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Abstract
We study the topological complexity of languages of Büchi automata on infinite binary trees.
We show that such a language is either Borel and WMSO-definable, or Σ1

1-complete and not
WMSO-definable; moreover it can be algorithmically decided which of the two cases holds. The
proof relies on a direct reduction to deciding the winner in a finite game with a regular winning
condition.
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1 Introduction

The class of regular languages of infinite trees is one of the most important classes of prop-
erties of infinite computations. Similarly to the arithmetic hierarchy, the class is structured
into the so called Mostowski–Rabin index hierarchy. This hierarchy reflects the complexity
of a language in terms of an alternation of fix-points needed to express it, or equivalently,
in terms of the minimal complexity of the acceptance condition of an automaton accepting
the language. While we know for about two decades that the hierarchy is infinite [5], we
are still very far from understanding it. One important objective in this area is to effect-
ively characterise every level of the hierarchy: for a given regular language of infinite trees
calculate its level in the hierarchy.

The difficulty in understanding the Mostowski–Rabin index hierarchy of tree languages is
linked to the lack of deterministic acceptors for such languages. Thus, on a smaller scale, we
face here the same problem as in the complexity theory, namely the problem of understanding
the structure of non-deterministic computations. When restricted to deterministic acceptors,
the Mostowski–Rabin hierarchy is by now well-understood. For every level we know a pattern
such that the pattern appears in a deterministic tree automaton if and only if the language
recognised by this automaton is hard for this level [21, 18, 19]. The pattern method has
been extended to the so called game automata [12], but there is no hope to use it for
non-deterministic automata.
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2 Deciding the topological complexity of Büchi languages

Apart from decidability questions, a promising way to understand the Mostowski–Rabin
hierarchy is to relate it to the topological hierarchy. (For an introduction to the classes
of topological complexity see for instance [15].) Topological properties of sets defined by
automata are discussed in [24]. It is well-known that all regular languages of infinite trees
are contained in the ∆1

2 level of the projective hierarchy. The languages of Büchi automata,
or equivalently those definable in existential mso logic, are contained in the Σ1

1 level. The
languages of weak-alternating automata, or equivalently definable in weak mso (wmso),
are Borel; moreover for every finite level of the Borel hierarchy there is a complete weakly
definable language [23]. In [23], Skurczyński asks if every regular language that is Borel is
necessarily weakly definable. In this paper we answer this question for languages recognised
by Büchi automata, as expressed by the main theorem.

I Theorem 1. If B is a non-deterministic Büchi tree automaton then one of the following
possibilities holds and it is possible to effectively decide which one it is:
1. L(B) is Borel and wmso-definable,
2. L(B) is Σ1

1-complete and not wmso-definable.
The theorem is proved through a game construction. Given a Büchi automaton B we con-
struct a finite game F(∞) such that if ∃∃∃ wins in this game then the language of B is
Σ1

1-complete; but if ∀∀∀ wins then the language of B can be accepted by a weak alternat-
ing automaton constructed from B. A similar technique of relying on the finite memory
determinacy of regular games was used in [1].

Related work. Colcombet, Kuperberg, Löding, and Vanden Boom [16, 8] have proved
the algorithmic part of the above theorem; using some decidability result in the theory of
cost functions and a reduction of Colcombet and Löding [9] they have shown how to decide
if the language of a Büchi automaton is weakly definable. The topological counterpart of
Theorem 1 seems not to follow from their construction. Our proof relies only on standard
facts from automata theory, and may be simpler, at least for those who are not familiar with
the theory of cost functions.

Finding effective characterisations of various classes of infinite tree languages is an im-
portant topic of language theory. As we noted above, for languages of deterministic tree
automata the situation is quite well-understood; but for the case of all regular tree languages
for some time it was only known how to decide if a given regular language can be accepted
by an automaton with a trivial acceptance condition [17, 25]. The theory of cost functions
allows to decide if a given language can be accepted by a non-deterministic co-Büchi auto-
maton [8]. Bojańczyk and Idziaszek [2] have recently shown decidability of definability in
a temporal logic ef. Bojańczyk and Place [4] show how to decide if a given language is a
Boolean combination of open sets.

The study of topological properties of regular languages of trees has seen important
advances too [10, 13, 6, 18, 19, 3, 11]. Over a decade ago an interesting gap property has
been observed [20] for languages of deterministic tree automata: a language is either Π1

1-
complete, or contained in the Π0

3 level of the Borel hierarchy. A similar gap property has
been recently shown for languages of thin trees [14]: a regular language of thin trees, treated
as a subset of all trees, is either definable in weak mso logic or Π1

1-complete. Our theorem
shows a gap property for languages of non-deterministic Büchi automata.

2 Preliminaries and an outline of the construction

We write ω for the natural numbers, and ω for the extension of ω with a greatest element
∞. So n < ∞ for all n ∈ ω, and ∞ − 1 = ∞. We assume standard definitions of non-
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deterministic and alternating automata on infinite binary trees. All trees we consider are
binary, the two directions are L and R. The root of a tree is ε. By � we denote the prefix
order on the nodes of a tree. In this paper we will use perfect information two player games
of infinite duration. The players are denoted ∃∃∃ (Eve) and ∀∀∀ (Adam).

A non-deterministic Büchi automaton is a tuple B = 〈Q,A, qI ∈ Q, δ ⊆ Q×A×Q×Q,F ⊆
Q〉. We will use the standard notion of a run ρ over a tree t. A run of B is accepting if on
every branch some state from F appears infinitely often. A weak alternating automaton is
very similar but for a total quasi-order on states, and the transition relation that now sends
a non-empty set of states in every direction δ ⊆ Q × A × P+(Q) × P+(Q) (by P+(X) we
denote the set of non-empty subsets of X). The transition relation should respect the order
on the states in a sense that if (q, a, SL, SR) ∈ δ then all the states in SL ∪ SR should not be
bigger than q, and if q ∈ F is accepting then all not accepting states in SL ∪ SR should be
strictly smaller than q in this order. Every weak alternating automaton A induces a game
on every tree t: the positions of this game are (u, q) with u ∈ {L, R}∗ and q ∈ Q; the initial
position is (ε, qI); from a position (u, q) first ∃∃∃ chooses a transition (q, t(u), SL, SR), then ∀∀∀
chooses a direction d and a state q′ ∈ Sd, the successive position is (ud, q′). A play is won
by ∃∃∃ if it contains infinitely many accepting states. Without loss of generality we assume
that all the considered automata are complete: for every state q ∈ Q and every letter a ∈ A
there is at least one transition from q over a. For an automaton A, by L(A) we denote the
set of trees accepted by A.

Our proof of Theorem 1 will use two games, or rather game families constructed from
B. The first game, G(t), will be played on a tree t. The game will encode in a compact way
not only the acceptance of t by B, but also possible approximations of B by weak automata.
It is motivated by the technical core of the construction in [22]. More precisely, for every
K ∈ ω we will have a variant G(t,K) of the game. Each game defines a language of trees

L(G,K) = {t | ∃∃∃ wins G(t,K)}. (1)

The game G(t,∞) will encode the acceptance of t by B, i.e., L(G,∞) = L(B). For every
K ∈ ω, the game G(t,K) will encode the acceptance of t by some specific weak alternating
automaton obtained from B; in particular L(G,K) will be wmso-definable. The parameter
K will control the quality of the approximation of B, in a sense that

L(G, 0) ⊇ L(G, 1) ⊇ · · · ⊇ L(B)

We will show that L(B) is wmso-definable if and only if L(B) = L(G,K) for some finite
bound K ∈ ω. Moreover, we will show that a candidate K0 for this bound can be computed
from B. These results will be obtained from the analysis of another game that we call F .

The game F , and its variants F(K) for all K ∈ ω, will be central for our arguments.
For every K ∈ ω, the game F(K) will be finite in a sense that there will be a finite number
of positions reachable from the initial position. The game F(K) will in some sense simulate
G(t,K) for an unknown t. We will show that when K ∈ ω is too small for B, i.e. when
L(G,K) ) L(B), then ∃∃∃ has a winning strategy in F(K). Next, we examine F(∞) and show
that the winner in this game determines if L(B) is wmso-definable. If ∃∃∃ does not win in
F(∞) then she does not win in F(K0) for some K0 computable from B (Proposition 10).
Thus L(B) = L(G,K0) is wmso-definable. The most difficult part of the proof is to show that
if ∃∃∃ wins in F(∞) then L(B) is Σ1

1-complete and thus not wmso-definable (Proposition 11).
The way in which the game F is obtained from G is motivated by the concept of history

determinism and in particular by the combinatorial structure of domination games, see [7].
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3 The game G(t)

Let us start with the game G(t). The positions of G(t) are of the form (q, u,K, z) where
q ∈ QB is a state, u ∈ {L, R}∗ is a node of t, K ∈ ω is a counter value, and z is one of
the three special symbols: choice, safe, or reach. The z component determines the possible
choices from a position (q, u,K, z):
z = choice: In this case ∀∀∀ chooses z′ ∈ {safe, reach}. If he chooses z′ = safe then K ′ = K,

if he chooses z′ = reach then K ′ = K − 1; in particular if K = 0 then ∀∀∀ has to choose
z′ = safe. The game proceeds to the position (q, u,K ′, z′).

z = safe: First ∃∃∃ proposes a transition of B of the form (q, t(u), qL, qR) and then ∀∀∀ chooses
a direction d ∈ {L, R}. The game proceeds to the position (qd, ud,K, choice).

z = reach: First ∃∃∃ proposes a transition of B of the form (q, t(u), qL, qR) and then ∀∀∀ chooses
a direction d ∈ {L, R}. If qd is an accepting state then the game proceeds to the position
(qd, ud,K, choice), otherwise it proceeds to the position (qd, ud,K, reach).

Every play of G(t) is infinite. Such a play is won by ∀∀∀ if z = reach from some point on. In
the opposite case (i.e. if z = choice infinitely many times) ∃∃∃ wins.

As we can see from the definition, the game proceeds in phases. It is ∀∀∀ who chooses if the
game should be in a safe phase or in a reach phase. In the safe phase players just construct
a path from a run of B ignoring the acceptance condition. In the reach phase ∃∃∃ needs to
provide a finite part of a run until the next accepting states. The counter K gives a bound
on the number of reach phases: each time ∀∀∀ chooses reach, K is decreased. Notice that if K
is ∞ then it stays ∞ during the whole play, so there can be infinitely many reach phases.

For K ∈ ω we denote by G(t,K) the game G(t) with the initial position (qBI , ε,K, choice).
I Example 2. For our running example we consider trees over the alphabet {a, b} and a
Büchi automaton B accepting the trees with a branch having infinitely many occurrences of
a. This automaton has three states qa, qb,>, with both qa, and > accepting. For a state qx
the transition relation δB on a letter y contains the transitions (qx, y, qy,>) and (qx, y,>, qy);
for x, y ∈ {a, b}. From > the automaton stays in > on every letter and in every direction.

Using the notation from (1) we can see that for K = 0 the language L(G,K) is simply
the language of all trees. For K > 0, it is the language of trees having a path such that
every node on this path has a descendant whose label is a and the subtree rooted in this
descendant is in L(G,K − 1).

The next three lemmas give connections between the game G(t) and the automaton B.
They refer to the languages L(G,K) of the game as defined in (1).

I Lemma 3. L(B) = L(G,∞).

Proof. First assume that t ∈ L(B) and let ρB be an accepting run of B on t. Then clearly
∃∃∃ can win the game G(t,∞) by just playing ρB. When ∀∀∀ chooses z = reach, ultimately an
accepting state of B will be visited and z will be set to choice. Therefore, every play will be
won by ∃∃∃.

Now assume that ∃∃∃ wins G(t,∞). We construct a run of B on t by looking at plays when
∀∀∀ always chooses to set z to reach whenever possible. The directions chosen by ∀∀∀ are used
to generate ρB. Clearly, the run ρB obtained this way is accepting. J

The next lemma follows directly from the monotonicity — the smaller the value K is,
the less choices are available for ∀∀∀.

I Lemma 4. If ∃∃∃ wins G(t) from a position (q, u,K, z) and K ′ ≤ K ∈ ω then ∃∃∃ wins G(t)
from the position (q, u,K ′, z). In other words L(G,K ′) ⊇ L(G,K) ⊇ L(G,∞).
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The last of the three lemmas makes a connection with wmso.

I Lemma 5. For every K ∈ ω the set of trees L(G,K) can be recognised by a weak alternating
automaton (or equivalently, it is wmso-definable).

Proof. Intuitively, the game G(t,K) encodes the game induced by a weak alternating auto-
maton W on a tree t. The value K corresponds to the weak index of the automaton.

More formally, the states of the automaton W are Q × {0, 1, . . . ,K} × {choice, reach}.
The initial state is (qI,K, choice) and the order is

Q×{0}×{choice} ≺ Q×{0}×{reach} ≺ . . . ≺ Q×{K}×{choice} ≺ Q×{K}×{reach}.

The accepting states are of the form Q×{K ′}×{choice}. The transition relation for a state
(q,K ′, z) over a letter a contains, for every pair of transitions (q, a, qL, qR), (q, a, q′L, q′R) of B,
the transition

(
(q,K ′, z), a, SL, SR

)
, with Sd for d = L, R defined as follows:

if z = choice and K ′ = 0 then Sd =
{

(qd,K ′, choice)
}
,

if z = choice, K ′ > 0, and qd /∈ F then Sd =
{

(qd,K ′, choice), (q′d,K ′ − 1, reach)
}
,

if z = choice, K ′ > 0 and qd ∈ F then Sd =
{

(qd,K ′, choice), (q′d,K ′ − 1, choice)
}
,

if z = reach and qd /∈ F then Sd =
{

(qd,K ′, reach)
}
,

if z = reach and qd ∈ F then Sd =
{

(qd,K ′, choice)
}
.

For a tree t the game induced by the automaton W is equivalent to the game G(t,K).
Therefore, L(W) = L(G,K) can be recognised by a weak alternating automaton. J

4 The game F

We proceed to a definition of the game F , and its variants F(K), for K ∈ ω. For all K ∈ ω,
the game F(K) will simulate G(t,K) with an unknown t generated on-the-fly.

Let us fix a non-deterministic parity tree automaton A recognising the complement of
L(B) (A may not be equivalent to a Büchi automaton). We will construct F from A and B.
Intuitively, in F we ask the players to proceed as follows:
∃∃∃ should successively construct a tree t and a run ρA of A on t;
at the same time ∀∀∀ should select directions in this tree constructing an infinite branch α
of t, aiming to show that the run ρA proposed by ∃∃∃ is not accepting;
moreover ∃∃∃ would aim at showing that the tree t she constructs is difficult in a sense
that she can win G(t,K) for all finite K. ∀∀∀ will aim to refute this claim, by showing that
he can win with some finite K. It is crucial for our argument that ∀∀∀ can do this in a
history-deterministic way in the sense of [7].

4.1 Positions and multi-transitions
The positions of F are of the form (S, p, κ, r) where:

S ∈ P(QB × {safe, reach}) is a set of active states,
p ∈ QA is a state of the automaton A,
κ : S → ω assigns to the active states their counter values,
r ∈ {0, 1, 2} is a sub-round number.

Using the first and the third component ∃∃∃ will try to prove that she wins in all the games
G(t,K). In the second component she will construct a run of A. The fourth component
makes the definition of the game more modular.

Similarly as before, for K ∈ ω by F(K) we denote the game F with the initial position
({(qBI , safe)}, qAI , κ, 0) where κ(qBI , safe) = K.
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p ∈ QAS — the safe phase S — the reach phase κ r

κ′ r′p′ ∈ QAS′ — the safe phase S′ — the reach phase

Figure 1 An example multi-transition µ. The dots correspond to the active states and the state
of A. The convention is that all the active states from the safe phase are drawn on the left, all the
active states from the reach phase are drawn in the middle, then comes the state of A, and finally
the counter values κ and the sub-round number r are drawn on the right. For the purpose of layout,
we additionally draw an edge between the states p and p′ of A (this edge does not belong to e).
The blue dotted line separates the safe phase from the reach phase. Boldfaced edges are boldfaced.
Every active state in S′ has one incoming boldfaced edge as required by (2).

We say that an active state (q, z) is in the safe phase if z = safe; and in the reach phase
if z = reach. A pair (s, s′) changes phases if s and s′ are in different phases. So (s, s′) can
change phases from safe to reach, or change phases from reach to safe.

The edges of F will have an additional structure (i.e. an edge will be more than just
a pair of positions of the game). This richer structure will be used to define the winning
condition of F that will refer to a sequence of edges. From our definition it will be easy to
see how to transform such a game into a standard two player game. To underline that edges
have additional structure we refer to them as multi-transitions.

A multi-transition µ from a position (S, p, κ, r) to a position (S′, p′, κ′, r′) contains:
the pre-state (S, p, κ, r),
the post-state (S′, p′, κ′, r′) with r′ = r + 1 mod 3,
a set e ⊆ S × S′ of edges from the active states in S to the active states in S′,
a set ē ⊆ e of boldfaced edges, with exactly one boldfaced edge leading to every s′ ∈ S′:

∀s′∈S′
∣∣{s : (s, s′) ∈ ē}

∣∣ = 1 (2)

We additionally require the following condition on κ, called boldface-decreasing. Assume
that (s, s′) ∈ ē. If (s, s′) changes phases from safe to reach then1 κ′(s′) = max(κ(s)−1, 0).
Otherwise κ′(s′) = κ(s).

An example multi-transition is depicted in Figure 1. The role of e is to trace the origins
of each active state in a similar way as for determinisation of Büchi automata. With the
boldfaced edges ∀∀∀ will indicate which of the possible origins of an active state he finds the
most promising for him. The boldface-decreasing condition says that on boldfaced traces the
counter should behave in the same way as in a game G(t,K) for the tree t being constructed.
The exact rules how the multi-transitions are selected by the players are given in Section 4.2.

Notice that for a fixed K ∈ ω the game F(K) has only finitely many reachable positions
and finitely many multi-transitions — if K =∞ then all the counter values κ are equal ∞,
otherwise the counter values in the reachable positions are at most K.

4.2 Rules of the game F
In this section we describe the rules of the game F . From a position (S, p, κ, r) the players
interact constructing a new position (S′, p′, κ′, r′) and a multi-transition between the two

1 By the rules of the game, we shall never have κ(s) < 1 in this case.
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positions. For this they select a set of edges e ⊆ S × (QB × {safe, reach}) and a state
p′ ∈ QA according to the rules given below. Then ∀∀∀ chooses an arbitrary multi-transition µ
that respects (S, p, κ, r), e, and p′ in the following sense:

the pre-state of µ is (S, p, κ, r),
the post-state of µ is (S′, p′, κ′, r′); where S′ = {s′ : (s, s′) ∈ e} consists of the targets
of the edges e, κ′ is determined by the boldface-decreasing condition, and r′ = r + 1
mod 3,
the edges of µ are e,
the boldfaced edges ē of µ can be chosen arbitrarily by ∀∀∀ subject to condition (2).

Observe that a multi-transition µ that respects (S, p, κ, r), e, and p′ is unique but for the
choice of the boldfaced edges ē.

Assume that the current position in F is (S, p, κ, r) and consider the following cases
depending on the number of the sub-round r. In all the cases the players construct a multi-
transition µ that leads to a post-state (S′, p′, κ′, r′):
(R0) r = 0: There are two cases. If the reach phase is not empty i.e. S∩(QB×{reach}) 6= ∅,

then e contains all the pairs (s, s) for s ∈ S. The second case is when there are no states
in the reach phase. We call this situation a flush. In that case ∀∀∀ can choose2 any set
C ⊆ QB of states q such that

(q, safe) ∈ S and κ(q, safe) > 0 . (3)

The chosen active states get copied to the reach phase thanks to the edge relation defined
as: e = {(s, s) | s ∈ S} ∪

{(
(q, safe), (q, reach)

)
| q ∈ C

}
. In both cases the state p′ = p

of A is not changed and ∀∀∀ chooses µ that respects (S, p, κ, r), e, and p′.
(R1) r = 1: ∃∃∃ declares: (i) a letter a ∈ A; (ii) a transition δs = (q, a, qsL , qsR) of B, for every

s = (q, z) ∈ S; (iii) a transition δ = (p, a, p′L, p′R) of A. Then ∀∀∀ responds by selecting a
direction d ∈ {L, R}. We put p′ = p′d, and e contains all the pairs of the form ((q, z), (qsd, z))
for s = (q, z) ∈ S. ∀∀∀ chooses µ that respects (S, p, κ, r), e, and p′.

(R2) r = 2: Deterministically, every active state (q, reach) in the reach phase with q ac-
cepting (i.e. q ∈ F ) is moved to the safe phase. Formally, for each (q, z) ∈ S, the relation
e contains pairs ((q, z), (q, z′)) such that either: (i) z = z′ = safe; or (ii) z = z′ = reach
and q /∈ F ; or (iii) z = reach, z′ = safe, and q ∈ F . The state p′ = p of A is not changed.
∀∀∀ chooses µ that respects (S, p, κ, r), e, and p′.

An example round of F is presented in Figure 2.
If (s, s′) ∈ e we say that s′ is a µ-successor of s. By the definition of the sub-rounds of

the game, we obtain the following fact.

I Fact 6. Every active state has between one and two µ-successors. The only case when an
active state (q, z) can have two µ-successors is when r = 0, z = safe, and we have a flush.

4.3 The winning condition of F
Now we will define the winning condition for ∃∃∃ in F . It will depend on the sequence of
multi-transitions π = µ0µ1 . . . that were played in F . We will refer to the pre-state of µn
as (Sn, pn, κn, rn). Analogously, we will use (S′n, p′n, κ′n, r′n) for the post-state, en for the

2 Even if ∀∀∀ declares C = ∅, the fact that the reach phase was empty implies that we have a flush.
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S — the safe phase p κ r

0

(R0)
1

(R1)
a a a a a a a a

2
(R2)

0

S′ — the safe phase S′ — the reach phase p′ κ′ r′

Figure 2 A round of the game F . A round consists of three consecutive sub-rounds with
r = 0, 1, 2. At the sub-round (R0) we have a flush — the reach phase was empty and ∀∀∀ decided
to copy three out of the four active states from the safe phase to the reach phase. In the sub-
round (R1) ∃∃∃ has played a letter a and a number of transitions; and ∀∀∀ has chosen the direction
d = L. The Λ-shaped structures correspond to transitions over a of the respective automata. The
nodes in circles denote the accepting states of B that are moved to the safe phase. The values of κ
follow the boldfaced edges except the three boldfaced edges in the sub-round (R0) where the active
states change phases from safe to reach and the values of κ are decremented by 1.

edges, and ēn for the boldfaced edges of µn, respectively. Since π is a play, (S′n, p′n, κ′n, r′n) =
(Sn+1, pn+1, κn+1, rn+1) and rn ≡ n mod 3.

A trace in π is a sequence α = s0, s1, . . . such that (si, si+1) ∈ ei of all i. A trace is
boldfaced if (si, si+1) ∈ ēi for all i. For every s ∈ S′n there is a boldfaced trace ending in s,
and it is unique due to condition (2); we call it the boldfaced history of s in π.

The winning condition will be a boolean combination of three properties of plays. We
list them separately as they will be of independent interest in the proof.
W1 Infinitely many times there is a flush in the sub-round (R0).
W2 Some boldfaced trace changes phases infinitely many times.
W3 The sequence of states p0, p1, . . . of the automaton A is accepting.
Now we declare a play to be winning for ∃∃∃ if it satisfies

W1 ∧ (W2 ∨W3). (4)

Note that Condition W2 implies Condition W1— if some trace in a play changes phases
infinitely often then the play must have infinitely many times a flush.

Intuitively, Condition W1 expresses that ∃∃∃ has not stayed forever in the reach phase —
she has reached an accepting state of B whenever ∀∀∀ asked for it.

Condition W2 says that ∀∀∀ has not succeeded to bound the number of changes of phases;
so he has failed to prove that on the constructed tree t he can win in G(t,K) for some finite
K. Condition W3 takes care of the situation when the constructed tree is not in L(B). One
can think of it as an escape option for ∃∃∃. She uses it when ∀∀∀ plays very cautiously and gives
∃∃∃ no chance to construct a trace satisfying Condition W2; an extreme example is when ∀∀∀
never chooses to move some active states to the reach phase.
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({qsx}, px, 0)

({qsx}, px, 1)

({qsb}, pb, 2) ({qsb}, pb, 0)

({qsx, qrx}, px, 1)

({qsb ,>r}, pb, 2) ({qsb}, pb, 0)

({>s, qrb}, pb, 2) ({qrb}, pb, 0) ({qrb}, pb, 1)

({qra}, pa, 2) ({qsa}, pa, 0)

b
L

b
L

R

a
L

Figure 3 A symbolic representation of a strategy σ∃∃∃ of ∃∃∃. The subscript x in qs
x or qr

x stands for
a or b. The superscript indicates if a state is in the safe phase or in the reach phase. Only branches
not evidently losing for the player ∀∀∀ are presented.

I Example 7. Let B be the Büchi automaton from the example on page 4. Consider an
automaton A accepting the complement of L(B), namely the set of trees with only finitely
many a’s on every branch. This automaton is a deterministic co-Büchi automaton having
two states: pa and pb, with pa being a rejecting state. So a run of A will be accepting if on
every branch the state pa appears only finitely often. For a state px the transition relation
δA on a letter y ∈ {a, b} contains the transition (px, y, py, py).

We claim that ∃∃∃ has a winning strategy in F(∞) constructed from B and A. This
strategy is schematically presented in Figure 3. For compactness of the notation we omit
the third component of the position that is always ∞ and omit active states of the form
(>, z) — it is trivial for ∃∃∃ to play from them.

The root position is a flush, so ∀∀∀ can choose whether to copy the unique active state to
the reach phase. If he does not (i.e. he goes up in the picture) then ∃∃∃ chooses b and plays
the transition (qx, b, qb,>). Then it is clear that it is better for ∀∀∀ to move to the left. The
game gets to a similar position as in the root. If ∀∀∀ constantly chooses to play like this then
he will lose as the play will have infinitely many times a flush and only states pb, thus it will
satisfy Conditions W1 and W3.

If ∀∀∀ decides to copy the active state during a flush then ∃∃∃ still chooses b but plays different
transitions for the two copies: for the active state in the safe phase she chooses (qx, b, qb,>),
for the active state in the reach phase she chooses (qx, b,>, qb). If ∀∀∀ chooses the left direction
then the play gets to a similar position as in the root. Since there is a flush, and ∀∀∀ does
not manage to see a new pa state, the result is the same as in the case when ∀∀∀ has not
copied the active state. If ∀∀∀ chooses the right direction then the play reaches a position
where the only interesting active state is in the reach phase. Then ∃∃∃ chooses the letter a
and the transition (qb, a, qa,>). It is then more interesting for ∀∀∀ to move to the left. The
play reaches a position of the same form as the one in the root. The interesting thing that
happens on this path is that the unique boldfaced trace changes phases. So, if ∀∀∀ chooses
infinitely often to copy an active state and then go to the right then the play will satisfy
Conditions W1 and W2. Otherwise there will be only finitely many occurrences of the state
pa and ∀∀∀ will lose since there still will be infinitely many times a flush.

We have already noticed that for every K ∈ ω, the game F(K) is finite. By the definition
of Conditions W1, W2, and W3, the winning condition of F(K) is a regular property of
sequences of multi-transitions. By adding multi-transitions of F(K) to the positions, one
can obtain an equivalent game with the winning condition on sequences of positions. So up
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to presentation, F(K) is essentially a finite game with a regular winning condition, and we
can solve it effectively.
I Fact 8. For a fixed K ∈ ω, the winner of F(K) can be effectively found and he/she can
win using a finite memory winning strategy. Let m∀∀∀ be the bound on the size of the memory
of ∀∀∀ needed to win the game F(∞).

5 Characterisation

We show that F(∞) characterises when L(B) is wmso-definable. This is formulated in the
following two propositions that complete the proof of Theorem 1. They rely on the following
standard fact, see for instance [24].
I Fact 9. If L is a language of a Büchi tree automaton then L ∈ Σ1

1. If L is a wmso-definable
tree language then L is Borel.
I Proposition 10. If ∀∀∀ wins F(∞) then L(B) is wmso-definable.
I Proposition 11. If ∃∃∃ wins F(∞) then L(B) is Σ1

1-complete and not wmso-definable.

5.1 Proof of Proposition 10
The proof of Proposition 10 is based on the existence of finite memory strategies in finite
games with regular conditions, and the link with the game G given by the following lemma.

I Lemma 12. Consider K ∈ ω. If there exists3 a tree t /∈ L(B) such that ∃∃∃ wins G(t,K)
then ∃∃∃ wins F(K). In other words if L(G,K) 6⊆ L(B) then ∃∃∃ wins F(K).

Proof. Take such a tree t 6∈ L(B), and let ρA be an accepting run of the automaton A on
t. Let σ∃∃∃ be a winning strategy of ∃∃∃ in G(t,K). We can assume that it is positional. We
define a winning strategy of ∃∃∃ in F(K).

The only sub-round when ∃∃∃ makes some choice is the sub-round (R1). Suppose that
the sequence of directions already played by ∀∀∀ was u, and the play reaches a position
(Su, pu, κu, 1). Now ∃∃∃ should choose a letter, a transition of A, and a transition of B
for every active state. As the letter, let ∃∃∃ play the letter of t, namely t(u). As the transition
of A she plays the transition from ρA in u. What remains to show is how ∃∃∃ chooses the
transitions of B. For this let us assume an invariant saying that for every (q, z) ∈ Su, the
winning strategy σ∃∃∃ in G(t,K) is defined from the position (q, u, κu(s), z). The invariant
then allows us to finish the definition of the strategy. For an active state s = (q, z) let ∃∃∃
choose the same transition as from the position (q, u, κu(s), z) in G(t,K) (this is possible
since σ∃∃∃ is positional). It is direct to check that our invariant is preserved.

We need to prove that the above strategy is winning. Clearly Condition W3 is guaranteed
to hold as ρA is an accepting run of A on t. It remains to prove Condition W1. After every
flush, for every copied active state (q, reach) ∃∃∃ follows the strategy σ∃∃∃ in G(t,K). Since σ∃∃∃
is winning it leads eventually to an accepting state. As no states are added to the reach
phase before the next flush, there is a global bound on the number of steps after which no
more active states will stay in the reach phase. Therefore, every play consistent with this
strategy will have infinitely many times a flush and thus will satisfy Condition W1. J

I Lemma 13. There exists a finite value K0 ∈ ω that can be computed from B such that if
∀∀∀ wins F(∞) then he wins F(K0).

3 Notice that by Lemma 3, such a tree cannot exist for K = ∞.
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Proof. Observe that F(∞) is a finite game effectively constructed from the automaton B.
By Fact 8 we can decide who is the winner in F(∞). If ∃∃∃ wins then let K0 = 0. If ∀∀∀ wins
then he has a finite memory winning strategy. Let σ∀∀∀ be such a strategy and let m∀∀∀ be the
size of its memory. We set K0 to be the product of: m∀∀∀, the number of positions in F(∞),
and the number of possible active states (twice the number of states of B).

Observe that we can execute the strategy σ∀∀∀ in the game F(K0) as long as ∀∀∀ does not
violate Condition (3) that prohibits copying an active state s from the safe phase to the
reach phase when κ(s) = 0. We show that indeed ∀∀∀ does not violate this condition when
playing σ∀∀∀.

Suppose to the contrary that in F(K0) there is a play, obtained when ∀∀∀ is simulating σ∀∀∀,
reaching in the sub-round (R0) a position such that for some active state s = (q, safe) we
have κ(s) = 0. This play corresponds to a play in F(∞). During this play some boldfaced
trace changes phases from safe to reach exactly K0 times. By a standard pumping argument
we can find a loop in σ∀∀∀ such that on this loop there is a boldfaced trace that is itself a loop
and that changes phases at least twice. Following this loop in σ∀∀∀ we get a play respecting the
strategy σ∀∀∀ with a boldfaced trace on it that changes phases infinitely often. So it satisfies
Condition W2. As we have already noted, Condition W2 implies Condition W1. So the play
is winning for ∃∃∃, a contradiction. J

Proof of Proposition 10. Assume that ∀∀∀ wins F(∞). By Lemma 13 we know that ∀∀∀ wins
F(K0) for some fixed K0. Using the notation from (1), we claim that:

L(B) = L(G,K0).

By Lemma 5 we know that the latter language is wmso-definable, so the equality finishes
the argument. Lemma 4 gives us:

L(B) = L(G,∞) ⊆ L(G,K0) .

Assume for the sake of contradiction that the inclusion is strict, i.e., there exists t ∈
L(G,K0) \ L(B). By Lemma 12 this implies that ∃∃∃ wins F(K0). But this contradicts
the fact that ∀∀∀ wins F(K0). J

5.2 Proof of Proposition 11
Suppose that ∃∃∃ wins in F(∞). Let us fix a winning strategy σ∃∃∃ for ∃∃∃ in F(∞).

We need to prove that L(B) is Σ1
1-hard, so we will construct an appropriate continuous

reduction. Let ωTr denote the space of partial ω-branching trees. Such a tree τ is a non-
empty, prefix-closed subset of ω∗. We say that an ω-branching tree τ is ill-founded if it
contains an infinite branch, i.e. there exists α ∈ ωω such that for every x ≺ α we have x ∈ τ .
We use IF to denote the set of all ill-founded ω-branching trees. If an ω-branching tree is
not ill-founded then it is well-founded.
I Fact 14. IF is Σ1

1-complete.
Therefore, it is enough to construct a continuous reduction from IF to L(B). Our aim is

to construct a tree t(τ) such that t(τ) ∈ L(B) if and only if τ is ill-founded. The tree t(τ)
will be obtained by evaluating the strategy σ∃∃∃ against a certain family of strategies of ∀∀∀,
called τ -genuine strategies.

Let us explain this point in more detail. A strategy for ∃∃∃ in F(∞) can be seen as a
strategy tree where branching represents the choices of ∀∀∀ (see Figure 3). Recall from the
definition of the game that ∀∀∀ not only chooses directions (in the sub-round (R1)), but also
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copies active states to the reach phase (during a flush in the sub-round (R0)), and selects
boldfaced edges (in all the sub-rounds). We want to extract from the strategy tree σ∃∃∃ a tree
where we leave only branching corresponding to the choice of directions. To this end we
define τ -genuine strategies of ∀∀∀, where his choices to copy and to select boldfaced edges are
determined by the history of the play so far. This means that a strategy tree for ∃∃∃ against
all τ -genuine strategies of ∀∀∀ will be a tree with branching corresponding only to the choices
of directions by ∀∀∀. Then we show that we have not restricted the power of ∀∀∀ too much,
namely from this strategy tree for ∃∃∃ we can read out the required tree t(τ).

To properly define τ -genuine strategies of ∀∀∀ we will use the Kleene-Brouwer ordering,
see [15, Section 2.G]. For x, y ∈ ω∗, we say that x ≤KB y if either: (i) x � y, or (ii) for some
n < m < ω and v, x′, y′ ∈ ω∗ we have x = vnx′ and y = vmy′. Intuitively, x ≤KB y if x is
below or to the left of y. ε is the ≤KB-maximal element of ω∗. There is no ≤KB-minimal
element in ω∗, e.g. for every x ∈ ω∗ and its 0-successor x · 0 we have x · 0 <KB x.

I Fact 15 (See [15, Proposition 2.12]). An ω-branching tree τ is well-founded if and only if
≤KB is a well-order on the vertices of τ .

For certain technical reasons it will be useful to have the following construction.

I Definition 16. First, assume that list : ω → ω∗ has the property that for each x ∈ ω∗,
the pre-image list−1({x}) is infinite (i.e. every vertex appears infinitely many times in this
enumeration). Now, given x ∈ ω∗ let down(x, n) be either list(n) if list(n) <KB x or x · 0
otherwise.

I Fact 17. The following conditions are satisfied for every x ∈ ω∗:
∀n∈ω down(x, n) <KB x,
for every y <KB x there are infinitely many n such that down(x, n) = y.

Now we can proceed with the definition of τ -genuine strategies. Our aim is to make sure
that for every sequence of successive directions d0, d1, . . . played in the sub-rounds (R1),
there is a unique τ -genuine strategy of ∀∀∀. A τ -genuine strategy will depend on certain
additional information accumulated during a play, and this information will be related to
the ω-branching tree τ . Therefore, ∀∀∀ will keep track of an extended position — a position
(S, p, κ, r) of F together with a mapping ν : S → τ and a counter c ∈ ω. The function ν

will measure the progress of every active state with respect to the ≤KB order over τ . The
counter c will count the number of times when a flush happened in the play.

The initial extended position of the game is the initial position of F(∞) together with
ν assigning to (qBI , safe) the root ε of τ ; and the counter c = 0.

A strategy σ∀∀∀ of ∀∀∀ is called τ -genuine if it satisfies the three conditions defined below:
genuine-copying, flush-counting, and KB-tracking.

A strategy σ∀∀∀ satisfies genuine-copying if during a flush in the sub-round (R0) it copies
an active state s from the safe phase to the reach phase if and only if down(ν(s), c) ∈ τ .

The condition of flush-counting says that ∀∀∀ increments c by 1 exactly when there is a
flush in the sub-round (R0); otherwise he keeps the value c unchanged.

The last condition KB-tracking determines how the set of boldfaced edges ē should be
chosen and how to update ν. We say that a multi-transition µ from (S, p, κ, r, ν, c) to
(S′, p′, κ′, r′, ν′, c′) with edges e and boldfaced edges ē satisfies the KB-tracking condition
when:

If µ is not a flush then for every s′ ∈ S′:

ν′(s′) = max
≤KB
{ν(s) : (s, s′) ∈ e} .
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Moreover, the unique boldfaced edge to s′ should come from s0 realising the maximum
above, i.e., ν′(s′) = ν(s0) (if there is more than one such s0 then we choose the smallest
one according to some fixed ordering on active states).
If µ is a flush then for every s′ ∈ S′ from the safe phase, the vertex ν′(s′) of τ and the
boldfaced edges are determined as above. For every s′ ∈ S′ in the reach phase there is a
unique s ∈ S with (s, s′) ∈ e. This edge needs to be boldfaced and we set

ν′(s′) = down(ν(s), c) .

Notice that in this last case the node down(ν(s), c) is in τ thanks to the genuine-copying
condition.
I Fact 18. Using the above notions, the following inequalities hold:

if (s, s′) ∈ ē then ν(s) ≥KB ν′(s′),
if (s, s′) ∈ e and (s, s′) changes phases from safe to reach then ν(s) >KB ν′(s′),
if (s, s′) ∈ e and (s, s′) does not change phases from safe to reach then ν(s) ≤KB ν′(s′).

I Corollary 19. Suppose τ is well-founded. If π is an infinite play of F(∞) consistent with
a τ -genuine strategy of ∀∀∀ then π does not satisfy W2 (no boldfaced trace changes phases
infinitely many times).

I Remark. Observe that all the choices of ∀∀∀ except the directions d are uniquely determined
in a τ -genuine strategy. Therefore, to define a τ -genuine strategy it is enough to say what
will be the directions proposed by ∀∀∀ in the sub-rounds (R1). For the next definition it is
also useful to note that all the maximal plays in F(∞) are infinite.

I Definition 20. For every α ∈ {L, R}ω by σ∀∀∀(τ, α) we denote the unique τ -genuine strategy
of ∀∀∀ that for every n ∈ ω plays d = α(n) in the n-th sub-round (R1). Let π(τ, α) be the
infinite play of F(∞) obtained when ∃∃∃ is playing σ∃∃∃ and ∀∀∀ is playing σ∀∀∀(τ, α).

For every finite prefix u ≺ α we denote by π(τ, u) the corresponding prefix of π(τ, α). This
play is defined until ∀∀∀ is asked to determine the (n+1)-th direction in the sub-round (R1).
Let (Su, pu, κu, ru, νu, cu) be the extended position of this play at the beginning of the last
round (i.e. when ru = 0).

We can finally define the tree t(τ).

I Definition 21. We define the tree t(τ) together with a run ρA(τ) of A. For a vertex
u ∈ {L, R}∗, let t(τ)(u) and ρA(τ)(u) be the letter a and the state p of A played by ∃∃∃ in the
sub-round (R1) of the last round of the play π(τ, u).

Observe that by the construction, ρA(τ) is a run of A over t(τ). Notice also that since the
strategy σ∀∀∀(τ, u) queries whether v ∈ τ for finitely many v at a time, the function mapping
τ to t(τ) is continuous. We show that indeed the mapping is the required reduction from
IF as expressed by the following two lemmas.

I Lemma 22. If τ is well-founded then ρA(τ) is accepting and thus t(τ) /∈ L(B).

I Lemma 23. If τ is ill-founded then t(τ) ∈ L(B).

Poof of Lemma 22. The proof uses Corollary 19. Consider any infinite branch α of t(τ)
and the corresponding play π(τ, α) of σ∃∃∃ against σ∀∀∀(τ, α). Since σ∃∃∃ is winning we know
that it satisfies the disjunction W2∨W3. By Corollary 19 we know that no play consistent
with σ∀∀∀(τ, α) can satisfy Condition W2. Therefore, Condition W3 needs to be satisfied and
therefore, the run ρA(τ) is accepting on α. J
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The rest of this section is devoted to the proof of Lemma 23 we fix an ω-branching
ill-founded tree τ ∈ IF. We then extract an accepting run ρB of B on t(τ) from the strategy
σ∃∃∃ in F(∞). The crucial point is to make sure that ∀∀∀ will copy infinitely often the active
states of the constructed run to the reach phase. For this we need to rely on the condition of
genuine-copying. Let us now describe how this construction works on our running example.
I Example 24. Recall the example from page 4 and the winning strategy for ∃∃∃ from the
example on page 8 (see Figure 3). In this strategy ∀∀∀ has a choice of whether to copy or not
the active state qsx; this corresponds to going down or up from the root, respectively. Next,
∀∀∀ chooses a direction. In a τ -genuine strategy a state qsx is assigned a node ν(qsx) of τ and c
counts the number of flushes. The condition of genuine-copying requires ∀∀∀ to copy the state
qsx to the reach phase if down(ν(qsx), c) ∈ τ . Since all loops of σ∃∃∃ contain a flush, the value
c counts the number of times either of the loops has been taken.

According to the definition of a τ -genuine strategy, the only moment when the value ν(qsx)
may change is when ∀∀∀ copies (i.e. takes the down successor of the root at Figure 3) and in
that case the value ν(qrx) becomes down(ν(qsx), c) according to the KB-tracking condition.
This becomes the new value of ν(qsx) if and only if the play then follows the direction R.

If τ is well-founded then there is no infinite ≤KB-descending chain in τ and therefore, for
every branch α ∈ {L, R}ω, the play π(τ, α) follows only finitely many times the down path of
σ∃∃∃. Therefore, the produced tree t(τ) contains only finitely many letters a on every branch
and t(τ) /∈ L(B).

Now assume that τ is ill-founded and v0 >KB v1 >KB . . . is an infinite ≤KB-descending
chain of nodes of τ . We will use this sequence to find a branch of t(τ) that contains infinitely
many a’s. We start in the root of t(τ) and keep track of the current vertex ν(qsx) of τ . We
will preserve an invariant that when being in a node u ∈ {L, R}∗ with n the number of
occurrences of a on u in t(τ) then ν(qsx) = vn — the vertex of τ pointed to by ν is the n-th
vertex in our ≤KB-descending chain. Consider the following two cases:
1. If down(ν(qsx), c) = vn+1 then ∀∀∀ chooses to copy, i.e., go down from the root. We follow

the R-successor in t(τ). Then t(τ)(uR) = a and the game gets to the node uRL. The
number of times we have seen an a is incremented (i.e. n′ = n+ 1), and the invariant is
preserved since after this loop we have ν(qsx) = vn+1.

2. Otherwise either (i) down(ν(qsx), c) 6∈ τ so ∀∀∀ does not copy, or (ii) down(ν(qsx), c) ∈ τ so
∀∀∀ copies, but we choose the direction L. In both cases we end up in the left successor of
our current node (i.e. in uL). The new value ν(qsx) does not change, neither does n.

Therefore, in both cases the invariant ν(qsx) = vn is preserved. Since the value of c tends to
infinity, Fact 17 tells us that down(ν(qsx), c) = vn+1 will eventually hold, and we will see an
a. In the limit, the branch of t(τ) we follow will have infinitely many letters a.

Proof of Lemma 23. We fix an ω-branching ill-founded tree τ ∈ IF. Our aim is to extract
an accepting run ρB of B over t(τ) from the strategy σ∃∃∃ in F(∞) that will be confronted
with a family of τ -genuine strategies of ∀∀∀, see in particular Definition 20. Condition W1 will
imply that the constructed run of B is accepting. The crucial point is to make sure that ∀∀∀
will copy infinitely often the active states of the constructed run to the reach phase. For
this we need to rely on the condition of genuine-copying.

Since τ is ill-founded, there exists a sequence v0 >KB v1 >KB . . . of nodes of τ . Without
loss of generality we can assume that v0 = ε and that v0, v1, . . . form an infinite branch of τ .

To define ρB we will inductively select, for every u ∈ {L, R}∗, an active state su = (qu, zu)
such that su belongs to Su — the set of active states at the end of the play π(τ, u). The
crucial constraint is that for every infinite branch α, the active states

(
su

)
u≺α will lie on

a single trace in the play π(τ, α). We will refer to this condition as trace-following. See
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Figure 4 An illustration of the trace-following condition. The graph is obtained by evaluating
the strategy σ∃∃∃ against the strategies σ∀∀∀(τ, α) for all possible values of α. To simplify the image
we present only the active states S and the edges e between them. The boldfaced edges ē are not
drawn since they do not intervene in this construction. The dashed edges are the edges connecting
the chosen active states — we follow these edges. The blue dotted paths separate the safe phase
from the reach phase. The green background shadow shows the tree-shape of the construction —
we can control the direction d chosen by ∀∀∀ in the sub-round (R1), to move either to the left or
the right subtree. The black horizontal lines separate the successive rounds of the game, each of
them consists of the three sub-rounds. The letters a, b, and c are the letters of the tree t(τ) in the
respective nodes.

Figure 4 for an illustration of this condition. It will be used in such a way to guarantee that
the mapping ρB(u) = qu is actually a run of B over t(τ).

Additionally su will be chosen so that the following invariant is satisfied

νu(su) ≥KB vnu
, (5)

for nu the number of times the trace through (sw)w≺u changes phases from safe to reach.
The invariant says that νu(su) should be above or to the right of the nu-th vertex of our
fixed infinite branch in τ .

We start with sε = (qBI , safe). Clearly the trace-following condition and the invariant are
satisfied since νε(sε) = ε.

Assume that su is defined and satisfies the above invariant. Consider d ∈ {L, R}. Our
aim is to define sud. Consider the (|u|+1)-th round of the play π(ud). It consists of the
sub-rounds (R0), (R1), and (R2); where in the sub-round (R1) ∀∀∀ chooses the direction d.
Starting from su we select a trace through these three sub-rounds that will lead us to sud.
Notice that by Fact 6 the condition of trace-following uniquely determines the successive
active states to choose, except the situation when an active state has two µ-successors in
the sub-round (R0) when a flush happens. In that case, zu = safe and the two µ-successors
of su are (qu, safe) and (qu, reach). We follow (qu, reach) if and only if

down(νu(su), cu) = vnu+1 ; (6)

Recall that cu is the number of times a flush happened in the play π(τ, u). Observe that a



16 Deciding the topological complexity of Büchi languages

τ -genuine strategy indeed creates an edge from su to (qu, reach) if the above condition holds
(because of genuine-copying and the fact that vnu+1 ∈ τ).

Let sud be the active state that is reached by following the trace according to the above
condition.

I Fact 25. The invariant (5) is preserved.

Proof. This fact relies on Fact 18. The only case when for some (s, s′) ∈ e we have ν(s) >KB
ν′(s′) is when (s, s′) changes phases from safe to reach. This case is covered by (6) and we
are then guaranteed to satisfy

ν′u(s′) = down(νu(su), cu) = vnu+1 = vn′
u
,

because of the definition of ν′ and the fact that the new value n′u is incremented because in
this sub-round the followed trace changes phases from safe to reach.

In all other cases we have ν(s) ≤KB ν′(s′) by Fact 18 and we know that nu = n′u.
Therefore, we know that:

ν′u(s′) ≥KB νu(su) ≥KB vnu
= vn′

u
.

J

It remains to prove that ρB is an accepting run of B on t(τ). Assume contrarily that
there exists an infinite branch α such that there are only finitely many accepting states in ρB
on α. By W1 we know that during the play π(τ, α) there was infinitely many times a flush.
It means that the trace through (su)u≺α changed phases from safe to reach only finitely
many times (every time this trace changes phases from reach to safe, it has to go back to
the safe phase later on and it implies an accepting state in ρB). Therefore, for some u ≺ α

and all w such that u � w ≺ α we have

nu = nw. (7)

Recall that cw is the number of times a flush happened on the play π(τ, w) and the play
π(τ, α) contains infinitely many times a flush. So for every i ≥ cu there is w ≺ α such that
u � w, cw = i and there is a flush at w. Take such a node w for which list(cw) = vnu+1;
it exists by Fact 17. The invariant (5) gives us νw(sw) ≥KB vnw

= vnu
; the later equality

due to nu = nw. As vnu
>KB vnu+1 we know that down(νw(sw), cw) = vnw+1. The rule (6)

applies here and we choose the (qw, reach) successor of sw. Let d be the direction such that
wd ≺ α. We know that nwd = nw + 1, a contradiction with (7). J

6 Conclusions

While regular languages of infinite trees are widely used nowadays, their structure is still very
poorly understood. The main reason for this is probably the lack of deterministic acceptors
for such languages. This paper exhibits a gap property for languages of non-deterministic
Büchi tree automata: such a language is either weakly definable, or Σ1

1-complete. Our proof
uses a reduction to a finite game. Given a Büchi automaton B, we construct a game F(∞)
of exponential size w.r.t. B, and with a parity condition of size proportional to the size of
B. Thus our reduction gives an EXPTime decision algorithm. This matches a known lower
bound [25].
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