325.000+\$ 9,000(.9346)+\$ 9,000(.8734)+\$ 9,000(.8163)\)
Frone columi 2 , Apperddx Table A7
\(=-\$ 25,000+\$ 8,411 \cdot 40+\$ 7,860,60+7,346,70\)
\(=-\$ 1,782.30\)
26. \(\quad \mathrm{MEV}=\frac{\$ 36.00}{(1,05)^{9}}+\frac{\$ 150.00}{(1,05)^{16}}\)
\(=(\$ 36)(0.6446)+(\$ 150)(0.4581)\) Erom colutan 2. Appendix Table A5
\(=\$ 23.21+\$ 68.72\)
- \$91.93
27. \(N P V=(\$ 350)(0.7473)\) Erom colum 2, Appendix Table \(A 6,=\$ 261,55\)

EAT \(=\) (NPV) \((\) Capital ReqRuery Multiplier \()=(\$ 261,55)(0.2374)\)
\(=\$ 52,09\)
Timber yields \(\$ 62.09\) on an equivalent armual basts at \(6 \%\) interest.
28. 9 perifent
\(29 . \quad 1=8 \%\)
30.

Reverues
Future Value
\& 303,88
276,35
1.120 .00
\(\$ 1,100.23\)

Costs

Future
Value
\(\$ 149.96\)
57,67
\(3.50-4.43\)
\(\$ 212.00\)
\[
\begin{aligned}
\mathrm{L}_{\varepsilon} & =\langle 1700.23-2 \vdots 2.04\rangle(.50032) \text { from Appendix } \mathrm{C} \\
& =3744.57 \text { per acre }
\end{aligned}
\]

\[
\begin{aligned}
& \text { 32. a. } \$ 110.08 \\
& \text { b. } \$ 498.88 \\
& \text { c. } \$ 0.54 \\
& \text { d. } \$ 1,08 \text { eaclz } \\
& \text { e. } \$ 200,00 \\
& \text { f. } \quad \$ 48.65 \\
& \text { 33. } 1=1=1+14 \\
& =0.03+0.07+(0.03)(0.07) \\
& =10.21 \% \\
& \text { 34. } x=\frac{1+\frac{1}{1}-1}{\frac{1}{5}}-1 \\
& =\frac{1.10}{1.05}-1 \\
& =4.76 \text { \% }
\end{aligned}
\]

\section*{COMPOUND INTEREST FORMULAS}

where:
\[
\begin{aligned}
& V_{0}=\text { present value (value in period } 0 \text {) } \\
& \nabla_{n}=\text { future value (value after period } \underline{n} \text {) } \\
& A=\text { annual or periodic cost or income } \\
& 1=\text { interest rate } \\
& n=\text { number of interest bearing periods (usually years) } \\
& t=\text { interval between costs or revenues in a teroinacin periodic series }
\end{aligned}
\]```

[^0]: 1) Steven H. Bullard and Thomas J. Straka are Assistant Professars of Foreat Eengomics, Mississippi Stata Uaiversity, and Thomas A. Monaghan Is Lader of Extension Forestry, Hississippl Copperative Extension Setvice.
