Texas Forestry Paper No. 4

Ellis V. Hunt Jr.
Stephen F. Austin State University
Robert D. Baker
Stephen F. Austin State University

Follow this and additional works at: http://scholarworks.sfasu.edu/texas_forestry_papers
Part of the Other Forestry and Forest Sciences Commons
Tell us how this article helped you.

Recommended Citation

Hunt, Ellis V. Jr. and Baker, Robert D., "Texas Forestry Paper No. 4" (1970). Texas Forestry Papers, No. 1-29, 1970-1976. Book 6. http://scholarworks.sfasu.edu/texas_forestry_papers/6

Both computations employ the same relationships between volume and dbh. The first compiled the volume for each sample tree, based on its dbh measured to the nearest tenth-inch. The second, or stock table method, computed the number of sample trees within each one-inch diameter class, and applied to them a volume computed for the nominal midpoint of the class, as in the usual manual computation.

As indicated above, tree volumes do not bear a straight-line relation to diameters, but are approximately proportional to diameter squared. In any group of trees the average of the squared diameters is always larger than the average diameter. In a diameter class within which trees are evenly distributed by sizes, their average diameter will be close to the midpoint of the class, but diameter of the tree of average basal area, or average squared diameter will be higher than the midpoint. The consistent bias revealed in Table 1 results from this mathematical relationship. The percent difference, however, probably would be smaller for stands of larger diameter. Consider two theoretical diameter distributions, (1) a single tree in each tenth-inch class, and (2) ten trees at the midpoint of each inch class. The sum of squares of diameters of (1) will exceed that of (2) by 2.3 percent for the five-inch class, but by only 0.66 percent for the six-teen-inch class. Expansion of the squared diameters to volumes might somewhat magnify these differences because larger trees are also frequently taller even within a one-inch dbh class.

In conclusion, for young even-aged stands, one could expect volumes calculated by tenth-inch dbh classes to exceed those calculated by one-inch dbh classes by 1 to 4 percent. The error may be avoided at nominal cost by recording dbh measurements to the nearest tenthinch and programming the computer to compile volumes on this basis. The printout from the SFA Plantation Inventory Program includes a summary, by one-inch classes, of numbers of trees and volumes computed in this way.

Table 1. Average volume per acre from ten cruises computed in two different ways. Nacogdoches City Plantation, established 1942.

Date of Inventory and Species	Computed from tenth-inch dbh classes	Computed from one-inch dbh classes	Difference

${ }^{1}$ " B " was before thinning. " A " was after thinning was complete.
${ }^{2}$ In this and subsequent years, a new volume table equation was used for this species.

