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Abstract
The magnitude of kriging errors varies in accordance with the surface properties. The pur-
pose of this paper is to determine the association of ordinary kriging (OK) estimated errors
with the local variability of surface roughness, and to analyse the suitability of probabilistic
models for predicting the magnitude of OK errors from surface parameters. This task in-
cludes determining the terrain parameters in order to explain the variation in the magnitude
of OK errors. The results of this research indicate that the higher order regression models,
with complex interaction terms, were able to explain 95 per cent of the variation in the OK
error magnitude using the least number of predictors. In addition, the results underscore the
importance of the role of the local diversity of relief properties in increasing or decreasing
the magnitude of interpolation errors. The newly developed dissectivity parameters provide
useful information for terrain analysis. Our study also provides constructive guides to
understanding the local variation of interpolation errors and their dependence on surface
dissectivity. Copyright © 2005 John Wiley & Sons, Ltd.
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Introduction

Geostatistics provides a set of probabilistic methods designed for modelling spatial patterns and estimating values in
unsampled locations. The ordinary kriging interpolator is one of the most frequently used geostatistical estimators
currently available in several software packages including geographic information systems (GIS). The construction of
continuous surfaces including the digital elevation and terrain models (DEM, DTM) can be rapidly performed in GIS
using the ordinary kriging interpolator. Due to the frequent variation of local means in the recording of Earth science
data, the assumption of the second order stationary is often too restrictive. However, ordinary kriging allows one to
account for such local variations of the mean by limiting the domain of the mean stationarity to the local neighbour-
hood N(u), which is centred on the location ‘u’ that is being estimated (Goovaerts, 1997). In addition, ordinary kriging
yields fairly accurate results when compared to other geostatistical interpolators or non-linear methods (Lloyd and
Atkinson, 2001; Moyeed and Papritz, 2002). The purpose of this study is to investigate the dependency of elevation
interpolation errors on terrain properties. This relationship is examined under ‘ordinary’ conditions (i.e., the data input
is represented by a set of widely accessible internet elevation data that may not always comply with the assumptions
of independence), identity, and the random distribution of samples. An expected change in the magnitude of the
ordinary kriging estimation errors is modelled as a function of explanatory variables describing the surface dissectivity
in planar (low diversity) and mountain (high diversity) surfaces. The key term used throughout this paper is the ‘error’
term. It should be noted here that various error terms are used in spatial analysis and their usage often becomes
confusing for readers. For example, Lloyd and Atkinson (2001) use the terms ‘observed standard error, the actual
errors of estimation, the estimation errors, the standard errors of ordinary kriging (OK) estimates, and the kriging
standard error’ to describe basically only the two types of errors: (a) the model inherent error, and (b) the estimation
errors. Isaaks and Srivastava (1989) use ‘error variance’ in the place of ‘kriging variance’, and additional terms are
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used such as ‘actual error variance, global error variance, predicted error variance, observed error variance, absolute
kriging error, global and local estimation errors, kriging standard error, and so forth’, which are either synonyms of the
two errors mentioned earlier or are overlapping terms that thus confuse the reader. For the purpose of consistency, in
this paper we focus on two major error groups:

(a) an estimation (prediction) error that arises through the use of interpolation procedures, defined as a difference
between the actual (true) value and the estimated (predicted) value;

(b) the kriging variance or kriging standard error (the square root of kriging variance) that is inherent to the kriging
system and is available for every interpolated value. Its mathematical form is:
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where C(0) corresponds to the covariance value when the lag distance (sample separation) is zero, λ represents the
kriging weights, C(uα − u) is the covariance between the sample values and the point being predicted, and µ(u) is
a Lagrange multiplier that results from minimizing the estimation variance subject to the unbiasedness constraint
on the estimator (Goovaerts, 1997).

For practical reasons the square root of the kriging variance, the kriging standard error, will be used in this paper. Two
measures of the first type of error (i.e., estimation or prediction error) are used in this study:
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where ei is an interpolation error at location i, E is the mean error for a moving window, and N is the number of
observations in each moving window.
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where oi stands for the observed elevation at location i, ôi is an interpolated value at the same location, and N is the
number of sample points in the moving window.

In the last two decades the errors, their magnitude, and distribution in spatial digital databases have become a major
concern for scientists and practitioners (Goodchild, 1994). Some researchers investigated and compared interpolation
errors produced by different algorithms and then made recommendations regarding the uncertainty of estimates
(Goovaerts, 2000, 2001; Lloyd and Atkinson, 2001; Siska and Hung, 2001; Kastens and Staggenborg, 2002).

A special category of interpolation errors is associated with the Earth’s surface modelling. The digital elevation
(terrain) models have been one of the most common representations of the Earth’s surface and interpolation methods
have been heavily used in their production (Miller and La Flamme, 1958; Cooper et al., 1987; Skidmore, 1989; Giles
et al., 1994; Eklundh and Martensson, 1995; Siska et al., 1997). Therefore, the objective of our paper is to address the
fundamental questions of interpolation accuracy with regard to the variation of terrain properties. For example, the
increase in surface roughness and dissectivity is accompanied by a greater magnitude of changes in morphometric
parameters and landscape processes (Krcho, 1991). Therefore, we believe it is appropriate to investigate the influence
of the Earth’s relief roughness–dissectivity on the magnitude of interpolation errors and then search for a pattern in
this relationship that could be modelled and predicted. In an abstract sense and for application purposes, surfaces can
be generated for any of a large variety of mapping applications including such aspects as geological formations,
topography, demography, financial investments, education resources, growth and yield estimates, the probability of
toxic metals, etc. Because there is no perfect algorithm, the goal of spatial analysts is to create representations of
continuous phenomena with minimum errors and to evaluate the uncertainty of the interpolation. Thus, the under-
standing of errors, especially in regard to their magnitude, local variability, and dependence on surrounding surface
parameters, is an important aspect of surface analysis. For this paper we developed several multiple regression models
to predict the magnitude of OK estimated errors and then to evaluate the relationship between surface parameters and
the local variation of errors. One important objective of this study is to determine how well the magnitude of OK
estimated errors is associated with the local variability of terrain properties. For example, an expected change in the
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Figure 1. Low (planar) surface.

magnitude of OK estimated errors is modelled as a function of explanatory variables that describe surface roughness–
dissectivity in planar (Figure 1) and mountain surface (Figure 2) types. Another objective of this study is to point out
the need to develop new roughness–dissectivity parameters explaining the variation in the magnitude of errors using
the least variance inflation factor. This problem will be addressed in a later research article in which we also plan to
examine the problem of multicollinearity. This phenomenon commonly occurs in the regression of Earth science data
(Brower and Merriam, 2001).

Definitions, Data and Methods

The exterior of the Earth’s barren crust is frequently called ‘relief’ and consists of the fundamental properties of
roughness and dissectivity. Both terms are closely related reflecting the essential characteristics of the Earth’s surface.
The roughness usually refers to the irregular shape of the Earth’s surface while dissectivity emphasizes the particular
relief ‘cut’ at a specific location. Dissectivity is derived from the Latin words dissectum and dissecare meaning cut or
cutting apart. Analogously, the terrain roughness and dissectivity originated through the work of geological processes
and fluvial erosion that cut apart the Earth’s surface into a variety of geomorphic entities whose principal components
are slopes and gradients. Throughout the course of time the encounter between endogenetic (plate tectonic, folding,
volcanic activity) and exogenetic (physical and chemical weathering) forces has resulted in an infinite variety of
landforms that are too intricate to be expressed using only one united classification system. Serious attempts have
been made to describe the Earth’s relief quantitatively by Chorley (1972), Mark (1975), Phillips and Watson (1986),
Krcho (1991), Ritter et al. (2001), and Schmidt et al. (2003).

Figure 2. High (mountain) surface.
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Figure 3. Theoretical and practical concepts of dissectivity. Top figure: roughness and dissectivity as a functional relationship,
f(u) = A sin ωu; middle figure: f(u) = (u − h) + k; bottom figure: computation of Vh parameter as a ratio between the sum of all
vertical differences and horizontal distances among the smple points.

The concept of surface, or terrain, dissectivity builds on the idea of topographic wavelength. Similarly, the terms
‘texture’ and ‘grain’ are defined as the significant wavelengths of topography. Indeed, the transcendental func-
tions, such as the sinusoidal functions, could ideally represent the terrain dissectivity. The crests and valleys would
correspond to the upper and lower segments of periodically repeated sine or cosine functions f(u) = A sin ωu, where A
is the amplitude of a vertical stretch or flattening and ω is the horizontal stretch or compression. The dissectivity
parameter is then defined as the ratio between the length of a sinusoidal function between the two points O and P on
the surface, and the shortest horizontal distance between points O and P. The relationship between dissectivity and
amplitude is positive (i.e., the dissectivity value increases with the vertical stretch or amplitude). In contrast, it
decreases with the increasing ω value. This function can be modified to a more realistic form: f(u) = f(u − h) + k,
where h is the horizontal shift and k represents the vertical shift (Figure 3, middle part).

Roughness–dissectivity parameters
The roughness is approximated using summary statistics and the roughness index (Phillips and Watson, 1986) in the
moving windows environment. The dissectivity is evaluated using three new measures proposed and tested here.
These are: dissectivity mean (Equation 4), vertical horizontal ratio (Equation 5), and the dissectivity index (Equa-
tion 6). The dissectivity mean (Dm) is the sum of the partial slopes inside each moving window divided by the number
of non-repeating pairs:
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where zi and zj are attribute values (elevations) measured at locations i and j, dij is the horizontal distance between
them, m is the number of point data in the moving window and N is the number of non-repeating pairs used to
calculate the slope:
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−2 2 2

The Vh parameter represents the ratio between the sum of the non-repeatable vertical differences and the sum of the
horizontal distances between them:
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The dissectivity index is the simplest parameter computed in each window and is the ratio of the difference between
the maximum and minimum values in that window over the horizontal distance between them:
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Data sets
The data consisted of irregularly spaced spot elevation points that were digitized from 7.5′ USGS topographic maps.
The irregularly spaced point samples guaranteed that no errors would be introduced into the original data sets prior
to the interpolation. Regular grids, such as the DEM, already contain an interpolation bias and therefore were excluded
from this analysis. Thus, to accentuate the influence of surface roughness and dissectivity on the magnitude of OK
errors, two contrasting landform settings were selected: (1) a low landform with small terrain variability [planar], and
(2) a high and diverse landform [mountain]. The elevation data were extracted from target quadrangles, halves of the
four directly adjacent quadrangles and quarters of the four diagonally adjacent quadrangles. The target quadrangle for
the planar surface was the Piloncillo USGS 7.5′ quadrangle and the mountain data originated from the Gomez Peak
7.5′ USGS quadrangle. The entire area covers more than c. 600 km2. The summary statistics in Table I indicate that
there is a much higher dissectivity of the mountain surfaces relative to the planar surface. The actual computation of
the parameters was performed in the adjustable moving windows system using the AML program, which was devel-
oped for this project.

The optimal size of the moving windows for analysis that were deemed appropriate was a window of 4000 × 4000 m
with a 1000 m overlap (Figure 4). These dimensions guaranteed the presence of at least five samples for computing

Table I. Difference in surface roughness–dissectivity para-
meters: planar (low) and mountain (high) surfaces

Surface parameter Planar Mountain
(mean value per moving window) (low) (high)

Elevation (m) 197 1331
Variance of elevations (m2) 109 6630
Vh (Equation 5) 1 3
Dm (Equation 4) 1 7
DI (Equation 6) 1 4
Roughness mean index 16 980
Standard deviation of roughness 12 863
Range of roughness 43 2670
Variance of roughness 194 217 067
E1 (Equation 2) 5 46
E2 (Equation 3) 4 35
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Figure 4. The adjustable moving windows system superimposed on two surface types represented by irregularly spaced sample
points (DEM raster in background).

statistics inside the moving windows. A larger overlap, on the other hand, would have extensively smoothed out the
local and regional differences between the moving windows.

Geostatistical methods
In order to get the spatial interpolation by ordinary kriging, as well as the computation of predictor x7 (Equation 7), we
had to first model the spatial variability of elevation data. In geostatistics the variability in space is quantified by the
semivariogram, which is denoted γ (h), and measures the average dissimilarity between observations as a function of
separating distance and direction. The experimental variograms were computed and a model was fitted visually using
Variowin software (Pannatier, 1996). The spatial structure was considered isotropic (i.e., direction-independent) for
planar surfaces and the following spherical model with a nugget effect was fitted:

γ δ( )  ( )    h h
h h

= ⋅ + ⋅ 



 − ⋅ 











1733 68133
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where a = 27 321 m is the range of influence of elevation data, and the nugget effect is 17·33. The Dirac function δ(h)
equals 0 for zero distance (i.e., | h | = 0, and 1 otherwise). For mountain surfaces the variability changes as a function
of direction (i.e., anisotropy) and was modelled using the following combination of a nugget effect and the Gaussian
variogram model:
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where a = 3056 m is the range in the direction of maximum continuity (major range) and 2261 m is the minor range
in the perpendicular direction. A small nugget value was added to the Gaussian model in order to stabilize the kriging
system. The variogram parameters were used in the ordinary kriging system to compute the weights assigned to
observations zi in the spatial estimation:

  

Z0
1

  =
=
∑ λi i
i

N

z

where Z0 represents the estimated value at location u0, λi are the weights for the sample values participating in the
estimation of Z0, and zi are the sample values. The unbiasedness constraint requires that the kriging weights must sum
to one. Hence, kriging is a form of weighted average estimator. The weights are assigned on the basis of a model fitted
to a function such as the variogram that depicts the spatial continuity of the variable in question. More detailed
information concerning variogram modelling and kriging can be found in the articles and textbooks by Journel and
Huijbregts (1978), Isaaks and Srivastava (1989), Cressie (1985, 1991), Goovaerts (1997), Gorsich and Genton (2000),
and Ortiz and Deutsch (2002).

Model Development

Brower and Merriam (2001) used stepwise multiple regression models for predicting stratigraphic units in the Kansas
area. In this study, a set of surface dissectivity parameters, roughness indexes, and statistical measures describing the
local characteristics of planar and mountain surfaces were computed for each moving window and the stepwise
backward regression procedure was applied to ascertain the relationship between the error magnitude and the surface
properties. This procedure operated in two steps: (a) the initial model was first determined from the full regression
model (Equation 7) using the backward stepwise procedure; and (b) interactive and polynomial models were then
tested and compared to the previous model to determine which functional relationship was more effective in explain-
ing the variations in the magnitude of OK estimated errors. The full regression model is:

Mi = β0 + β1x1i + β2x2i + . . . + βk−1x(k−1)i + βkxki + εi (7)

where M is the dependent variable, the magnitude of estimation errors for each moving window i, βj are the regression
parameters, xji are the explanatory variables: x1, elevation mean; x2, elevation variance; x3, minimum elevation; x4,
maximum elevation; x5, sum of elevations; x6, range of elevations; x7, mean kriging standard error (square root of
kriging variance); x8, Dm parameter (Equation 4); x9, Vh parameter (Equation 5); x10, DI parameter (Equation 6); x11,
maximum slope; x12, vertical sum; x13, base slope sum; x14, mean roughness index; x15, x16, minimum and maximum
roughness values; x17, range of roughness; x18, variance of roughness; x19, sum of roughness values; x20, number of
samples; x21, easting (UTM coordinate system); x22, northing (UTM coordinate system); and εi are the residuals with
the condition E(ε) = 0. The slope values were computed using the following formula:
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for each moving window. The tested hypothesis is:
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H0: β0 = β1 = β2 = βk = 0,

H1: at least one of βj, j = 1, 2, . . . k, is not equal to 0.

The backward elimination consisted of evaluating each t-ratio 3j/s3j
( j = 1, . . . 22) appropriate for testing H0: βj = 0

versus βj ≠ 0. If the t-ratio with the smallest absolute value is less than a pre specified constant t, which is:

    

min   
,...j

j

s
t

j

=
<

1 22� �3

3

then the predictor corresponding to the smallest ratio is eliminated from the model (Devore, 1995). The backward
elimination represented the initial step in developing the best model for the magnitude of OK estimated errors.

Planar surface
As the name indicates, the majority of the elevation points are located on a plane within a 50 m altitude range. The
central part is moderately elevated and stretches in a NE–SW direction. The backward-stepwise elimination using all
22 parameters resulted in the following model:

y1 = −234·5 + 0·18x1 − 0·015x2 − 0·008x5 − 2·7x7 + 5·5x9 + 0·0007x12 + 0·02x18 + 1·5x21 + 5·9 × 10−5x22 + e

where y1 indicates the regression of interpolation errors as represented in Equation 2. The F-test for regression, 8·05 at
p < 0·0001, leads one to reject the null hypothesis, which entails that at least one of the coefficients is different from
zero. The t-tests for regression parameters shows that the elevation mean (x1), the elevation variance (x2), and the mean
kriging standard error (x7) contribute the most to the model (p = 0·001). The smallest contribution was measured
for the northing parameter (x22, p > | t | = 0·08). Taken together, this model, with nine explanatory variables, explained
78·4 per cent (r2 = 0·7836) of the y1 variance. The same elimination process using the second type of error (Equa-
tion 3) resulted in the following model:

y2 = −51·4 + 0·2x1 − 0·01x5 + 2·45x7 − 0·66x10 + 0·38x11 + 0·0007x12 + 0·04x17 − 0·052x18 + 1·83x20 + e

where y2 indicates the regression of interpolation errors as represented in Equation 3. The F-test for regression, 15·05
at p < 0·0001, and r-squared value 0·87 indicate that the model better explains the variation in y2. The structure of
predictors is similar to some extent to the previous model; on the other hand, new parameters began to play an
important role. The contribution of the square root of the kriging variance (OK standard error) to both models is
noteworthy. Its function in spatial analysis is very limited due to the second-order stationary assumptions, and there-
fore it was deemed useful only as a parameter describing the sampling configuration or the sampling density (Oliver
and Webster, 1991; Goovaerts, 1997; Lloyd and Atkinson, 2001).

Interactive models
In some cases, it is possible to construct other models by using predictors that are mathematical functions of the other
explanatory variable xj’s. The intersection between Vh (x9), Dm (x8), maximum slope (x11), number of samples (x20),
and the base slope sums (x12) appears to be an effective predictor. The interaction term used was determined from a
thorough analysis of partial regression coefficient tests in numerous regression models by trial and error methods. Less
significant explanatory variables from the previous initial models were dropped from the full set of predictors and the
backward procedure was used with the addition of the intersection terms: x8 (Dm), x9 (Vh), x11 (maximum slope), and
x12 (vertical sum). The resulting model:

y1 = −47·8 + 0·21x1 − 0·01x5 + 1·9x7 + 8·4 × 10−8x8x9x11x12 + e

provides an improved fit in terms of the following parameters. The F value increased to 12·5 at p < 0·0001, leading to
a clear rejection of the H0 hypothesis. In addition, the t-statistics for each parameter exhibited a higher level of
significance (p = 0·001). The r-squared value decreased slightly to 0·723 due to a smaller number of explanatory
variables present in the model and the residuals were evenly distributed around a zero mean. The results underlined
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the importance of using the elevation mean and the OK standard error as predictors of the magnitude of estimation
errors in the planar surface.

The regression of y2 values with all 22 predictors resulted in the model:

y2 = −51·4 + 0·2x1 − 0·01x5 + 2·5x7 + 0·38x11 + 0·7 × 10−3x12 − 0·66x10 + 0·037x18 − 5·2 × 10−3x19 + 1·8x21 + e

The elevation mean (x1), the sum of elevations (x5), the sum of vertical distances (x12), the OK standard error (x7), and
the number of samples (x20), contributed considerably to the model with p being <0·0001. The new variables, DI
(p = 0·03), range (p = 0·02), and the variance of roughness (p = 0·016), also were found to be useful explanatory
variables. The highest r-squared value (0·87) indicates that 87 per cent of variation in the OK estimation errors could
be explained using nine explanatory variables. Consequently, this model had the highest F-test statistics. Note that due
to the unequal sample size in each moving window the sums and means of elevation values are not duplicate
parameters, and their correlation is especially low for a planar surface (r = 0·25). Therefore, each parameter contrib-
uted in its own way to the regression model.

High (mountain) surface
If the magnitude of the kriging estimation errors is independent from surface properties, then its relationship with the
roughness–dissectivity parameters would remain approximately constant in a plane or mountain topography. Our
results from the model fitting indicated that the general structure of predictors in the regression models rapidly
changed for the mountain surface in comparison to the low (planar) surface. For example, the following predictors
were eliminated from the model: the sum of elevations (x5), the OK standard error (x7), and the number of samples
(x20). On the other hand, the importance of all dissectivity parameters rapidly increased along with the coefficients of
roughness. Again, the best model (i.e. highest r2 = 0·95) was achieved using two interaction terms: (a) the interaction
between x9, x12, (Vh and vertical sum), and (b) x2,  x9,  x10,  x19 (elevation variance, Vh, DI, variance of roughness). The
following model:

y1 = 56 + 0·0061x2 − 0·0421x3 + 3·5x10 + 0·1x16 + 2·2 × 10−5x19 − 0·0042x9x12 − 122 × 10−16 x2(x9)
3x10x19 + e

yielded the highest F-test value (105·5, p < 0·0001), and the p-values for the parameters’ t-tests were consistently
below 0·0001 for all predictors except the minimum elevation parameter with p = 0·0003 (see Table II).

The backward stepwise regression for y2 was significant at the initial stage:

y2 = −196·95 + 0·07x1 − 0·08x4 + 7·06x8 − 11·3x9 + 2·63x10 + 0·007x12 − 7·3x10 − 7·3 × 10−5x14 + 0·05x15

− 0·004x20 − 0·003x18 + 0·0004x22 + e

The F-statistic 57·34 at p < 0·0001 led to the rejection of the H0 hypothesis (i.e. at least one of the coefficients was
not zero). The model also explained 95 per cent of the variation in the magnitude of the OK estimated errors. The

Table II. Correlations of surface parameters with the magnitude of OK errors

E1 E2

Planar (low) Mountain (high) Planar (low) Mountain (high)

Parameter r r2 t r r2 t r r2 t r r2 t

Dm 0·39 0·15 2·06 0·87 0·76 5·85 0·5 0·25 2·63 0·86 0·74 5·79
Vh 0·37 0·14 1·95 0·86 0·74 5·79 0·48 0·23 2·53 0·86 0·74 5·79
DI 0·44 0·19 2·32 0·88 0·77 5·92 0·48 0·23 2·53 0·86 0·74 5·79
MS 0·11 0·01 0·58 0·83 0·69 5·59 0·18 0·03 0·95 0·82 0·67 5·52
RM 0·17 0·03 0·90 0·82 0·67 5·52 0·27 0·07 1·43 0·81 0·66 5·45
EVA 0·34 0·11 1·80 0·84 0·71 5·65 0·43 0·18 2·27 0·83 0·69 5·59
MEL 0·24 0·06 1·27 0·72 0·52 4·86 0·18 0·03 0·95 0·69 0·47 4·66

Dm, Dissectivity mean; Vh, vertical horizontal ratio; DI, dissectivity index; MS, maximum slope; RM, mean of roughness index; EVA, elevation variance;
MEL, mean of elevations.
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dissectivity metrics were found to be important parameters for predicting the magnitude of the OK estimated errors
and they were associated with the lowest variance inflation value.

Discussion

Results indicate that the functional relationship between the independent variable (magnitude of OK estimation errors)
and the roughness–dissectivity is stronger in the mountain topography where steeper slopes and more rapid changes in
elevation dominated the surface. Table II contains elements of the correlation matrix and the percentage of variance
in the y parameters explained by independent variables. The t-test for correlation significance was computed using the
formula:

t r
k

r
  

  

  
=

−
−

2

1 2

where k is the total number of moving windows and r is the correlation coefficient. The t-test revealed that the strength
of this relationship, especially in the mountain surface, is clearly above the critical value of 1·69 at alpha 0·05.

Regression analysis results demonstrated that the dissectivity parameters, the roughness index, and the measure-
ments of central tendency (mean, variance, range etc.) can be used as valuable predictors of local variations in the
magnitude of the OK estimated errors, and their explanatory potential increases with roughness–dissectivity. Thus, the
regression models can explain up to 95 per cent of the variation in the magnitude of OK estimated errors in more
dissected landform settings. The presence or absence of a particular surface parameter in the regression model is also
a function of the roughness–dissectivity of the interpolated surface. For example, the square root of the kriging
variance (labelled here as the OK standard error), the sum of elevations, and the number of observations played an
important role as predictors only in the regression of a low (planar) surface. The kriging standard error, which usually
has a limited use mostly as an indicator of data density and sample configuration, seems to be a useful parameter
notably contributing to the planar regression model. In contrast, the roughness metric only played an important role as
a predictor in the mountainous surface. The most effective predictor appeared to be the Vh parameter (Equation 5),
which was included in every regression model either as a stand alone independent explanatory variable or as a com-
bination with other parameters in the interactive regression model. In contrast, the maximum slope, the easting and
northing values, and the maximum elevation made a very limited contribution to the regression models as predictors.
The elevation range parameter (x6) was not useful in regression even though it is considered an important measure of
local relief (Mark, 1975). Overall, the increase in z-values (elevation) has only a small effect on the increase in the
magnitude of kriging errors for a planar surface, which is expected because the increase is small in magnitude.

The regression coefficients of the independent variables can be confounded by multicollinearity as indicated by a
high variance inflation factor for a few explanatory variables. The Earth science data are typically autocorrelated;
therefore, multicollinearity is an expected phenomenon in the regression process. Likewise, it is not a modelling error,
rather it is a condition of deficient data. From the t-values (Table II) it follows that most of the regressors are
important in the model and the deletion of one predictor would have a significant effect on the explanatory power of
the model (predictors cannot serve as a proxy for one another). Therefore, the linear regression models do not suffer
from a severe case of multicollinearity (Chatterjee and Price, 1977). Nevertheless, the results of this work indicate that
there is a need to develop and test new orthogonal predictors in the future to eliminate, or at least decrease, the
multicollinearity to a minimum for surface dissectivity analysis. Lognormal transformation and consequent regression
using logarithmically transformed data did not significantly improve the model. On the other hand, the relationship
between the error magnitude and surface variability, hence the model structure, depends on the definition of error
magnitude. In order to understand more profoundly this relationship, two definitions of error magnitude were used
(Equations 2 and 3) in the modelling process.

Conclusion

This paper has presented multiple regression models and regression coefficients that relate the magnitude of OK
estimated errors to a set of dissectivity and roughness parameters. The magnitude of estimation errors increases or
decreases depending on the surface type (low or high) and the local variability of the surface. The research identified
several key issues regarding the magnitude of the OK estimated errors and their relationship to the variability of local
surface parameters.
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(a) The increase of terrain roughness–dissectivity increases the magnitude of the OK estimation errors. In addition,
the variation in the magnitude of the OK estimation errors is explained more fully in a mountainous type than in
a planar surface.

(b) The structure of predictors in the regression models and their explanatory power changes with roughness–dissectivity.
(c) The most important predictors in the mountain surface were dissectivity (Dm, Vh, DI) parameters, while the

kriging variance, the number of samples, and the mean of elevations were more important in the planar surface.
(d) The effect of the square root of the kriging variance (kriging standard error) on the magnitude of the OK

estimation errors (the expected change in the OK estimated error when increased by one unit of kriging variance),
was several times stronger than the rest of the parameters present in the model. Moreover, the kriging standard
error indicated only a small inflation of the model variance (the multicollinearity aspect).

(e) The most significant contribution to the regression models was made by the Vh parameter (Equation 5) while the
effect of the mean elevation and the elevation variance was insignificant.

(f) The interactive regression models yielded the largest model’s r-squared value and the largest t-test statistics (the
p-values less than 0·0001) for parameter estimates. The interactive term, which is composed of the elevation
variance, the dissectivity index (DI), the variance of roughness, and the Vh parameter, produced the smallest
p-value (less than 0·0001) and a relatively small variance inflation value.

(g) Results indicate that the magnitude of the OK errors varies locally according to the surface characteristics and can
be modelled using multiple regression models and surface parameters as predictors.
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