
Stephen F. Austin State University
SFA ScholarWorks

Faculty Publications Forestry

5-2010

Aboveground Biomass Estimation for Three
Common Woody Species in the Post Oak
Savannah of Texas
Brian P. Oswald
Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, Texas 75962

R R. Botting

Dean W. Coble
Arthur Temple College of Forestry, Stephen F. Austin State University, Nacogdoches, TX 75962-6109

Ken W. Farrish
Arthur Temple College of Forestry, Stephen F. Austin State University, Nacogdoches, TX 75962-6109

Follow this and additional works at: http://scholarworks.sfasu.edu/forestry

Part of the Forest Sciences Commons
Tell us how this article helped you.

This Article is brought to you for free and open access by the Forestry at SFA ScholarWorks. It has been accepted for inclusion in Faculty Publications
by an authorized administrator of SFA ScholarWorks. For more information, please contact cdsscholarworks@sfasu.edu.

Recommended Citation
Oswald, Brian P.; Botting, R R.; Coble, Dean W.; and Farrish, Ken W., "Aboveground Biomass Estimation for Three Common Woody
Species in the Post Oak Savannah of Texas" (2010). Faculty Publications. Paper 13.
http://scholarworks.sfasu.edu/forestry/13

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SFA ScholarWorks

https://core.ac.uk/display/72734236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://scholarworks.sfasu.edu?utm_source=scholarworks.sfasu.edu%2Fforestry%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sfasu.edu/forestry?utm_source=scholarworks.sfasu.edu%2Fforestry%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sfasu.edu/forestry_department?utm_source=scholarworks.sfasu.edu%2Fforestry%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.sfasu.edu/forestry?utm_source=scholarworks.sfasu.edu%2Fforestry%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/90?utm_source=scholarworks.sfasu.edu%2Fforestry%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
http://sfasu.qualtrics.com/SE/?SID=SV_0qS6tdXftDLradv
http://scholarworks.sfasu.edu/forestry/13?utm_source=scholarworks.sfasu.edu%2Fforestry%2F13&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cdsscholarworks@sfasu.edu


 1 

 1 

Keywords:  Regression, Eastern redcedar, gum bumelia, fuel loads, post oak 2 

 3 

 4 

The Post Oak Savannah occupies about 3.4 million hectares of gently 5 

rolling to hilly lands in east central Texas. Large post oak (Quercus stellata 6 

Wangenh.) blackjack oak (Quercus marilandica Munchh.), Eastern redcedar 7 

(Juniperus virginiana L.) and honey mesquite (Juniperus virginiana L.) usually 8 

form the overstory, often above thickets of yaupon (Ilex vomitoria), winged elm 9 

(Ulmus alata), gum bumelia (Sideroxylon lanuginosum Michx. Subsp. 10 

Oblongifolium (Nutt) T.D. Penn.), and live oak (Quercus virginiana Mill.).  11 

Historically limited to rocky hillsides and draws (Owens and Ansley 1997), these 12 

species have migrated over the last several hundred years into bottomlands where 13 

grasses once dominated, and the increase in abundance and range has fluctuated 14 

due to both the modification of the historic fire regime and overgrazing (Smeins 15 

and Fuhlendorf 1997).   16 

The primary focus of previous fire studies in the Post Oak Savannah have 17 

been ignition time, mortality rate and the effect of burning to the understory 18 

vegetation, not standing shrub biomass estimation.  Biomass estimation equations 19 

developed in different regions may not be applicable to the Post Oak Savannah 20 

since these substitutions may result in substantial error (Grier and Milne 1981, 21 

Gottfried and Severson 1994).  With better prediction equations for this region 22 
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with an increasing Urban-Wildfire Interface, managers can more accurately 1 

estimate the potential severity of wildfires or the effects of prescribed burns 2 

(Martin et al. 1978). 3 

Biomass estimation methods that involve juniper species have focused on 4 

Pinyon-Juniper (Pinus edulis and Juniperus spp.) and overstory-understory 5 

interactions in the western states.  Schnell (1976) developed biomass prediction 6 

equations tables for eastern redcedar in Georgia, Alabama Tennessee and 7 

Virginia, that required diameters at breast height (DBH) > 12.7 cm.  Clark et al. 8 

(1986) and Phillips (1981) developed equations for estimating post oak biomass 9 

in North Carolina, South Carolina and Georgia, using DBH and total height; 10 

Phillips (1981) also age, but neither included foliage.  Common in both studies 11 

was a DBH > 15.2 cm and total height as independent variables.  There is little 12 

biomass estimation information available for gum bumelia, although Bryant and 13 

Kothmann (1979) suggested a quadratic equation might work best. 14 

 The objective of this study was to develop regression models to predict the 15 

total above-ground biomass for three species commonly found in Post Oak 16 

Savannah plant communities.   17 

 18 

Methods 19 

Camp Swift Military Reservation is located in south central Texas, 45 km 20 

east of Austin and 11 km north of Bastrop, with an elevation of 122-183 m MSL.  21 

Established in 1942, 4,735 hectares were retained as a military reservation after 22 
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World War II (Leatherwood 2002).  The climate is humid with a mean January 1 

temperature of 4 C°, a mean July temperature of 36 C° and mean rainfall of 94 cm 2 

(Odintz 2006).  The terrain is characterized by rolling uplands and broken hills 3 

with primarily sandy and loamy surface soils.  The Axtell-Tabor soil association 4 

was found where sampling was performed on nearly level to strongly sloping 5 

terrain with a loamy surface layer and very slowly permeable lower profiles on 6 

streams terraces and uplands (USDA 1979). 7 

The study area included four sites adjacent to urbanized development.  8 

Each site contained 12 plots, 50m X 20m in size, with six plots placed randomly 9 

on opposing aspects.  All plots ran lengthwise parallel to the slope.  The location 10 

for each plot was determined using GPS coordinates and a random numbers table, 11 

with the GPS coordinate considered the starting corner of the plot.   12 

 Each plot contained five 20m transects perpendicular to the length of the 13 

plot.  The first transect was no less than 3m from the starting corner, and all 14 

transects were placed 5-10m from each other.  Each transect contained one 15 

randomly placed sample point.  The nearest representative to the sampling point 16 

of any of the three species was labeled and recorded.  If the plant was a species 17 

whose target quota (30) was filled, the nearest plant of another species was 18 

sampled until the quota was reached. 19 

 Mean basal diameters (cm) were measured using a caliper above the root 20 

crown or above the swelling of the root crown, usually within 2.5- 5.0 cm above 21 

the top of the litter, with perpendicular readings taken for each plant and basal 22 
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area (cm
2
) calculated.  The heights of each plant (m) and crown area (m²) were 1 

also recorded.  Crown area was measured by taking two readings from the center 2 

of each plant; one taken at the longest dimension and the second perpendicular to 3 

the first.  Each plant was cut and segmented into fuel size classes (Brown 1976, 4 

Frandsen 1983), had all foliage removed, and placed in separate bags.  The 5 

samples were oven-dried at 60°C for 48 hours (longer for heavier fuel samples) 6 

and dry weights (g) recorded. 7 

Five models (Full Model, Full Log Model, Combined Variable Model, 8 

Logarithmic Model, and a Combined Variable Model with Crown Area (Clutter et 9 

al., 1983)) were fitted to the data for each species and evaluated for the best fit.  10 

Best fit was determined by a high R
2
, low root mean square error (RMSE), and 11 

Furnival’s Index of Fit (FI, Furnival 1961).   FI reflects the size of the residuals 12 

and possible departures from normality and non-constant variance, so it is a useful 13 

fit index to evaluate these five models.  Regression parameter estimates were 14 

evaluated at the α=0.05 level.  The models were:        15 

 16 

Full Model: Y = β0 +  β1D + β2H + β3C + β4B + є 17 

Full Log Model:  ln Y = β0 +  β1lnD + β2lnH + β3lnC + β4lnB + є 18 

Combined Variable model: Y = β0 +  β1D
2
H + є 19 

Logarithmic Model: ln Y = β 0 +  β1lnD + β2lnH + +ln є 20 

Combined variable model with crown area: Y = β0 +  β1D
2
H + β2C + є 21 
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Where Y=total above-ground biomass or total above-ground dry-weight (g); D= 1 

basal diameter (cm); H=height (m); C= crown area (m
2
); B=Basal area (cm

2
); β0 2 

,β1 ,β2 ,β3 ,β4 regression parameters to be estimated; є = error or residual. 3 

 4 

SAS ver. 8 (SAS Institute Inc., 1999) was used to estimate the regression 5 

parameters.  Due to redundancy in this model since basal diameter was used to 6 

find the basal area and only some of the variables were significant at the 0.05 7 

level, models were consolidated to use basal diameter, height and crown area. 8 

 9 

Results and Discussion 10 

Mean total above-ground weight (g) per plant, and height (m), basal 11 

diameter (cm
2
) and crown area (m

2
) per species are presented in Table 1. For all 12 

species R² values exceeded 64% for the full regression model, and 25% for the 13 

full log model, although a majority of the variables were not significant.  The 14 

logarithmic and combined variable with crown area models had R² values ≥72% 15 

for all species.  The combined variable model results had R² values ≥ 17%, non-16 

constant variance was present and the variables were significant.  The logarithmic 17 

model had the best fit for all three species based on the values for R
2
, RMSE, and 18 

FI (Tables 2 and 3).  The logarithmic model with regression parameter estimates 19 

was back-transformed to original units for ease of use (Table 4).  These equations 20 

include a correction for log-normal bias (correction factor = CF = e
MSE/2

, where 21 
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MSE = Mean Square Error = RMSE
2
, Baskerville 1972) since the dependent 1 

variables were transformed to logarithmic units for fitting. 2 

The larger individual foliage of post oak and gum bumelia compensated 3 

for smaller, more numerous Eastern redcedar foliage.  Natural variation in the size 4 

of the individual plants contributed to different diameter and height results. Post 5 

oak and eastern redcedar had large basal diameters that contributed to the heavier 6 

weights in comparison to gum bumelia.   7 

 The equation by Schnell (1976) for eastern redcedar requires a DBH > 8 

12.7cm.  For this study basal diameter was used because DBH was not found on 9 

small plants. Since his tables leave a size class gap, the prediction equations 10 

provided here can fill a portion of the size class gap.  The post oak collected here 11 

were smaller in height and diameter than those used by Clark et al. (1986) and 12 

Phillips (1981) and did not have a measureable DBH.  Therefore, their prediction 13 

equations are impractical for this size plants, even if basal diameter was converted 14 

to DBH.  Bryant and Kothmann (1979) suggest a quadratic model for gum 15 

bumelia, but they fail to provide regression coefficients for the model.  Here, a 16 

logarithmic model for gum bumelia is provided with regression coefficients 17 

instead of the suggested quadratic model. 18 

 19 

Conclusions 20 

Biomass prediction equations using the logarithmic model with 21 

corrections for log-normal bias for total above-ground biomass were found for 22 
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eastern redcedar, post oak and gum bumelia.  To calculate the potential energy 1 

(heat) release, total above-ground biomass (g) estimation can now be made for 2 

three of the most common species in the Hill Country of Texas.  Additionally, the 3 

prediction equations found for post oak foliage can have implications in wildlife 4 

management areas if managers want to determine available foliage in small trees 5 

< 10.2 cm in basal diameter or < 3.0m in height.   6 

 7 
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