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ABSTRACT

An image differencing algorithm was applied to two Landsat MSS scenes in central
Texas to assess its ability to identitY change in the greater Austin, Texas metropolitan area. Near infrared data from
a Landsat MSS scene acquired September 9, 1972 were subtracted from a Landsat MSS scene acquired August 24,
1990 to produce a difference image representing change in and around Austin, Texas covering a twenty year period.
Results indicate that use of empirical analysis to visually identifY change within a difference image is highly
effective. Unsupervised classification ofa difference image to identitY change is dependent upon time requirements
and the sensitivity of the classified image. While an unsupervised classification of a difference image with a small
number ofclasses was shown to be time saving, it was determined to possess less subtle areas ofchange. Therefore,
it became evident that the greater number of classes used resulted in a higher degree of identified subtle areas of
change.

INTRODUCTION

Change detection in remote sensing allows an image interpreter to determine temporal alterations, such as
deforestation and population growth, in a landscape (Broodizio et aI., 1994) Many change detection techniques
produce an image making areas ofchange visible (Collins, 1997). However, difference images can include areas of
transition which are difficult for an untrained eye to interpret. These areas simply do not stand out well enough for
visual interpretation. This becomes an important issue for the interpreter in communicating or presenting the
information to natural resource managers who may not have remote sensing backgrounds. These managers need to
have images that readily communicate areas of change. Typically they do not have the luxury of reading a treatise
on the subject of image-difference detection. Instead, they seek specific information that allows them to make timely
decisions.

The purpose ofthis project was to analyze a digital image processing technique that will allow areas ofchange to be
enhanced within an image. An image differencing algorithm was applied to the image data to produce a single band
image with pixel values potentially ranging from -255 to 255. The difference image algorithm was chosen for its
simplicity and ability to produce a black and white image with very dark areas having extreme negative pixel values
and very bright areas having extreme positive pixel values, which represent areas ofchange. (Singh, 1989)

Statistically the pixel value histogram appears Gaussian in nature. (Jensen, 1996) Thresholds ofchange typically are
chosen in numbers ofstandard deviations from the mean or from the tails (Price et aI., 1992).



METHODOLOGY

The area under examination includes portions ofnorthern Travis County, Texas and southern Williamson County,
Texas. (Figure 1) This portion ofthe state, northwest ofdowntown Austin is in one ofthe fastest growing regions of
the United States. (Texas Department ofEconomic Development, July 1995). Because ofthe rapid growth this area

has undergone in the past 20 years, it was chosen for this study based on the authors' knowledge of the local
landscape and the ability to produce a difference image with verifiable change.

Two cloudless LANDSAT Multi-Spectral Scanner (MSS) images representing the study area in central Texas were
chosen to analyze change. From the full Landsat MSS scenes which were originally acquired in 1972 and 1990
respectively, subset imagery representing the area of interest per year were taken from the full data sets (Figures 2 &
3).

From the extracted subset imagery, the image differencing technique was conducted. This technique involves
subtracting the pixel values of one image from another on a pixel-by-pixel basis. Using the near infrared band of
both images, chosen for its ability to detect subtle changes in vegetative cell structure typical ofareas in and around
Austin, Texas, the 1972 subset near infrared image data were subtracted from the 1990 near infrared band. The pixel
values in the resulting difference image have a range of- 45.0 to 78.0; the mean pixel value is 5.3 with a standard
deviation of7.7. (Figures 4 & 5)

From the resulting difference image, two techniques were used to enhance the areas of change. The first technique
utilized was level-slice image enhancement. This method splits an image into a specified number oflevels based on
pixel values (Figure 6). In this instance six levels were chosen based on our empirical manipulation of the
difference image histogram and our visual interpretation ofthe optimum level to visually identify verifiable change.
However, depending upon the degree ofchange one wishes to display and/or the particulars of the image itself, the
interpreter may choose any number of levels.

The second technique utilized was unsupervised image classification. Two classification schemes were used. The
first unsupervised classification scheme created six classes within the difference image. Upon classifying the
difference image, the classification classes were display on screen and highlighted sequentially to identify those
classes that represented change. Two classes that represented negative pixel values and hence change in the
difference image were coded blue. Two classes that represented positive pixel values and hence change in the
difference image were coded yellow. The other classes that represented areas of no change were coded gray (Figure
7).

Next, an unsupervised classification was perfonned on the difference image to produce 150 distinct classes. In a
similar fashion, the resulting classified image was visually interpreted to identify classes representing change. Three
classes representing extreme negative values and hence changes in the difference image were coded blue. Three
classes representing extreme positive pixels values and hence changes in the difference image were coded yellow.
All other classes, which represented areas ofno change, were coded gray. (Figure 8)

RESULTS

The level-slice enhanced image shows areas ofchange within approximately one standard deviation ofthe extremes,
as either black, denoting negative values or white, denoting positive values. Unchanged areas with pixel values
nearest the mean are in the majority and appear in a moderate gray. The most prominent areas of change are Lake
Georgetown, found in the black area in the upper center ofthe image and the rock quarry expansion, seen as large
white areas just south of Lake Georgetown. Other areas ofsignificant change include a golf course, near the center
of the image, agriculture fields found in the eastern section of the image and various suburban housing
developments scattered throughout the image. An analysis of the two classified images shows that the classified



Figure 1: Location ofstudy area, northern Travis County, Texas and southern Williamson County, Texas.
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Figure 2: 1972 LANDSAT MSS scene of northern Travis County, Texas and Southern Williamson County,
Texas
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Figure 3: 1990 LANDSAT MSS scene of northern Travis County, Texas and southern WiJliamson County,
Texas.
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Figure 4: Difference image of northern Travis County, Texas and southern Williamson County, Texas.
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Figure 5: Pixel value histogram ofdifference image.
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Figure 6: Level slice image enhancement of difference image indicating areas of change.
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Figure 7: Classification of difference image using 6 initial classes indicating areas of change.



Figure 8: Classification of difference image using 150 initial classes indicating areas of change.



difference image with 150 initial classes was more sensitive to areas ofchange than that ofthe classified difference
image with 6 initial classes. The difference image with 150 initial classes illustrates, as change, areas ofroughly one
to three standard deviations ofthe extremes. The 150 differentiated classes may be overly inclusive as it inaccurately
depicts Lake Travis, a 60-year-old reservoir, as an area of change. While the classified difference image with 6
initial classes is time saving, the lack of sensitivity leaves something to be desired.

Which technique an image interpreter chooses depends on what information he or she is attempting to communicate.
If the information desired is change at any level, a classified image using many classes would be preferable. If one
wishes only to convey change over large areas, an image classification with few classes or level-slice contrast could
be the method ofchoice.
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