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ABSTRACT 

GLOBAL AND REGIONAL ASSESSMENTS OF UNSUSTAINABLE GROUNDWATER 

USE IN IRRIGATED AGRICULTURE 

by 

Danielle Sarah Grogan 

University of New Hampshire, May, 2016 

 

Groundwater is an essential input to agriculture world-wide, but it is clear that current 

rates of groundwater use are unsustainable in the long term.  This dissertation assesses both 

current use of groundwater for country- to global-scale agriculture, and looks at the future of 

groundwater.  The focus is on 1) quantifying food directly produced as a result of groundwater 

use across spatially-varying agricultural systems, 2) projecting future groundwater demands with 

consideration of climate change and human decision-making, and 3) understanding the system 

dynamics of groundwater re-use through surface water systems.  All three are addressed using a 

process-based model designed to simulate both natural and human-impacted water systems. 

Irrigation can significantly increase crop production.  Chapter 1 combines a hydrology 

model (WBM) with a crop model to quantify current crop production that is directly attributed to 

groundwater irrigation in China.  Unsustainably-sourced groundwater – defined as groundwater 

extracted in excess of recharge – accounted for a quarter of China’s crop production, and had 

significant spatial variability.  Climate variability and groundwater demand magnified one 

another in hot and dry years, causing increased irrigation demand at the same time as limited 

surface water supplies.   
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Human decisions about water resource management can impact both the demand and 

sustainability of groundwater use.  Chapter 2 takes an interdisciplinary approach to projecting 

India’s future (to 2050) groundwater demands, combining hydrology and econometric modeling.  

The econometric model projects how humans make decisions to expand or contract the irrigated 

land area of crops in response to climate change.  Even in areas with precipitation increases, 

human decisions to expand irrigated areas led to increasing demands for groundwater.  We 

additionally assessed the potential impact of a large water infrastructure project to alleviate 

groundwater demands in India, and found that maximum alleviation (up to 16%) was dependent 

upon the storage volume and location of new reservoirs. 

One proposed method for reducing the world’s demand for groundwater is to increase the 

efficiency of agricultural water use.  However, these same inefficiencies cause a portion of 

extracted groundwater to enter surface water systems; it can then be reused, creating a complex 

system in which groundwater demand does not linearly decline with increased water use 

efficiency. Chapter 3 quantifies the amount of groundwater that enters surface water systems, the 

number of times this water is reused for agriculture, and the minimum amount of groundwater 

required by current agricultural systems in the hypothetical scenario of perfect irrigation 

efficiency. 
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INTRODUCTION 

Will there be enough food to support earth’s growing population?  This is a very basic 

question, but answering it requires understanding both the natural and human-controlled systems 

that underlie global agriculture.  Water resources is one of these key systems: agricultural 

production places high demands on the freshwater supply, and these demands will only increase 

as the population grows (Vörösmarty et al., 2000a; Postel 2000; Foley et al., 2011).  Currently, 

40% of global food production comes from irrigated agriculture (Abdulluah, 2006), which 

accounts for ~70% of all freshwater withdrawals (Shiklomanov, 2000; Cai and Rosegrant, 2002).  

Up to one third of these withdrawals are considered nonrenewable or unsustainable (Vörösmarty 

et al., 2005; Wisser et al., 2010; Wada et al., 2012), indicating that under current agricultural 

practices, water availability will not be able to keep up with increasing demands.  Most of these 

unsustainable withdrawals are from groundwater (Aeschbach-Hertig and Gleeson, 2012), and 

many of the world’s major groundwater aquifers are rapidly depleting due to unsustainable 

groundwater pumping (Aeschbach-Hertig and Gleeson, 2012; Rodell et al., 2009; Gleeson et al., 

2012; Wada et al 2012).   

Unsustainable groundwater is defined broadly as groundwater extracted in excess of 

recharge (Aeschbach-Hertig and Gleeson, 2012; Rodell et al., 2009; Gleeson et al., 2012; Wada 

et al 2012).  While several estimates of global groundwater extraction and depletion have been 

made (e.g., Döll and Siebert, 2002; Wisser et al., 2010; Wada et al., 2012), fewer analyses have 

linked these water extractions directly to the production of food (Siebert and Döll, 2010).  Tying 

irrigation water to food production is important because different combinations of crops, climate, 
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soil conditions, and management lead to significantly different crop water use productivities (Cai 

al., 2011) – i.e., the amount of crop biomass or food calories produced by a unit of water can 

vary widely.   

Key considerations when studying global food security and water resources are: current 

agricultural production, arable land, freshwater availability, population growth, and climate 

change. India and China are excellent focal points for groundwater and agriculture assessments 

because they represent extreme cases for all these key considerations.  Currently, China and 

India are the top agricultural producers in the world, accounting for 19% and 10% of total global 

food production, respectively, and are also the most populous countries in the world 

(FAOSTAT).  Asian countries have the lowest ratio of arable land to population at 0.13 hectares 

per person (United Nations Population Division), with little room to increase agricultural area.  

This means that to produce more food to keep up with its growing population, Asia must rely on 

increasing the productivity of existing cropland.  Water is the ultimate constraint on food 

production in both India and India (Cheng et al., 2009; Amarasinghe et al., 2005; Rosegrant et 

al., 2002), and the Upper Ganges aquifer in India and the North China Plain aquifer are two of 

the most rapidly-depleting groundwater reservoirs in the world (Aeschbach-Hertig and Gleeson, 

2012; Gleeson et al., 2012). 

 Human management of water resources has the potential to both exacerbate and alleviate 

unsustainable groundwater demand.  For example, poor management of water delivery through 

canal systems paired with government subsidies for well installation and pumping costs in India 

(Badiani, Jessoe and Plant, 2012) have lead some farmers to favor (unsustainable) groundwater 

use over surface water use for irrigation even when surface water is available (Minor Irrigation 

Census, 1993).  On the other hand, constructed infrastructure such as large reservoirs, small 
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tanks and ponds, and canals all work to bolster the supply of surface water.  Globally, large dams 

constructed in the last century have created ~7,000 km3 of surface water storage (ICOLD, 2011), 

and small tanks and ponds have significant potential to increase water availability for crop 

production (Wisser et al, 2010).  Faced with declining groundwater resources and growing 

populations, many countries are planning large-scale water transfer projects (Ghassemi and 

White, 2007; Adhikari et al., 2009).  India has begun construction on its National River Linking 

Project, which plans to transport 178 km3 yr-1 of water by connecting 37 rivers and building 

~3,000 storage dams (Amarasinghe, Shah and Malik, 2009); China similarly has plans to 

transport 45 km3 yr-1 of water from the water-rich southern China Yangtze river basin to the arid 

northeast (Zhang, 2009).  Increasing irrigation efficiency – i.e., decreasing runoff, recharge, and 

non-beneficial evaporation from irrigation systems – has also been proposed as a potential 

solution to groundwater stress (Gleick, 2001; Wada, 2012; Simmons et al., 2015).  However, 

several studies have shown that irrigation efficiency improvements can lead to unintended 

increased water use (Contor and Taylor, 2013; Ward and Pulido-Velazquez, 2008) due to 

“Jevon’s Paradox” which states that as technology leads to improved resource use efficiency, 

people respond by increasing consumption of the resource (Sorrell, 2009). 

 

This dissertation addresses two major questions: 

1) How much food production is directly attributable to irrigation with unsustainable 

groundwater in China and India? 
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2) What is the potential for human actions – through farmer-level decision making, large-

scale infrastructure development, and irrigation efficiency increases – to alter 

groundwater demands for agriculture? 

 

Chapters 1 and 2 address the first question.  Chapter 1 uses a combined hydrology and 

crop modeling approach to assess how unsustainable groundwater contributes to China’s current 

agricultural production.  Chapter 2 quantifies the impact of removing unsustainable groundwater 

as an irrigation water source on India’s current agricultural production.  Question 2 is addressed 

in both Chapter 2 and Chapter 3.  In Chapter 2, India’s future unsustainable groundwater demand 

is projected in a combined hydrology-econometrics modeling system that represents not only the 

physical system, but also human decision making.  Chapter 2 contributes to the emerging field of 

socio-hydrology (Baldassare et al., 2013), which focuses on the interactions between people and 

water resources, including not only large-scale infrastructure projects and policy but also farmer-

level decisions.  Chapter 2 additionally assesses the ability of different implementations of 

India’s National River Linking Project to alleviate unsustainable groundwater demand.  Lastly, 

Chapter 3 addresses Question 2 by assessing the groundwater implications of increasing 

irrigation efficiency on a global scale.  Chapter 3 aims to understand the system dynamics of 

groundwater use and reuse, and does not project future demands but rather contributes new 

understanding to current global agricultural water use.   

Each chapter was written in the format of individual, peer-reviewed journal articles.  As 

of this date (March 2016), Chapter 1 is published in the journal Science of the Total 

Environment with coauthors Fan Zhang, Alexander Prusevich, Richard Lammers, Dominik 

Wisser, Stanley Glidden, Changsheng Li and Steve Frolking.  Chapter 2 is in review at the 
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journal Environmental Research Letters with coauthors Esha Zaveri (equal first authorship), 

Karen Fisher-Vanden, Steve Frolking, Richard Lammers, Douglas Wrenn, Alexander Prusevich 

and Robert Nicholas.  Chapter 3 will be submitted shortly to the journal Science Advances with 

coauthors Dominik Wisser, Alexander Prusevich Richard Lammers, and Steve Frolking.  The 

citations for these papers are: 

1. Grogan D S, Zhang F, Prusevich A, Lammers R B, Wisser D, Glidden S, Li C, and 

Frolking S (2015) Quantifying the link between crop production and mined groundwater 

irrigation in China Sci. Total Environ. 511 161-75. 

 

2. Zaveri E, Grogan D S, Fisher-Vanden K, Frolking S, Lammers R B, Wrenn D H, 

Prusevich A, and Nicholas R E (2016) Inivisible water, visible impact: Groundwater use 

and Indian agriculture under climate change. Environmental Research Letters, in review. 

 

3. Grogan D S, Wisser D, Prusevich A, Lammers R B, Frolking S (2016) The use and reuse 

of unsustainable groundwater: A global budget. In prep. 
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CHAPTER I: 

 

QUANTIFYING THE LINK BETWEEN CROP PRODUCTION AND MINED 

GROUNDWATER IRRIGATION IN CHINA 

 

Abstract 

In response to increasing demand for food, Chinese agriculture has both expanded and 

intensified over the past several decades.  Irrigation has played a key role in increasing crop 

production, and groundwater is now an important source of irrigation water.  Groundwater 

abstraction in excess of recharge (i.e., groundwater mining) has resulted in declining 

groundwater levels and could eventually restrict groundwater availability.  In this study we used 

a hydrological model, WBMplus, in conjunction with a process based crop growth model, 

DNDC, to evaluate Chinese agriculture's recent dependence upon mined groundwater, and to 

quantify mined groundwater-dependent crop production across a domain that includes variation 

in climate, crop choice, and management practices.  This methodology allowed for the direct 

attribution of crop production to irrigation water from rivers and reservoirs, shallow (renewable) 

groundwater, and mined groundwater.  Simulating 20 years of weather variability and circa year 

2000 crop areas, we found that mined groundwater fulfilled 20% - 49% of gross irrigation water 

demand, assuming all demand was met.  Mined groundwater accounted for 15% - 27% of 

national total crop production. There was high spatial variability across China in irrigation water 

demand and crop production derived from mined groundwater.  We find that climate variability 

and mined groundwater demand do not operate independently, but rather magnify one another in 
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hot and dry years with increased irrigation demand and limited surface water supply for 

irrigation. 

 

Introduction 

Increasing global demand for food over the past several decades has forced agriculture to 

expand into water-scarce regions and increase irrigation water use substantially (Molden et al., 

2007).  With little additional land available for agricultural expansion except in tropical 

rainforests, future increases in crop production will likely rely on increases in irrigation and 

intensification, both in China and globally (Molden et a., 2007). Historically, China’s agriculture 

was concentrated in the wetter southern half of the country, but significant expansion over the 

past 50 years has led to over 50% of current national crop production occurring in the dry 

northern regions (Ma, 2006). Irrigated agriculture has expanded significantly in China in the past 

75 years, increasing by more than 35 million hectares since 1939 to 51 Mha of planted land and 

79 Mha of harvested land in 2000 (Calow et al., 2009; Portmann et al., 2010).  Groundwater 

exploitation has underpinned the agricultural intensification of northern China since the 1990’s, 

where groundwater accounts for up to 40% of irrigation water (Wada et al. 2012). Declining 

groundwater levels are threatening to limit the irrigation water supply for China’s crop 

production (Kang et al., 2009; Aeschbach-Hertig and Gleeson, 2012; Syed et al., 2008).  There 

has been a 15 m drop in groundwater levels in the North China Plain since 1960 (Calow et al., 

2009), and the current rate of groundwater depletion across China is approximately 1m per year 

(Aeschbach-Hertig and Gleeson, 2012).  This heavy reliance on groundwater for irrigation is 

driven largely by lack of sufficient surface water supplies (Wisser et al., 2008; Wada et al., 

2012), and Northern China is now considered to be a region of physical water scarcity, i.e., more 
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than 75% of river discharge is abstracted (Molden et al., 2007).  Global multi-model projections 

of irrigation water availability show significant reduction in Northern China for irrigation 

potential from renewable surface water by 2100 due to climate change (using a scenario of high 

greenhouse gas emissions (RCP8.5) (Elliott et al., 2013).  Aquifer depletion could also 

significantly decrease irrigation water availability in the future.  Despite the importance of 

groundwater and groundwater depletion for the future of Chinese agriculture, it is currently 

unknown how much food is produced as a direct result of irrigation with non-renewable 

groundwater mining.   

 Large-scale surface water balance models can simulate the use of both surface water and 

groundwater for irrigation. Several model-based estimates of irrigation water demand in China 

have been made, ranging from 220 to 850 km3 yr−1, circa 2000 (Wisser et al., 2008), with most 

estimates in the range of 350 – 500 km3 yr−1 (Döll and Siebert, 2002; Siebert and Döll, 2007; Liu 

and Yang, 2010; Wada et al., 2012). The proportion of irrigation water demand fulfilled by 

mined groundwater pumping is less well constrained. Groundwater (both renewable and mined 

in excess of recharge) provides up to 40% of China’s irrigation water, and model results from 

Wada et al. (2012) show that 20 km3 yr−1 (5% of irrigation demand) is drawn from non-

renewable groundwater.   

 Water supply alone does not determine food production; cropped areas, crop choice, soil 

quality, and management practices all contribute (Tilman et al., 2002; Foley et al., 2012).  

Agriculture's vulnerability to changes in water supply will necessarily also depend on these 

factors, which all vary spatially across China.  Crop water productivity, the crop yield gained 

from one unit of water, also varies spatially, even within individual watersheds (Cai et al., 2011).  

Global-scale studies of unsustainable water supplies and food production have used an empirical 
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method to determine the relationship between water use and crop yields (Siebert and Döll, 2010), 

but this method is not suited for higher-resolution analysis (Siebert and Döll, 2010). An 

alternative approach is to employ a process-based crop growth model that can capture these 

important spatially-variable production factors (Müller et al, 2013). 

In this study, we used a hydrological model in conjunction with a process based crop 

growth model to evaluate Chinese agriculture's dependence upon mined groundwater, and 

quantify mined groundwater-dependent crop production across a domain that includes variation 

in climate, crop choice, and management practices.  We computed irrigation water demand, as 

well as sources of water supply, across 20 years of climate variability.  Using these two models 

allowed us to quantify the amount of food produced as a direct result of irrigation with 

groundwater mined in excess of recharge.  We also defined an index of vulnerability to loss of 

mined groundwater resources that is a function of the amount of mined groundwater required for 

irrigation and the productivity of a crop irrigated from that water source. 

 

Methods 

 We used two models to simulate irrigation water demand, irrigated and rainfed crop yields, 

and crop production due to mined groundwater.  A grid-based water balance model (WBMplus, 

Wisser et al., 2010) calculated daily fluxes and storage of water between and within different 

water storage pools (Figure 1.1).  WBMplus was used to estimate the irrigation water demand of 

different crop types based on weather variables, soil properties, and crop parameters, and tracked 

the sources of irrigation water available to meet that demand (e.g., Wisser et al., 2008).  DNDC 

(Li et al., 1992; 2007), a process-based crop growth and agroecosystem biogeochemistry model, 

was used to simulate fully-irrigated and rainfed crop yields for individual crops and multi-
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cropping systems for all counties in China.  WBMplus provided an estimate of the irrigated crop 

area dependent upon mined groundwater.  By applying DNDC's difference between irrigated 

crop yields and rainfed crop yields to these areas, we estimated the portion of total crop yields 

directly resulting from groundwater mining. 

 

Water Balance Model 

 WBMplus computed a daily water balance for each 0.5 degree grid cell.  Water was input 

through precipitation and irrigation, and outputs were evapotranspiration, runoff, and shallow 

rechargeable groundwater (Figure 1.1). Water was stored as soil moisture and in the shallow 

groundwater pool. Surface runoff and baseflow from shallow groundwater were transported 

downstream through the STN-30p river network (Vörösmarty et al., 2000b) taking into account 

the storage of water in large reservoirs. A detailed description of WBMplus's fundamental 

processes is given by Wisser et al. (2010).  Here we describe WBMplus's method of irrigation 

and crop water use, and WBMplus's updated method of simulating operation of large reservoirs.   

 

Irrigation and crop ET 

Irrigation was simulated by abstracting water from rivers, reservoirs, and groundwater, 

then moving that water to the soil water pool. The amount of water abstracted was determined by 

an irrigation water demand that was based on root zone soil moisture, crop evapotranspiration, 

and irrigation efficiency. Evapotranspiration depended on each crop’s planting date, growing 

season length, growth stages, rooting depth, and a crop water use coefficient. Crop coefficients, 

growth stages, rooting depths, and depletion factors were from Siebert and Döll (2010), and the 
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coefficient method used was based on FAO recommendations (Allen, 1998). Each crop’s 

evapotranspiration was calculated as: 

𝐸! = 𝐾!𝐸𝑇!               (1.1) 

Where Ec (mm day−1) is the crop’s evapotranspiration, Kc (-) is a dimensionless crop- dependent 

and growth stage-dependent coefficient for crop c, and ET0 (mm day−1) is a reference-surface 

potential evapotranspiration. ET0 was calculated using the Hamon method (Hamon, 1963; 

Vörösmarty et al., 1998). 

Crop evapotranspiration and percolation removed water from the soil moisture pool.  

When water inputs to the soil moisture pool brought the soil moisture stock above field capacity, 

the excess was diverted in equal proportions to surface runoff and percolation.  Percolated water 

moved to the shallow groundwater storage pool (implemented as a linear reservoir); water from 

the groundwater storage pool flowed to the river network as baseflow.  A daily soil moisture 

accounting was done in irrigated areas with inputs from precipitation, irrigation water, and 

snowmelt, and with evapotranspiration and percolation as outputs from the soil storage.  If soil 

moisture fell below a crop-dependent threshold, Ct (mm), irrigation water was applied to bring 

the soil moisture up to field capacity. The crop-dependent threshold for soil moisture was 

calculated as:  

𝐶! = 𝐶! ∗ 𝑅!(𝐹!"# −𝑊!")               (1.2) 

where Cs (-) is a crop-specific scalar that represents a crop’s inability to remove all water from 

the soil, Rd (mm) is the crop’s rooting depth, Fcap (-) is the field capacity of the soil, and Wpt (-) is 

the wilting point of the soil.  Crop-specific parameters Cs andRd were from Siebert and Döll 

(2010), and Fcap and Wpt are from FAO/UNESCO (2003). 
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 When soil moisture was below the crop-specific threshold, the crop had a positive 

irrigation demand (otherwise demand was zero). For each grid cell, a net irrigation demand, Inet 

(mm day-1), was calculated daily as the area-weighted water demand of all the crops (26 crop 

types; taken from Portmann et al., 2010) in the grid cell. Daily net irrigation demand was 

calculated as: 

𝐼!"# =    𝐴! ∗ 𝑎! ∗ 𝐼!!
!!!                (1.3) 

where AI (-) is the portion of the grid cell’s area equipped for irrigation, ac (-) is the portion of the 

irrigated area containing crop c (Table 1.1), Ic (mm day−1) is the irrigation demand of crop c, and 

n is the number of crops. 

Rice paddies require additional irrigation water due to inundation-induced percolation. 

We assumed that irrigation water was applied to rice paddies to maintain a 50 mm flooding depth 

throughout the growing season.  To achieve this, irrigation water was applied on the first day of 

the paddy rice-growing season to fill the soil moisture pool 50 mm above field capacity, and 

each subsequent day water was applied to account for percolation plus evapotranspiration losses 

minus precipitation gains.  Rice paddy percolation was assumed to occur at a constant rate that is 

determined by the soil drainage class (e.g., Wisser et al., 2008), estimated spatially from the 

FAO/UNESCO soil map of the world (FAO/UNESCO, 2002).   

In each grid cell, water for irrigation could be withdrawn from large reservoir storage, if 

present, rivers flowing through the grid cell, shallow renewable groundwater, and mined 

groundwater (modeled as a distinct pool of water, Figure 1.1).  These water sources defined the 

water volume available for irrigation.  WBMplus applied sufficient irrigation water to each grid 

cell to fulfill the irrigation demand, bringing the soil in the grid cell's irrigated area up to field 

capacity. This water was first removed from the (renewable) shallow groundwater pool, then 
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from the river discharge and reservoirs. If these water sources were not sufficient to fulfill 

demand, then mined groundwater was added from a limitless pool to make up the difference.  

While the shallow groundwater pool was recharged through infiltration, the mined groundwater 

pool received no recharge.  The mined groundwater pool represented groundwater abstractions in 

excess of recharge.  We assumed that all irrigation demand was met, though in practice this may 

not always be the case. 

Delivery of water from an irrigation water source to the irrigated field is inefficient. An 

efficiency factor, Eeff (0.34 for China (Döll and Siebert, 2002), was applied to account for these 

losses. Gross irrigation demand, Igross (mm day−1) was: 

𝐼!"#$! =   
!!"#
!!""

                (1.4) 

Only the efficient portion of irrigation water (i.e., the water equal to irrigation demand) was 

added to the soil moisture pool. The daily “inefficient” water (Igross–Inet) was split three ways and 

returned to other pools or fluxes in each grid cell: evaporation, groundwater water recharge, and 

surface runoff. The amount of inefficient water that evaporated, Ievap, is: 

𝐼!"#$ =   
𝑃𝐸𝑇 − 𝐴𝐸𝑇      𝑖𝑓   𝐼!"#$$ − 𝐼!"# ≥ (𝑃𝐸𝑇 − 𝐴𝐸𝑇)
𝐼!"#$$ − 𝐼!"#  𝑖𝑓   𝐼!"#$$ − 𝐼!"# < (𝑃𝐸𝑇 − 𝐴𝐸𝑇)

         (1.5) 

If (Igross–Inet) >PET–AET, then the remaining inefficient water was divided evenly between 

groundwater recharge and river discharge. 

The sources of irrigation water, both the efficient and inefficient portions, were recorded 

by the model.  We assumed that the contribution of each water source to the total irrigation water 

amount was the same for both the efficient and the inefficient portions. 
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Large reservoirs 

 Large reservoirs were represented in the model as river grid cells with large river water 

storage capacity.. Unlike other river grid cells, the rules for outgoing discharge were governed by 

reservoir operation rules. The model applied the same set of rules to all reservoirs. If the 

reservoir storage was below 80% full, then water was released as the log of the reservoir level, 

and if the reservoir storage was above 80% full, then water was released as the exponent of the 

reservoir level; release at 80% capacity was equal to annual mean river discharge in that grid 

cell.  Minimum allowed reservoir release was 20% of the 5-year average annual discharge 

(Prusevich et al., 2013).   

 

Crop Yield Model 

The DeNitrification-DeComposition (DNDC) model, a process-based model of carbon 

and nitrogen biogeochemistry in agroecosystems, simulated irrigated and rainfed crop yields (kg 

C/ha/yr). The model simulates soil temperature and moisture regimes, soil carbon and nitrogen 

dynamics, crop growth and yield, nitrogen leaching, and emissions of trace gases for both 

individual crops and multi-cropping systems, and requires as inputs soil properties, daily 

weather, and crop management details (e.g., crop type and rotation, fertilization, irrigation, 

tillage, planting and harvest dates) (Li, 2007a). DNDC has been used extensively for studies of 

both Chinese and global agriculture (e.g., Zhang et al., 2002; Wang et al., 2008; Qiu et al., 2009; 

Li et al., 2010; Deng et al., 2011; Han et al., 2014). 

Unlike the gridded spatial structure of WBMplus, DNDC modeled crop growth on a 

county-based (polygon) system. The model was run from 1981 to 2000 to capture 20 years of 

weather-driven crop yield and irrigation water demand variability for each county in China.  



	   15	  

NASA's MERRA climate reanalysis product (Rienecker et al., 2011) was used for the 

temperature and precipitation inputs to DNDC, matching each county to the MERRA grid cell 

closest to the county polygon center.  The average county size in China is similar to the size of a 

MERRA grid cell (~2,500 km2). Data on crops grown in single- and multiple-crop rotations for 

each of China’s ~2400 counties came from Qiu et al. (2003).  County soil properties used by 

DNDC (texture, bulk density, pH and carbon content) were from digitization of the Chinese 

Third National Soil Survey maps (Shi et al., 2004; Tang et al., 2006).  All crops in all counties 

were simulated with both full irrigation (no water stress) and no irrigation (rainfed) for all 20 

years, to capture weather-driven interannual variability in rainfed and irrigated crop yields.  For 

the simulations presented here, to represent general changes in fertilization across China, we 

applied a constant increase (~2% yr-1) in crop-specific fertilizer application rates across China 

from 1981 to 2000, and a step decrease (36%) in manure application rate in 1990 (NBS, 2008).  

The crop distribution represented circa 2000 conditions, and simulated crop yields were de-

trended with respect to increases in fertilizer and decrease in manure application rates to achieve 

c.2000 crop yield rates for all 20 years of the simulation, so yield interannual variability resulted 

from weather effects only.  DNDC planting and harvest dates are from Cui et al. (1994), and 

crop-specific growth parameters are reported in Li (2007b).   

 

Data 

Both WBMplus and DNDC used daily climate drivers of temperature and precipitation 

from the MERRA NASA reanalysis product, years 1981 - 2000.  Soil and non-crop vegetation 

data were from the UNESCO/FAO soil map of the world (FAO/UNESCO, 2003), and the 
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GRanD database of global dams and reservoirs (Lehner et al., 2011) was used for the location 

and storage capacity of ~7000 large reservoirs globally.  

The MIRCA2000 gridded crop maps and crop calendars were used to determine crop 

areas, planting month, and harvest months in WBMplus for each of 26 crop classes, and up to 4 

subcrop types (Portmann et al., 2010).  Crop class coefficients (Kc), rooting depths (Rd), and 

proportional lengths of growing stages were from Siebert and Döll (2010).  Crop calendars (for 

planting and harvesting dates) were downscaled from monthly to daily values by assuming mid-

month planting and harvesting dates. 

 

Analysis 

 While the Qiu et al. (2003) and MIRCA2000 crop distributions for China had substantial 

overlap, there were enough differences that two data analysis steps were necessary to harmonize 

the DNDC model output with the WBMplus output and the MIRCA2000 crop maps. First, 

county-based DNDC yield data were gridded to the resolution of the WBMplus model (0.5 

degree) assigning a crop yield value to each grid cell equal to the area-weighted yields of all 

counties that overlapped with the grid cell.  Second, for each grid cell, the individual crop yields 

were aggregated to produce one average annual irrigated crop yield value and one average 

rainfed crop yield value, both in units of kgCha-1yr-1 (note that multiple crop yields in a single 

year were aggregated to a single annual average crop yield).  All crop production results are 

therefore based on the composition of irrigated and rainfed crops in DNDC's crop maps, as 

opposed to MIRCA2000 crop maps.  This aggregation allowed for a comparison of land under 

irrigated versus rainfed cropping.   
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 Both models were run for 20-year periods, 1981 - 2000, to capture impacts of variability 

in temperature and precipitation on irrigated and rainfed crop yields and irrigation water demand. 

The crop areas, irrigated areas, and growing season were static, representing year 2000 

agriculture (Portmann et al., 2008; Qiu et al., 2003), and all crop yields were de-trended to year-

2000 values with respect to time-varying DNDC model inputs (fertilizer and manure). All time 

series results therefore show variability in water demand and crop yields as a function of climate, 

and are not meant to be representative of historical trends in crop yields.  From 1981 – 2000, the 

NASA-MERRA climate product reports an average of 640 mm of rainfall per year over 

agricultural land in China.  The driest year for Chinese agriculture was 1992, in which 

precipitation averaged 596 mm over agricultural land; the wettest year was 1990 with an average 

of 695 mm of precipitation over agricultural land.  The range in inter-annual variation in 

individual counties or grid cells was greater than the national aggregate of ~10%.   

Surface water and mined groundwater use for irrigation in each grid cell were assumed to 

be spread among all irrigated crops proportional to demand. Crop yields directly due to the 

application of mined groundwater were determined for each grid cell by applying the difference 

between irrigated and rainfed crop yields to the irrigated area supplied by the mined 

groundwater: 

𝑌!"#$%&!! = 𝑓!"#$%&!! ∗ 𝐴!! ∗ (𝑌!! − 𝑌!!!)           (1.6) 

Where fMinedGWj is mined groundwater as a fraction of total irrigation water demand for grid cell j, 

AI,j is irrigated area (ha) in grid cell j, and YI,j and YRF,j are irrigated and rainfed crop yields 

(kgCha-1 yr-1) in grid cell j.  Gridded results were aggregated to 31 provincial totals. 

Crop yield per unit area due to mined groundwater is a function of both mined 

groundwater demand and the difference between irrigated and rainfed crop yields.  Both of these 
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variables are climate-dependent, but also vary in different ways based on other factors such as 

local surface water storage, soil properties, crop composition, and management practices.  The 

combined effects of these variables determine how vulnerable each province’s crop production is 

to groundwater depletion.  To capture the combined effects of these two variables, we defined 

crop groundwater productivity, CGP (kgC ha-1 mm-1) to describe the yield gains per unit of 

mined groundwater for each province p, based on province-level data: 

𝐶𝐺𝑃! =
!!"#$%&!!

!"#$%&!!
                      (1.7) 

whereCGPp is the crop groundwater productivity for province p (kgC ha-1 mm-1), YminedGWp is the 

20-year average crop yield due to mined groundwater in province p (kgC ha-1 yr-1), and 

MinedGWp is the 20-year average amount of mined groundwater demand in province p (mmyr-1). 

CGP provides a method for directly comparing provinces' combined reliance on both mined 

groundwater use and yield impact for crop production to each other. 

 

Results 

Irrigation water demand and supply  

Over the 20 years simulated by WBMplus, Chinese agriculture required an average of 

330 km3 yr-1 irrigation water withdrawals in order to fulfill gross irrigation demands (Table 1.2).  

Irrigation water demand standard deviation over the 20-year simulation was 33 km3year-1, or 

10% of demand.  This deviation is significantly higher than the deviation in annual average 

rainfall over cropped land, which is only 5% of the mean.  Irrigation water demand varies 

significantly across China, but generally follows patterns of irrigated area (Figure 1.2). 

WBMplus tracks the sources of irrigation water, grouping them into three categories: 1) 

rivers and reservoirs, 2) renewable groundwater, and 3) mined/fossil groundwater mining (Figure 
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1.3).  Over the 20-year simulation period, the nationally aggregated amount of irrigation water 

available from the first two sources are very steady.  Rivers and reservoirs supply 115 km3 yr-1, 

with a standard deviation of only 7 km3 yr-1 and a range of 105 - 134 km3 yr-1.  Similarly, the 

average groundwater recharge supplied to irrigation is 107 km3 yr-1, with a standard deviation of 

7 km3 yr-1 and a range of 96 to 125 km3 yr-1.  Due to the extremely steady supply of river and 

reservoir water as well as groundwater recharge, most of the variability in irrigation water 

demand leads to widely ranging fossil groundwater mining demands.  Average mined 

groundwater demand is 125 km3 yr-1, only slightly over one third of the total average irrigation 

water demand.  However, at its maximum demand of 209 km3 yr-1, mined irrigation water makes 

up 49% of that year's total irrigation water demand, and at its minimum demand of 58 km3 yr-1 it 

makes up only 20% of total irrigation water demand.  Demand for mined groundwater varies 

significantly across China, both in absolute volume and in its relative fraction of total irrigation 

water demand (Figure 1.4 and Table 1.3).  These two measures of the importance of mined 

groundwater do not always vary together.  

 Anhui, the province with the largest irrigated area in MIRCA2000, also has the greatest 

demand for mined groundwater both in terms of absolute volume (32 km3 yr-1) and fraction of 

the province's total irrigation water demand (58%).  In contrast, Fujian province has a relatively 

low mined groundwater demand (3 km3 yr-1), yet this demand makes up 64% of its total 

irrigation water demand.  Yet a different pattern appears in Shandong province, which has the 

greatest total irrigation water demand (33 km3 yr-1), but only 20% of this demand is from mined 

groundwater.   
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Crop yields 

 We estimate an average total national crop production of 495 mega-tonnes (Mt)C yr-1 

(Table 1.2) if all irrigation requirements are fully met on irrigated cropland (as defined by 

MIRCA2000 irrigated crop maps).  Irrigated land produces 315 Mt C, and rainfed land produces 

180 Mt C.  Grid-cell crop yields for irrigated and rainfed crops are area-weighted averages across 

all crops and rotations occurring in the grid cell (Figure 1.5). These yields are direct results from 

the DNDC model, and reflect the spatial variability of crop maps, soil quality, climate, and 

management practices, in particular single- vs. multi-cropping.  The difference in yields follows 

a general north-south pattern (Figure 1.5), with the largest differences in the relatively dry north, 

and the smallest differences in the wetter south.   

 

Crop production from mined groundwater 

 When all irrigation water demands are fully met, mined groundwater directly contributes 

to a large portion of China's national crop production  (Figure 1.6).  We estimate an average of 

102 Mt C over the 20 year period modeled, with a wide range varying from 79 to 130 Mt C per 

year due to weather variability (Table 1.2).  The maximum contribution is seen in the driest 

weather year, and makes up 27% of the total national production; the minimum occurs in the 

wettest weather year and is 15% of the total national production.  Without mined groundwater, 

the average national crop production is 393 Mt C/year (Table 1.2), which is 79% of the 20-year 

average crop production with mined groundwater used as needed.   

There are significant regional differences in crop yields produced from irrigation water 

(Figure 1.5 & Table 1.4).  Of all the major agricultural provinces, Sichuan has the highest crop 

irrigation water productivity, gaining 26 kgC/ha/mm (Table 1.4).  There is a decline in crop 
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irrigation water productivity with an increase in precipitation (Figure 1.7), which indicates that 

rainfed crop yields in the southern high-precipitation regions of China are close to the maximum 

yield possible given soil quality, crop selection, and management choices.  

 We use the crop groundwater productivity, CGP (Eq. 1.7), to compare the vulnerability 

of provinces to the loss of unsustainably mined groundwater.  Xinjiang Province had the 

maximum 20-year average mined groundwater demand, 596 mm/year, and Tianjin Province had 

the maximum 20-year average crop yield due to mined groundwater, 3,300 kgCha-1.  Tianjin also 

had the highest CGP, 11.6 kgCha-1mm-1.  Beijing and Xinjiang have a CGP of 0 kgC ha-1 mm-

1because simulated use of mined groundwater is zero.  Of the major agricultural producers (red 

in Table 1.5), Henan, Shandong, and Sichuan have the highest CGPs (Figure 1.8), 7.3, 5.3, and 

3.9 kgC ha-1 mm-1, respectively.  Demand for mined groundwater and crop irrigation water 

productivity in these provinces were also the most variable based on changes in climate over the 

20-years of climate input modeled.  The relative importance of mined groundwater versus crop 

yield gains due to mined groundwater vary between provinces; Sichuan Province has a high CGP 

mainly due to its high mined groundwater demand, while Henan Province has a high CGP 

because of its large crop yield gains due to mined groundwater.  However, all provinces fall on a 

roughly linear trend between low CGP and high CGP (Figure 1.8).  This trend is not unexpected, 

as both variables contributing to CGP are affected by climate; dry regions have a high demand 

for mined groundwater and a large crop irrigation water productivity, while wet regions have the 

opposite (Figure 1.8). 
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Discussion 

Comparison to other studies 

Irrigation water demand and supply 

 Our results for China's irrigation water demand are similar to other model-based 

estimates; previous results range from 220 to 850 km3 yr-1, with most studies estimating an 

average of 350 – 400 km3 yr-1 circa 2000.  These results assume that gross irrigation water 

demand was always fulfilled and that the infrastructure is in place to change the source of water 

depending on the availability. While global irrigation water demand estimates also vary, this 

study's estimate of 330 km3 yr-1 is roughly 10% - 20% of world-wide demand (Döll and Siebert, 

2002; Wisser et al., 2008; Wada et al., 2012).  FAO's AQUASTAT database reports China's 

irrigation water withdrawals to be 358 km3 yr-1, and Döll and Siebert (2002) report an irrigation 

water demand of 364 km3 yr-1 for all of East Asia.  Wada et al. (2014) use the PCR-GLOBWB 

model, which is similar in structure to WBMplus, and report China's irrigation water demand to 

be 519 km3 yr-1 when the model is driven with the MERRA climate product.   

Previous studies also report that China's groundwater withdrawals for irrigation are ~100 

km3 yr-1 (Table 6), however the only study that distinguishes groundwater recharge from 

groundwater mining estimates a significantly smaller amount of mined groundwater, 17 - 27 km3 

yr-1 (Wada et al., 2012), than this study (58 – 209 km3 yr-1). Wada et al. (2012) also estimate a 

“nonlocal water resource” demand of 11 km3 yr-1, a water supply that is represented in this 

study's mined groundwater accounting. The remainder of the difference is likely due to the use of 

different methods for estimating renewable groundwater, and for partitioning of inefficient 

irrigation water, which has the potential to significantly alter the groundwater recharge.  Wada et 
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al. (2012) allow inefficient irrigation water to contribute to groundwater recharge, limited only 

by the hydraulic conductivity of the soils underlying irrigated areas.  In this study, inefficient 

irrigation water first evaporates to fulfill the difference between AET and PET, then any 

remaining water is divided equally between groundwater recharge and the river network (Eq. 

1.5).  

 

Crop production 

This study estimates a similar total crop production as the National Bureau of Statistics of 

China, which reports year 2000 crop production was 500 Mt C.  This estimate is significantly 

lower than the year-2000 total crop production of 715 Mt C reported by FAO (Table 1.6).  The 

difference between the FAO's annual production and this study's production is mainly due to 

differences in rainfed crops, as the irrigated crop production estimates are comparable at 315 

MtC (this study) versus 323 Mt C (FAO).  Our results were consistent with other crop 

productivity studies that show crop production increases by slightly less than two times due to 

irrigation (Siebert and Döll, 2010; Molden et al., 2007), since irrigated and rainfed harvested 

areas in China are roughly equal (MIRCA2000; Table 1.2).  

In a study by Ye et al (2013), the CERES crop models (one for each crop simulated) are 

used to estimate baseline (years 1961 – 1990) crop production in China, as well as future (2030 – 

2050) crop production under various climate change scenarios.  Baseline crop yields match well 

with this study at 532 MtC, while future estimates show increasing yields but make no 

considerations of future water use or availability.  Siebert and Döll (2010) use a gridded 

hydrology model that is similar in structure to WBMplus, and input the MERRA climate product 

to simulate global crop water demand.  They then use an empirical method that relates the 
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simulated AET/PET ratio to the relative ratio between irrigated and rainfed crop yields to 

calculate crop production due to consumptive irrigation water (Siebert and Döll, 2010).  While 

they do not report values for China, their results show that total crop production across all of East 

Asia is 545 MtC, and 78.2% (or 457 Mt) is from irrigated agriculture.   

 

Groundwater depletion and crop production 

In an analysis with multiple global climate models, gridded crop models, and 

hydrological models of renewable surface water resources, Elliot et al. (2014) simulated future 

crop production (up to 2090) and found significant decreases due to a combination of climate 

change and reduced water supply.  However, Elliot et al. (2014) included only surface water 

supplies in their analysis.  We explicitly separated the fossil mined groundwater irrigation from 

renewable groundwater irrigation and surface water irrigation so that we can estimate irrigation 

water coming from a non-renewable source.  Therefore, our estimates of crop yields due to 

irrigation from mined groundwater show that without this water source, China's total annual crop 

production would decrease by 15% - 27%, bringing it down to 352 – 448 MtC (Table 1.2).  

Annual grain production in China was ~ 350 MtC in the early 1980s, and ~450 MtC in the early 

to mid 1990s (NBS, 2008).  Our results assume that groundwater mining occurred at the level 

necessary to fulfill irrigation water demand after renewable water sources were used.  While it is 

likely that not all irrigated areas are always provided with 100% of their irrigation water demand, 

there is abundant evidence, both observational and modeling studies, that groundwater depletion 

is occurring in China, particularly in the North China Plain (Wada et al., 2012b; Aeschbach-

Hertig and Gleeson, 2012; Syed et al., 2008; Tang et al., 2013).  Results from the Gravity 

Recovery and Climate Experiment (GRACE) satellite show contemporary groundwater depletion 
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rates of 8.4 – 14 mm yr-1 in the North China Plain, and further analysis by Tang et al (2013) 

shows these rates may underestimate depletion by ~7.6 mm yr-1.   

The North China Plain includes much of Henan, Hebei, Shandong, northern Jiangsu, and 

northern Anhui provinces, all of which are significant agricultural producers (Table 1.5).  These 

five provinces collectively produce 152 Mt Cyr-1 (31% of total national production). Anhui and 

Jiangsu rely on mined groundwater for 42% and 49% of their total irrigation water supplies, and 

Henan, Hebei, and Shandong rely even more heavily on mined groundwater, requiring on 

average 73%, 77%, and 80% of their annual irrigation water to come from groundwater mining.  

Without the use of mined groundwater, crop production in the North China Plain would drop to 

101 MtC yr-1, a 10% loss in national production. 

Groundwater depletion is also occurring in the northern-most and western-most parts of 

China (Aeschbach-Hertig and Gleeson, 2012; Syed et al., 2008), affecting Heilongjiang, Jilin, 

Nei Mongol, and Xinjiang Provinces, which are all relatively small agricultural producers (Table 

1.5).  Of these smaller agricultural producers, Jilin has the lowest relative reliance on mined 

groundwater, at 70%, and Xinjiang has the highest at 80%.  Northern provinces also have 

extremely large differences between irrigated and rainfed crop yields (Figure 1.5), so that even a 

small loss of irrigation water causes a substantial decrease in their crop production.   

We used the crop groundwater productivity, CGP (see Eq. 1.7), to assess which 

provinces are vulnerable to the loss of unsustainably mined groundwater.  Vulnerability can be 

due to either a high reliance on mined groundwater, significant crop yields dependent upon 

mined groundwater, or a combination of both these factors.  Provinces that have a high CGP and 

are large agricultural producers fall along a band of precipitation with precipitation roughly 

between 1000 and 1500 mmyr-1 (Figure 1.8 inset).  South of this band, provinces have low 
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reliance on mined groundwater and small increases to crop yields due to use of mined 

groundwater.  North of this band, provinces have high CGPs, but they are not large agricultural 

producers.  Therefore we expect that if groundwater levels continue to drop, the provinces in this 

precipitation band will have decreased crop yields unless they can secure alternative water 

supplies or significantly increase crop water use efficiency (e.g., Liu et al., 2010).  China’s 

southern provinces, many of which are significant agricultural producers, are less at risk of 

aquifer depletion than northern provinces (Döll et al., 2012), and their CGPs are low.   

 

Limitations and uncertainties 

Uncertainties, sensitivity analysis, and model validation for WBMplus are discussed in 

Wisser et al (2010), and for DNDC in Li et al (1992a), Li et al (1994), and Wang et al (2008).  

Additional uncertainty introduced in this study arises from combining the two models’ results, 

which are based on different crop maps.  While the national total irrigated and rainfed areas are 

similar, MIRCA2000 (WBMplus input) and DNDC's crop maps disagree on which type of crops 

are grown on 63% of irrigated areas, and 31% of rainfed areas.  DNDC also represents crop 

rotations at a more detailed level than MIRCA2000 (Qiu et al., 2003).  This uncertainty does not 

significantly impact the results of this study because both sets of model results have been 

validated or tested against other studies, and are both predicting results consistent with 

observational data and other modeling studies.  Our conclusions and interpretations only address 

the total water demand and crop production of all irrigated and rainfed crops, and we do not 

make any interpretations about individual crop types; this type of analyses would require crop 

maps with better agreement.  
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Paddy rice is a major consumer of irrigation water and so representation of paddy water 

management and water balance has significant impact on WBMplus results for China.  There 

was a significant change in rice paddy water management in China during 1980-2000, with most 

farmers adopting a mid-season draining or drying management scheme (Li et al., 2002).  This 

practice was adopted to save labor and energy, and may also conserve water (we are not aware of 

any studies that have quantified water savings impacts).  Paddy mid-season draining/drying has 

not been implemented in WBMplus, so paddy irrigation water use may be overestimated in our 

analysis.This over-estimation may be offset by an under-estimation of the water amounts 

required to initially flood rice paddies.  WBMplus’s rice paddy flooding implementation applies 

50mm of water above soil field capacity, which would be insufficient to inundate many field 

soils.  Finally, macro-scale modeling that relates flooded paddy percolation losses to soil texture 

may overestimate losses in paddies that have been in managed use for centuries (e.g., the 

Sichuan Basin), where paddy percolation losses may be lower than would estimated from 

regional soil properties.  

 

Conclusions 

This study is the first to combine a hydrologic model with a process-based crop growth 

model to simulate national-scale agricultural yield and irrigation water use.  This methodology 

allows for the direct attribution of crop yields to irrigation water from rivers and reservoirs, 

groundwater, and fossil mined groundwater (Figure 1.2), as well as computation of the spatially 

varying crop water productivity from total irrigation water, and the crop groundwater 

productivity.  We find that mined groundwater fulfills 20% - 49% of China's national irrigation 

water demand, which directly leads to 15% - 27% of national crop production.  Crop water 
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productivity and mined groundwater demand vary spatially across China, with the combination 

leading to a smaller percentage of crop yields dependent upon mined groundwater than the 

percent of total irrigation water demand fulfilled by mined groundwater.  I.e., while mined 

groundwater fulfills 20% - 49% of irrigation water demand, crops irrigated with mined 

groundwater only account for 15% - 27% of national crop production, which indicates that the 

regions with high crop yields are not all directly dependent upon mined groundwater.  This study 

calculated a crop groundwater productivity to determine which provinces would be most 

vulnerable to the loss of access to mined groundwater.  We found that provinces across central 

China are most vulnerable due to their combination of significant agricultural production, high 

demand for mined groundwater, and high crop yield gains from the use of mined groundwater.   

China, like all major world agricultural producers, has increased irrigation to the point of 

over-exploitation of water resources in order to achieve greater levels of food production.  While 

irrigation is typically employed to reduce agriculture's vulnerability to weather and climate 

variability, in the case of water over-exploitation irrigated agriculture may be vulnerable to 

changes in the water supply caused by both climate variability and diminishing water resources.  

We find that these two factors – climate variability and mined groundwater demand – do not 

operate independently, but rather magnify one another by increasing the demand for irrigation 

water in a hot and dry year while simultaneously reducing the water available for irrigation use.  

Due to this magnification, the amount of food production dependent upon irrigation from 

unsustainable water supplies varies significantly from year to year. 

Understanding the sources of irrigation water supply and their relative importance to crop 

production across China will help provide context for water resource management in China, 

especially with regards to groundwater storage and the South-North Water Transfer Project.  
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Global depletion of groundwater aquifers, including the North China Plain, will require future 

groundwater use to achieve greater levels of sustainability than are seen today.  Simultaneously, 

crop production will need to increase to feed the growing world population.  Increases in crop 

water productivity are required to achieve these two goals.  A major finding of this research is 

that crop irrigation water productivity varies significantly across China and that inter annual 

weather variability results in widely ranging responses in crop irrigation water productivity, as 

well as in relative reliance on mined groundwater.  The wide range in crop water productivity 

can help identify the regions in China where climate, soil conditions, and management practices 

work together to achieve high levels of “crop per drop”.  Increasing cropping efficiency will 

likely be a key component of feeding the world’s growing population in a sustainable manner 

(Brauman et al., 2013).  Similarly, the distinction between crop yield losses due primarily to 

yield differences versus reliance on mined groundwater illustrates that different strategies (e.g., 

increasing rainfed yields versus reducing reliance on mined groundwater) will be best suited to 

different regions in order to achieve the future requisite increases in crop productivity within the 

constraints of future water availability. 
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Tables 

 

Table 1.1: Data sets input to WBM and DNDC. 

Data Type Variables WBM Source DNDC Source 

Climate 
Drivers 

Temperature, 
precipitation 

MERRA MERRA,  
(Reinecker et al. 2011) 

Soil 
Properties 

Field capacity, 
wilting Point, 
non-crop rooting 
depth, 
soil drainage class 

 
FAO Soil Map of the 
World 

Third National Soil 
Survey (Shi et al. 2004) 

Crop 
Distribution 

Irrigated crops and 
areas, and 
rainfed crops and 
areas 

MIRCA 2000 Qiu et al. 2003 

Crop 
Calendar 

Plant date, 
harvest date 

MIRCA 2000 
 

Cui et al 1984 

Crop water 
use 
parameters 

Rooting depth, 
crop coefficient, 
growth stages 

Siebert and Doll (2010) Li 2007b 
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Table 1.2: China national 20-year mean and range of irrigated and rainfed areas, annual 
irrigation water demand, crop yields, and the difference between sustainable and unsustainable 
yields. 
Variable Mean Range 

Irrigated area (ha) 79,100,000  
Rainfed area (ha) 76,600,000  
   
Irrigation water demand (km3/yr) 330 270 - 420 
Mined groundwater demand (km3/yr) 125 58 - 209 
   
Fully irrigated yield (MMTC/yr) 315 308 - 321 
Rainfed yield (MMTC/yr) 180 164 - 207 
Sum: Irrigated + Rainfed yields 495 474 - 527 
   
Sustainable irrigated yield (MMTC/yr) 127 114 - 142 
Sustainable rainfed yield (MMTC/yr) 265 238 - 305 
Sum: Irrigated + Rainfed yields 393 352 - 448 
   
Unsustainable minus Sustainable Yields (Mt C/yr) 102 (21%) 79 – 130  (15% - 27%) 
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Table 1.3:  Province summary of irrigation water demand, and mined groundwater demand. 

Province 

Harvested 
Irrigated 
Area (Mha) 

Irrigation 
Demand 
(km3/yr) 

Mined 
Groundwater 
Demand 
(km3/yr) 

Mined 
Groundwater 
Demand (fraction 
total) 

Anhui 6.8 32 13 0.42 
Jiangsu 5.2 26 13 0.49 
Hunan 4.9 19 6 0.33 
Jiangxi 3.6 16 5 0.33 
Zhejiang 2.7 12 4 0.35 
Hubei 3.4 13 5 0.39 
Shandong 6.6 33 26 0.80 
Henan 7.1 25 28 0.73 
Guangdong 2.2 8 3 0.33 
Guangxi 2.5 8 3 0.33 
Hebei 4.6 24 18 0.77 
Fujian 1.3 5 2 0.33 
Guizhou 1.3 5 2 0.33 
Yunnan 2.2 5 2 0.33 
Sichuan 2.6 15 10 0.69 
Chongqing 1.0 6 4 0.65 
Jilin 2.2 6 4 0.70 
Liaoning 2.2 6 4 0.69 
Xinjiang Uygur 3.9 29 23 0.80 
Heilongjiang 2.5 6 4 0.70 
Shaanxi 2.1 7 5 0.75 
Hainan 0.18 1 0.3 0.33 
Shanghai 0.14 1 0.4 0.43 
Shanxi 1.45 3 2 0.83 
Nei Mongol 3.3 13 10 0.81 
Tianjin 0.54 2 2 0.77 
Gansu 1.3 4 3 0.80 
Ningxia Hui 0.51 3 2 0.82 
Qinghai 0.49 1 0.8 0.75 
Beijing 0.15 0 0  
Xizang 0.16 0 0  
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Table 1.4: Crop yield gains per mm of irrigation water for each of the provinces that contribute 
to the top 50% of cumulative national yields. 

Province 
Irrigation Water 
(mm/yr) 

Irr Yield – RF 
Yield (kgC/ha) 

Yield Gain per mm 
Irrigation Water 
(kgC/ha/mm) 

Sichuan 31 810 26 
Henan 135 2164 16 
Shandong 253 1854 7 
Anhui 219 1416 6 
Hunan 92 535 6 
Jiangsu 267 1413 5 
Guangdong 49 182 4 
Jiangxi 93 279 3 
 

  



	   34	  

Table 1.5: China province 20-year average sustainable and unsustainable crop yields, with 20-
year minimum and maximum yields in parentheses.   

 Province 

Total Crop 
Yield 
[Mt C] 

Crop Yield 
without mined 
groundwater 
[Mt C] 

Cumulative 
percent of 
national total 
crop yield 

Cumulative % 
of total crop 
yield without 
mined 
groundwater 

 Hunan 39 (37, 41) 38 (36, 40) 8 8 

 Henan 37 (33, 42) 23 (14, 34) 16 13 

 Anhui 36 (33, 39) 31 (23, 37) 24 20 

 Shandong 29 (25, 32) 14 (5, 25) 30 23 

 Jiangsu 28 (27, 30) 24 (19, 31) 36 28 

 Jiangxi 27 (26, 29) 27 (25, 29) 42 33 

 Sichuan 26 (23, 28) 22 (19, 25) 47 38 

 Guangdong 25 (24, 26) 25 (24, 26) 53 43 

 Guangxi 24 (23, 25) 23 (22, 24) 58 48 

 Hubei 23 (21, 26) 21 (17, 24) 63 53 

 Guizhou 22 (20, 23) 21 (20, 22) 67 57 

 Hebei 22 (20, 24) 9   (3, 16) 72 59 

 Zhejiang 16 (16, 17) 16 (15, 17) 75 63 

 Chongqing 15 (13, 17) 13 (10, 15) 79 65 

 Yunnan 14 (14, 15) 13 (13, 14) 81 68 

 Fujian 14 (12, 14) 13 (12, 14) 84 71 

 Shaanxi 13 (10, 13) 7   (4, 10) 87 72 

 Jilin 10 (8, 12) 7   (5, 10) 89 74 
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 Liaoning 9   (7, 10) 6   (5, 8) 91 75 

 Nei Mongol 9   (9, 10) 2   (1, 4) 93 76 

 Xingjiang 9   (8,9) 2   (2, 4) 95 75 

 Heilongjiang 7   (6, 9) 5   (4, 7) 96 77 

 Shanxi 5   (4, 6) 3   (1, 4) 97 77 

 Gansu 4   (4, 5) 1   (1, 3) 98 77 

 Tianjin 3   (3, 3) 1   (0, 2) 99 78 

 Ningxia Hui 2   (2, 2) 0   (0, 1) 99 78 

 Beijing 1   (0, 1) 0   (0, 0) 99 78 

 Hainan 1   (1, 2) 1   (1, 2) 100 78 

 Quinghai 1   (1, 1) 0   (0, 1) 100 78 

 Shanghai 1   (1, 1) 1   (0, 1) 100 78 

 Xizang 0   (0, 0) 0   (0, 0) 100 78 
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Table 1.6: Estimates of irrigation water use, groundwater abstraction, and crop production from 
this study and others.  
China Irrigation 
Water Demand 
(km3) 

Groundwater 
Abstraction (km3) Year Source 

270 – 420 58 – 209 2000 This study 
403 97 (20 mined) 2000 Wada et al. 2012 
537 95 2000 Wada et al. 2014 
358 101 2005 FAO AQUASTAT 
220 – 850 -nr- 2000 Wisser et al. 2008 
358 -nr- 2005 Jiang 2009 

364* -nr- 1995 
Doll and Siebert 
2002 

 

China annual crop 
production (Mt C) 

China irrigated 
annual crop 
production (Mt C) Year Source 

474 – 527 315 2000 This study 

500 -nr- 2000 
China Statistical 
Yearbook 

532 -nr- 
1961 - 
1990 Ye et al. 2012 

715 323 2000 FAO AQUASTAT 

545* 457* 
1998 - 
2002 

Siebert and Doll 
2010 

474** -nr- 2009 Fan et al. 2012 
-nr- results not reported. 
*Estimates for all of East Asia 
**Cereal production only 
 
  



	   37	  

 
Figures 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  
Figure. 1.1: Water stocks and flows in one grid cell of the Water Balance Model (WBM).  
Irrigation water flows are shown in orange, and inefficient irrigation water returns are shown 
in gray.  Each grid cell can have up to 26 irrigated and rainfed crop types, each with unique 
root depths.  The arrows into and out of the river &reservoir water stock represent water 
flowing into and out of the grid cell by way of the Simulated Topological River Network.   
	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

	  
	  
Figure 1.2: a) Irrigation area (ha) in each 0.5° grid cell from MIRCA2000, and b) simulated 
average irrigation water demand (Igross in Eq.  1.4, mm yr-1).	  
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Figure 1.3: (top) Annual precipitation (mmyr-1) over all cropped areas in China from 1981 – 
2000.  (middle) Annual national crop yield (Mt Cyr-1) under fully irrigated conditions 
(purple) and under surface-water-use-only conditions, i.e., without mined groundwater 
(green).  (bottom) China's annual irrigation water demand for 1981 – 2000 (interannual 
variation from weather variability, not changes in crop or irrigation areas).  Irrigation demand 
is partitioned into supply from rivers and reservoirs (blue), shallow groundwater recharge 
(orange), and the mined groundwater (black hashed) required to fulfill all irrigated crop 
demands.  Note that plotted yields are based on c.2000 cropping area and management, and 
only represent interannual variability in weather.  Actual grain yields in China increased by 
about 2.5% - 3% per year during most of 1980 to 2000, due to improved management. 
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 Figure 1.5: DNDC-‐‑simulated grid-‐‑cell mean (a) irrigated 
crop yield,  (b) rainfed crop yield, and (c) difference 
between irrigated and rainfed yields (all kgCha-1yr-1).  
Averages are area-‐‑weighted across all crops under irrigation 
(a) or rainfed (b) systems, and for multiple-‐‑cropping, yields 
are the area-‐‑weighted total annual yield per hectare. Where 
the difference is negative, rainfed yields are higher than 
irrigated yields because different crops are grown under 
rainfed and irrigated conditions; in these areas the rainfed 
crops produce higher yields than the irrigated crops.  
 

	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

	  
	  
Figure 1.4: Mean annual mined groundwater required to meet total grid cell irrigation 
demand (a) in mm, and (b) as fraction of total irrigation demand. 
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Figure 1.6: Mean annual grid-‐‑cell crop yield (kgCyr-1) attributed to mined groundwater 
irrigation.  
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Figure 1.7: (a) For each province, a line connects the rainfed crop yield (lower dot on 
the y-axis), the river, reservoir, and shallow groundwater irrigated crop yield (middle 
dot), and the fully irrigated crop yield (high dot on the y-axis); all yields in kgCha-1yr-1.   
For the rainfed yields, the water axis (x-axis) is mean annual precipitation over the 
cropped area in each province.  For the irrigated yields, the water axis is the mean 
annual precipitation [mmyr-1] over all cropped area, plus the mean annual irrigation 
water [mmyr-1] applied to irrigated areas.  The colors of the lines follow the color 
scheme for cumulative yields in Table 1.5, with the black dots and dashed black lines 
representing the white color-‐‑coded provinces from Table 1.5. Note that the linear 
relationship between rainfed, surface-‐‑water irrigated, and fully-‐‑irrigated yields 
illustrates the assumptions made by integrating the results from WBM and DNDC; 
these relationships may in reality be non-‐‑linear. (b) The slope of lines in part (a) 
[kgCha-1 mm-1] versus annual precipitation over cropland in each province.  The slope 
of the lines in (a) represent the crop yield gain due to irrigation water.  
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Figure 1.8: (a) Provinces with high crop groundwater productivity (CPG) and high 
annual crop yields fall in a region of moderate annual precipitation (inset). Each 
province’s crop groundwater productivity (CPG) is indicated by the size of the filled 
circles, and their cumulative yield is indicated by the gray shading. (b) CPG is a 
function of both mined groundwater demand and crop yields due to mined 
groundwater; all provinces fall along a general linear trend when their crop yield gain 
due to mined groundwater is plotted against mined groundwater demand. Size of 
symbols proportional to total provincial crop yield, and coloring follows cumulative 
yield scheme in Table 1.5. 
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Figure S 1.1: China provinces.  Color indicates the cumulative crop yield categories shown in 
Table 5: red = top 50% of cumulative national yields; blue = top 75% of cumulative yields; 
yellow = top 95% of cumulative yields. 
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CHAPTER II: 

 

INVISIBLE WATER, VISIBLE IMPACT: GROUNDWATER USE AND INDIAN 

AGRICULTURE UNDER CLIMATE CHANGE 

 

Abstract 

India is one of the world’s largest food producers, making the sustainability of its 

agricultural system of global significance. Groundwater irrigation underpins India’s agriculture, 

currently boosting crop production by enough to feed 170 million people. Groundwater 

overexploitation has led to drastic declines in groundwater levels, threatening to push this vital 

resource out of reach for millions of small-scale farmers who are the backbone of India’s food 

security. Historically, losing access to groundwater has decreased agricultural production and 

increased poverty. We take a multidisciplinary approach to assess climate change challenges 

facing India’s agricultural system, and to assess the effectiveness of large-scale water 

infrastructure projects designed to meet these challenges. We find that even in areas that 

experience climate change induced precipitation increases, expansion of irrigated agriculture will 

require increasing amounts of unsustainable groundwater. The large proposed National River 

Linking Project has limited capacity to alleviate groundwater stress. Thus, without intervention, 

poverty and food insecurity in rural India is likely to worsen.  
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Introduction 

Agriculture is a significant part of India's social and political economy. While most of 

India’s agricultural production processes are small scale in nature, in total they account for 20% 

of India’s GDP and are India’s largest employers. Moreover, the agriculture sector is the primary 

food supplier for India’s 1.2 billion people. India is also one of the world’s largest agricultural 

producers, and exports close to $39 billion in raw agricultural products and over 4.4 million tons 

of milled rice annually (Government of India, 2014; FAO, 2015). Much of Indian agriculture is 

heavily dependent on irrigation. Beginning in the 1960s, with the onset of the Green Revolution, 

India saw a significant increase in groundwater irrigation (Shah, 2010). This increase was 

primarily driven by the emergence of atomistic or personal irrigation systems and the use of 

subsidized power to pump groundwater from individual tube wells (Shah, 2010). Through this 

process, approximately 90 million rural households have come to directly depend on 

groundwater irrigation (Government of India, 2014). Between 1970 and 2004, while crop area 

remained fairly stable, irrigated area saw a rapid increase with groundwater extractions 

accounting for 70-80% of the value of agricultural production (World Bank, 1998, Fig. S 2.1). 

This underscores the important role that groundwater irrigation has played in supporting upward 

trends in yields and productivity.  

Increased use of groundwater irrigation has led to widespread over-abstraction of 

groundwater resources (Rodell, Velicogna, and Famiglietti, 2009), which is unsustainable in the 

long term. Since 1980, groundwater levels have dropped from 8 meters below ground level 

(mbgl) to 16 mbgl in northwestern India, and from 1 to 8 mbgl in the rest of the country (Rodell, 

Velicogna, and Famiglietti, 2009; Aeschbach-Hertig and Gleeson, 2012; Sekhri, 2012). 

Northwestern India lost 109 km3 of groundwater between 2002 and 2008 (Rodell, Velicogna, 
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and Famiglietti, 2009), which is an order of magnitude larger than the groundwater depletion 

experienced by California’s Central Valley during the same period (Famiglitti et al., 2011), and 

twice the volume of India’s largest surface water reservoir (Rodell, Velicogna, and Famiglietti, 

2009). Previous research has demonstrated that groundwater declines can lead to increases in 

poverty and threaten food production – especially for rural households (Sekhri, 2014; Seckler et 

al, 1998). This directly affects small-scale farmers, who typically own < 2 ha of farmland, 

control the majority of the landholdings in India and produce 41% of India’s food grains (Singh, 

Kumar, and Woodhead, 2002). These farmers use groundwater to irrigate half their land and are 

likely to be the hardest hit by continued declines in groundwater, thus adding to their already 

high vulnerability. Consequently, the sustainable use of groundwater into the future remains a 

serious concern for India, especially given the substantial number of rural households dependent 

on it for their sustenance. Previous studies in the fields of hydrology (Biemans et al., 2012; Elliot 

et al., 2014) and economics (Fishman, 2012) have individually assessed the future of 

groundwater-based agriculture in India; however, each of these fields misses key elements. 

Previous hydrology work has not accounted for the dynamic behavioral response of farmers to 

changing climate, while econometric studies have failed to account for biophysical constraints on 

water supplies. Researchers and policymakers need a modeling system that can account for both 

human irrigation decisions and the physical water supply in order to understand how climate 

changes may affect unsustainable groundwater (UGW) use -defined as any groundwater 

abstraction in excess of recharge - groundwater levels, and agricultural production. 

 In this study, we assess how climate change will drive human irrigation decisions, and in 

turn how both those human decisions and the physical changes in climate will alter both crop 

water requirements and available water resources. This approach requires integrating an 
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econometric model with a process-based hydrology model (Fig. 2.1), and allows us to quantify 

not only how climate change will alter each system individually, but how it will affect the entire 

coupled system. This multidisciplinary approach is required for study of the widely varying 

spatial differences in water resources and crop production across a country that is both 

experiencing a significant water crisis and is home to a third of the world’s extreme poor, who 

primarily rely on agriculture for their livelihoods (World Bank, 2015). The combination of both 

models is critical for India in order to better plan for the future, as well as assess the role that 

adaptation responses and policy measures play going forward. One such policy initiative 

proposed by the Government of India is to move 178 billion m3yr-1 of water across river basin 

boundaries (Chellaney, 2011). This National River Linking Project (NRLP) has been proposed as 

a solution to groundwater stress by increasing irrigated agriculture through surface irrigation and 

artificial groundwater recharge. Better understanding of future irrigation water demand and 

availability, with emphasis on UGW dependence, is critical to assess such policies and formulate 

effective strategies to adapt to climate change.  

 

Methods 

We make use of detailed crop-wise agriculture and weather data spanning 36 years from 

1970-2005 for all the districts in the main agricultural states of India, and a panel data regression 

to estimate the relationship between inter-annual variation in monsoon climate variables and 

district-level irrigation decisions. This relationship is used to generate projections of irrigated 

area in response to climate change. The hydrology model then simulates irrigation water demand 

and supply from surface and renewable- and non-renewable groundwater based on these 

projections and future climate inputs (see Supplemental Information). Our coupled-model 
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approach allows us to assess India’s future dependence on UGW and its impacts on 

groundwater-based agricultural production. We also quantify the effect of the proposed NRLP in 

mitigating groundwater stress. 

 

Econometric model: human system 

We project irrigated area for six major crops in India - the staple cereal crops rice and 

wheat (the focus of the Green Revolution); coarse cereals maize, sorghum and barley; and a 

high-value crop cotton. Barley and wheat are dry season crops, while maize, sorghum and cotton 

are wet season crops. Rice is grown in both seasons. Historical agricultural data was acquired 

from  the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT) and 

historical data of temperature and precipitation were acquired from the Asian Precipitation- 

Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources 

(APHRODITE) product  (See Supplemental Information for further details).  

The empirical model of irrigation decisions assumes that the planting decision has 

already been made. Therefore, irrigation decisions reflect the second stage in a farmer’s decision 

making process, and each crop regression only accounts for the sample of districts that grow a 

particular crop over our study period, 1970-2005. We estimate the following equation for each 

crop: 

log𝑌!,! = 𝛾! + 𝛼 𝑙𝑜𝑔𝑌!,!!!+   𝛽 𝑙𝑜𝑔 𝑅!,! + 𝛾!𝑙𝑜𝑔𝐺𝐷𝐷   + 𝛾!𝑙𝑜𝑔𝐴!,!!!,!!! + 𝜌! + 𝜆! + 𝐴!,! +   𝜖!,!                   (2.1) 

where 𝑌!,! is the irrigated area of a particular crop in district d in year t; 𝑌!,!!!  is a lag of the 

dependent variable, which captures spillover effects from investments in irrigation infrastructure 

affecting all subsequent irrigation decisions; 𝑅!,!, which follows from previous research 

(Fishman, 2012), represents June-September monsoon rainfall and the number of days with 
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precipitation >0.1mm;  and 𝐴!,!!!,!!! is the previous 5-year average crop area, which captures 

the expectation to plant in the current period. 

In this model, we use short-run random variation in climate in a given area to compare 

that area’s outcomes under different weather conditions after controlling for observed and 

unobserved characteristics using regional fixed effects, 𝜌!, and a time fixed effect that further 

neutralizes any common trends.  These time fixed effects are represented by 𝜆! and 𝐴!,!; 𝜆! 

accounts for all common contemporaneous trends, for example, national price changes, 

economic growth and population growth while state-specific trends, 𝐴!,!  , allow to control for 

differential trends by state such as state-wise technological progress and changes in electricity 

subsidies. In this way, a district observed during a dry year, acts as a ‘control’ for that same 

district observed during a wetter ‘treatment’ year. This is important because, for instance, one 

district might be wetter than another district, and also much wealthier. If irrigation decisions are 

a function of wealth, then a statistical model that just compares precipitation to irrigation 

outcomes between the two regions, without accounting for income differences, is likely to be 

biased.  

We adopt linear and Tobit regression approaches when modeling irrigated area. Zero 

irrigated areas reflect optimal outcomes of a decision and are modeled using a Tobit approach. 

Standard errors are clustered at the district in the Tobit models, and corrected for spatial and 

serial correlation in the linear models.  

 

Irrigated area projections 

We combine our estimated historical irrigation response to weather (Table 2.1) with bias-

corrected climate projections from 5 GCMs that have contributed to the World Climate Research 
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program’s Coupled Model Inter-comparison Project phase 5 (CMIP5) under the RCP 8.5 

scenario (Taylor, Souffer, and Meehl, 2012).  The 5 GCMs used in this study are CCSM4, 

GFDL-CM3, GFDL-ESM2G, MIROC-ESM-CHEM, and NorESM1-M (Table S 2.1).  We chose 

these models because they (i) come closest to characterizing India’s historical monsoon (Menon 

et al., 2013; Sooraj, Terray and Mujumdar, 2014), and (ii) demonstrate a wide distribution of 

future climate changes, including both increases and decreases in monsoon rainfall and the 

number of rainy days within the monsoon season (Fig. S 2.3).  The bias correction method and 

number of models used follows the Inter-Sectoral Impact Model Inter-comparison Project 

approach (Hempel et al., 2012). Further details are in Supplemental Information. 

 

Hydrology model: physical system 

Projected changes in irrigated area and bias-corrected CMIP5 climate projections are 

inputs to the hydrology model, WBMplus (Wisser et al., 2010; Grogan et al., 2015). WBMplus is 

a gridded process-based hydrology model, used to represent the spatial and temporal water cycle 

in India, including crop water use. It simulates vertical water exchange between the land surface 

and the atmosphere, and horizontal water transport through runoff and stream networks (Wisser 

et al., 2010), and computes irrigation water demand, supply, and use by crop type (Grogan et al., 

2015). WBMplus uses a 30-arcminute grid resolution with the simulated topological river 

network STN-30p (Wisser et al., 2010; Grogan et al., 2015).  The climate inputs – both historical 

and future – are the same as used for the econometric analysis and projections (Supplemental 

Information Sections S 2.2 and S 2.3).  WBMplus simulated the climate for each GCM 

separately, including a 10-year spin-up with each GCM’s historical output (1996-2005).  

Historical agricultural data (i.e., irrigated area by crop type) is from ICRISAT (Supplemental 
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Information Section S 2.1), and future agricultural data is from the econometric model 

projections.  The field capacity and wilting point of soils is a required input for calculating both 

crop and non-crop potential evapotranspiration (PET).  We use the FAO/UNESCO Soil Map of 

the World (Burke and Emerick, 2015) for both, as well as for the soil drainage classes.  Soil 

drainage class is used to estimate water seepage through flooded rice paddies.  Large reservoirs 

are represented as river segments with the reservoir’s storage capacity; data on large reservoir 

capacity, location, and primary purpose are from the GRanD database (Lehner	  et	  al.,	  2011).	  	   

 

Unmet irrigation demand: modeling the loss of groundwater access 

We quantify current (c.2000) irrigated crop production that can be attributed to UGW by 

simulating historical crop water requirements as described above, but restricting irrigation water 

supplies to sustainable sources. Unmet irrigation water demand was assumed to lead to 

contraction of irrigated areas (Fishman et al., 2011). We apply the contraction of irrigated area 

equally to all crops within a district.  This is a first-order assumption; water deficits will likely 

cause uneven distribution of irrigated area contractions due to a range of factors.  These factors 

may include the profitability of the crop type, the ability of the crop to survive under deficit 

irrigation conditions, or the crop water productivity of a crop type.  Results shown here should be 

considered as estimates of crop production losses due to UGW restrictions; further work on this 

topic will help increase the accuracy of estimates shown here. In the dry season, reduction of 

irrigated areas is assumed to equal a reduction in crop area, as most dry season crops cannot be 

grown without irrigation. In the wet season, we assumed farmers would grow the same area of 

crops, but under rainfed conditions.  Therefore, dry season crop production losses, Ploss,d  (tons), 

due to UGW restrictions are: 
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𝑃!"##,! =
!!"#$%,!
!!"#$$,!

∗ (𝐴! ∗ 𝐼𝑌! +⋯+ 𝐴! ∗ 𝐼𝑌!)           (2.2) 

and wet season crop production losses, Ploss,w  (tons), due to UGW restrictions are: 

𝑃!"##,! =
!!"#$%,!
!!"#$$,!

∗ (𝐴! ∗ (𝐼𝑌! − 𝑅𝑌!)+⋯+ 𝐴! ∗ (𝐼𝑌! − 𝑅𝑌!))         (2.3) 

where Iunmet,d(w)  is dry (wet) season unmet irrigation water demand, Igross,d(w) is the dry (wet) 

season gross irrigation water demand AN is the area (ha) of crop N,  and IYN (tons/ha) is the 

irrigated yield of crop N, and RYN (tons/ha) is the rainfed yield of crop N, and Igross,w (km3) is the 

gross irrigation demand in the wet season.   Crop production data is from ICRISAT. 

 

National River Linking Project 

To assess the NRLP’s potential to reduce India’s groundwater stress, WBMplus models 

all published proposed irrigation water transfers across river basins (Ghassemi and White, 2007). 

Two scenarios were simulated: one implements only the inter-basin water transfers through the 

proposed canal system; the other additionally adds reservoirs at each water recipient location. In 

both simulations, the daily volume of water moved through the canals is a function of river 

discharge at the donor location and the canal’s capacity. In the second simulation, reservoir 

capacity is added to allow water transferred during the wet season to be stored until it is needed 

for irrigation in the dry season. We recognize that this simulation is highly speculative, as few 

details of the proposed increase in water storage have been published.  

	  
Method	  limitations	  
	  

The methods described above allow a human decision-making process – i.e., expansion 

or contraction of crop-specific irrigated areas – to be be fully integrated into a physical 

hydrology system analysis.  While inclusion of the human decision-making process is an 
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important advance, the methods used here have several key assumptions which lead to 

limitations that must be defined.  First, projections of irrigated areas assume that current trends in 

variables other than weather continue into the future: e.g., population growth, GDP growth, and 

technological advancement are all assumed to continue along their current trajectory.  Therefore, 

this model system cannot account for significant extreme events or shocks to the economic or 

physical system.  Second, projections of irrigated areas can only be made in districts that had 

crops planted in the historical assessment period.  This limits the study by not allowing us to 

project the expansion of agriculture (irrigated or rainfed) into new areas.  Third, the hydrologic 

model simulates crops that are either fully rainfed, or fully irrigated – deficit irrigation, the 

practice of providing only a portion of the amount of irrigation water required for optimal 

growth, is not simulated.  Crop yields are not perfectly linear with added water and the 

relationship between water additions and crop yields vary between different crops (Fishman, 

2012).  Therefore, when modeling the crop yield loss due to losing access to UGW, our methods 

only provide a first-order estimate.  Fourth, groundwater levels drop unevenly across the country, 

and so loss of access to UGW will occur at different times in different places.  The methods 

presented here do not capture this temporal variability, nor do they capture the potential human 

response to the gradual loss of UGW.  Lastly, the simulation of the National River Linking 

Project is based on imperfect knowledge of the location and storage capacity of planned 

reservoirs or other water storage systems (Amarasinghe, Shah and Malik, 2009).  The simulation 

results shown here are meant to optimize water storage and release volumes and timing, and 

therefore may not be representative of actual reservoir construction or storage volumes.  

The methods used here and there limitations define the scope of this study: we are able to 

(a) project how changes in climate (and continued trends in all other relevant variables) will lead 
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to hunan-based changes in crop-specific irriagted areas, (b) quantify how much irrigation water 

these projected irrigated areas will require under the same set of climate change conditions, (c) 

quantify how much unsustainable groundwater, UGW, would be required to fully meet these 

projected irrigation water requirements, (d) categorize changes in the rate at which groundwater 

levels will drop in response to these projections, (e) estimate the quantity of food produced as a 

direct result of current UGW use, and (f) estimate a potential range for UGW alleviation under 

full implementation of the National River Linking Project. 

A detailed account of the methods and data is available in the Supplementary Information. 

 

Results 

Monsoon Impact on Historical Irrigated Areas 

The first step in assessing the future of irrigation in India is to quantify how historical 

changes in climate have driven historical patterns of irrigation. This understanding allows us to 

project changes in irrigation into the future, based on a suite of potential climate change 

scenarios. India has a monsoonal climate with a wet (Kharif) season that receives up to 1m of 

rainfall and a dry (Rabi) season in which precipitation is insufficient to grow most crops and 

irrigation must be used. Consequently, farmers assess the supply of rain during the monsoon 

season and the amount that gets stored at the end of the season, in order to make decisions about 

increasing or decreasing irrigated areas for different crops (Fishman, 2012). Thus, there is a 

significant link between monsoon rainfall and irrigated areas in India (Siegfried et al., 2010; 

Fishman et al., 2011). The future of monsoon rainfall is extremely uncertain; some climate 

change studies show an increase in future precipitation (Chaturvedi et al., 2012), others predict a 

decrease (Ashfaq et al., 2009) (Fig. S 2.3). Increases in inter-annual and intra-seasonal variation 
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are also expected (Menon et al., 2013) along with rising temperatures (Chaturvedi et al., 2012; 

Fig. S 2.4). Such climatic change will affect irrigation water demand and supply due to farmer 

irrigation decisions, water supply, and physiological crop water requirements.  

The econometric model estimates the effect of total precipitation, rainfall distribution, 

and seasonal growing degree days (GDD) on seasonal, crop-wise irrigation decisions for six 

major crops in India, which make up 80% of India’s crop production (Table 2.1), across districts 

in all major agricultural states in India from 1970 to 2005. The logarithmic specification of the 

model enables interpretation of coefficients as elasticities, so that a 1% increase in the weather 

variable affects irrigated area by 𝛽%, where  𝛽 is the coefficient of interest. Precipitation and 

GDD have less than proportionate impacts on irrigation decisions (i.e., |𝛽| < 1).   

Precipitation plays a larger role than GDD in driving changes in irrigated area (Table 2.1). 

The number of rainy days (i.e., the distribution of monsoon season rainfall) directly affects wet 

season crop irrigation, as too many days without rain during critical crop stages can reduce yields 

or lead to crop failure (Gadgil and Kumar, 2006). Supplemental irrigation in the wet season, 

largely relying on stored monsoon rainwater from previous years, can help overcome this uneven 

distribution of rainfall, but may not be able to offset decreases in total precipitation. Negative 

coefficients on the number of rainy days for maize (p<0.001), sorghum (p<0.1) and cotton 

(p<0.001) reflect a rise in irrigated areas for most wet season crops in response to fewer rainy 

days, even when total rainfall is controlled for. In contrast, the impact of the total amount of 

rainfall on wet season irrigated area of rice, sorghum and cotton is varied. Of the three crops, 

sorghum is least water intensive and most drought resistant (Brouwer and Heiblem, 1986), so a 

fall in monsoon rainfall can be easily compensated by supplemental irrigation to meet its 

irrigation needs. Rice and cotton are more water intensive, rice due to the practice of flooding 
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paddy fields, and cotton due to high crop water requirements for optimal growth (Brouwer and 

Heiblem, 1986). As a long duration crop, cotton sometimes extends into the dry season, 

increasing its water needs substantially. For these two crops, coefficients on the total amount of 

rainfall are positive and significant (p<0.001), implying that a reduction in total monsoon rainfall 

also decreases irrigated area. In the irrigation-intensive dry season, the capacity to irrigate rests 

on the amount of monsoon rainfall collected in surface and groundwater storage. Any decrease in 

precipitation during the previous monsoon season significantly (p<0.001) reduces the area of rice 

and wheat that are irrigated. Barley, another dry season crop, is of short duration, hardier than 

wheat, relatively drought resistant (Brouwer and Heiblem, 1986) and relies on conserved soil 

moisture for its water needs (Majumdar, 2013). A more even distribution of monsoon rainfall 

helps retain soil moisture and can significantly (p<0.05) decrease barley irrigation.  

The impact of GDD on irrigation is limited, with higher wet season GDD significantly 

contracting irrigated area for only maize (p<0.05) and cotton (p<0.001). Studies suggest that 

with an increase in temperature and water stress on plants, farmers tend to contract agricultural 

activity to smaller areas during the season (Siegried et al., 2010). Higher wet season GDD can 

also affect irrigation in the ensuing dry season, but in the opposite manner. We find that dry rice 

irrigation significantly (p<0.01) increases in response to a rise in wet season growing degree 

days. 

The crop-specific understanding of links between climate and irrigation presented here 

are necessary to generate projections of irrigated areas for each crop individually, since they are 

key to understanding future water requirements, as crops have varying levels of water 

requirements. 
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Projections of Future Irrigated Areas under Climate Change 

Farmers in India tend to respond to water scarcity along the extensive margin, changing 

the extent of cultivated and irrigated area rather than the rate of water use per unit area (Fishman 

et al, 2011). We combine our elasticity estimates (Table 2.1) with predicted changes in 

precipitation and GDD from five different general circulation models (GCMs) to project crop-

specific irrigated areas (Fig. 2.2). The GCMs used model the historical Indian monsoon well 

(Menon et al., 2013; Sooraj, Terray, and Mujumdar, 2014), yet they also span the range of 

positive to negative projected changes in future monsoon rainfall (Fig. S 2.3). These irrigated 

area projections implicitly assume that historical irrigation decisions in response to changes in 

precipitation and temperature continue into the future, and that any future adaptation to a 

changing climate is fully embodied in the observed ability to adapt to past changes. 

In developing countries like India, the majority of farmers face credit constraints, 

incomplete markets, lack of information, and low levels of human capital, which limits their 

ability to quickly adopt new technologies or improve upon existing ones (Sui Wing and De Cain, 

2014; Jack, 2011). Thus, the estimates from our panel data models reflect the effects of climate 

change in the short- to medium-term scenarios, where farmers might be unable to adjust or re-

optimize their decisions, or can only do so very slowly (Sui Wing and De Cain, 2014).  Recent 

research suggests that the degree to which people adapt to longer-run changes in temperature and 

precipitation reflects surprisingly little adaptation (Burke and Emerick, 2015). Thus, our 

econometric model evaluates the effects of climate on changes in irrigated area in the medium 

term (up to 2050), while keeping cropping decisions, growing seasons, and other variables 

unchanged and assuming trends in technology and population stay constant into the future.  
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Since the application of irrigation to cultivated cropland is a short-term adaptation 

response by farmers in the face of inter-annual monsoon variation, irrigated area projections are 

made year to year and we convert the estimated % changes in irrigated area into absolute values 

using the previous year’s irrigated area as the base. While we acknowledge that the path of 

development in India will change in the future, it is nevertheless instructive to project irrigated 

areas to assess the possible magnitude of climate-change related UGW needs. We project 

irrigated area increases in both seasons, with uncertainty (+/- 15% in the wet season, +/- 50% in 

the dry season by 2050) due to the range of GCM-projected future climates (Fig. 2.2). These 

increases are due to the extent of irrigated wheat and rice continuing their historical rising trend, 

while irrigated extent of other crops remains the same or decreases (Fig. S 2.5) 

 

Impacts of Climate Change on Unsustainable Groundwater Abstraction 

UGW abstraction is unsustainable in the long term, and can exhaust groundwater 

resources if continued unabated (Aeschbach-Hertig and Gleeson, 2012). We use a process-

based hydrology model that separately models both sustainable irrigation – that supplied by 

groundwater recharge and surface water rivers and reservoirs – and UGW. By integrating the 

agro-economic econometric model with the hydrology model, we assess the impact of climate 

change and the resulting changes in irrigated areas on future UGW demand (Fig. 2.3) 

India’s northwest region has already experienced significant groundwater level decreases 

due to UGW use (Rodell, Velicogna, and Famigliettie, 2009). We use our model projections of 

future UGW demand to infer how groundwater levels will change up to 2050. If demand 

increases, then groundwater levels will drop more rapidly (Fig. 2.3, dark red); continued demand 

will lead to continued rates of groundwater level decline (Fig. 2.3, red), while reduced but 
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positive demands will slow the rate of groundwater level decline (Fig. 2.3, yellow). Some 

districts will be able to rely solely on sustainable water supplies, allowing groundwater levels to 

recover (Fig. 2.3, blue). Under future climate change, most of Punjab and Haryana, northern 

areas of Rajasthan and Gujarat, and parts of Uttar Pradesh and Tamil Nadu will face continued 

and further groundwater level declines (Fig. 2.3). Additionally, the spatial extent of UGW 

pumping expands to pockets of Tamil Nadu, Andhra Pradesh, Uttar Pradesh and Gujarat, regions 

that previously did not over-abstract groundwater (Fig. 2.3, orange).  

Free or flatly tariffed electricity provisions have played a critical role in enabling 

groundwater extraction (Badiani, Jessoe, and Plant, 2012), and might further contribute to UGW 

use if present day irrigation and cropping practices persist. However, despite the presence of 

subsidies, expensive pump technology is still needed to draw groundwater once levels drop 

beyond certain thresholds (Sekhri, 2011). Therefore, evidence of continued and increased future 

groundwater level declines reflect potential constraints on access as rising pumping costs can 

eventually make extraction prohibitive. 

To assess how a loss of access to UGW may affect Indian agriculture, we quantify the 

amount of unmet irrigation water demand that will occur in its absence by restricting the use of 

the UGW within the hydrology model (Fig. S 2.7). Without UGW, unmet irrigation water 

demand will reach 170 km3y-1 by 2050 (Fig S 2.7), paralleling only the unmet demand in 2002, a 

year in which India was hit by a massive drought (Bhat, 2006).  

 

Policy Implications 

Losing access to UGW directly translates to reductions in food production. We find that 

currently, half of dry season irrigated crop production and a quarter of the total annual irrigated 
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crop production is directly sustained by UGW (Table 2.2). The most affected regions primarily 

grow India’s staple crops – wheat and rice – in the dry season (Smilovic, Gleeson, and Siebert, 

2015). The fertile Indo-Gangetic Plain is one of the most intensely farmed and populated areas in 

the world, and includes much of Uttar Pradesh, Punjab and Haryana, which have districts that 

produce up to 1.8 million tons of UGW-based agricultural output each year (Fig. 2.4). The 

southeastern states of Tamil Nadu and Andhra Pradesh also rely heavily on UGW for crop 

production, with some districts producing up to 0.8 million tons per year using UGW (Fig. 2.4).  

Therefore, in the event that UGW becomes difficult to access, national food security will be 

threatened. We find that UGW in India is directly responsible for production of sufficient food 

calories to feed 173 million people, accounting for 14% of India’s population (Table 2.2). In a 

country where ~194 million people go hungry every day (FAO, 2015), losing access to UGW 

would further aggravate food security concerns that already plague India.  

Based on the range of projected future climates, UGW will either remain at historical 

levels (30 – 40 km3yr-1), or it will increase to as much as 170 km3yr-1 (Fig. S 2.7).  Historically, 

the irrigation water deficit that would occur due to restricting UGW use is 5 – 15%.  Future 

irrigation water deficits may stay at this level, or increase up to 40%.  If the future UGW demand 

remains the same as the present, than the food cost of eliminating UGW use will remain at levels 

summarized in Table 2.2.  However, the extreme case of increasing irrigation water deficits to 

40% would result in significantly larger reductions in food production.  However, it is worth 

noting that future advances in agricultural systems may allow for higher crop yields under water 

stressed conditions.  Additionally, increased irrigation efficiency may allow for more water to be 

used beneficially by crops even with reduced water extractions.   
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A recent government initiative has looked to the massive NRLP to overhaul water 

management in India. The $123 billion project intends to move 178 km3 yr-1 of water by 

connecting 37 rivers, building ~3000 storage dams and 12,500 km of water conveyance networks 

(Chellaney, 2011; Amarasinghe, Shah, and Malik, 2009). If completed, it will be the biggest 

infrastructure project in the world (Amarasinghe, Shah, and Malik, 2009). In addition to its stated 

goals of 34 GW of hydropower generation, increasing drinking water supplies, and mitigating 

floods in the east Amarasinghe, Shah, and Malik, 2009), it is also expected to alleviate the stress 

on groundwater. The NRLP is expected to increase the extent of irrigated agriculture by 35 

million ha through surface irrigation and improved groundwater recharge (Amarasinghe, Shah, 

and Malik, 2009)   

To quantify the NRLP’s impact on UGW demand and surface water irrigation, we 

simulate a scenario in which all proposed river links are functional along with concurrent 

construction of large reservoirs at receiving nodes in the NRLP, and compare the UGW demand 

to our baseline model results. We find that with both the additional reservoirs and the inter-basin 

transfer network functioning, there is potential to alleviate as much as 16% of India’s mid-

century UGW demand (Fig. 2.5b). However, without new large reservoirs, the inter-basin 

transfers alone reduce only 1-4% of overall UGW demand (Fig. 2.5c). Historically, construction 

of large dams has been contentious in India (Bhawan, 1989). While the exact plans for dam 

construction under the NRLP have not yet been publicized, it is clear from these results that 

without a large increase in reservoir capacity, the NRLP will not alleviate groundwater stress in 

northwest India.  
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Discussion 

In this paper, we project future unsustainable groundwater (UGW) use by accounting for 

changes in both demand and supply of water and their interaction under different climate change 

scenarios. We are able to identify regions where groundwater demand and supply may change 

significantly (Figs. 2.3, 2.4), which has important implications for policy decisions that affect 

agricultural development, poverty, food security, and adaptation.  

One policy recommendation for managing water is the NRLP, but our results demonstrate 

canals alone have limited ability to decrease unsustainable use of groundwater nationally (Fig. 

2.5c). In addition to the NRLP, several other policy and infrastructure tools have been studied, 

and research has indicated they have potential for reducing groundwater abstraction in different 

areas.  Interventions researched include investments in public provision of groundwater to crowd 

out private construction of wells (Smilovic, Gleeson, and Siebert, 2015), decentralized rainwater 

harvesting schemes (Famiglietti et al., 2011), creation of groundwater markets (Foster and Sekhri, 

2008), metering electricity (Mukheraji, Shah, and Giodano, 2012), and power supply rationing 

by separating agricultural from non-agricultural feeders (Shah and Verma, 2008).  In the end, our 

coupled model suggests that, regardless of the mechanism, support for sustainable groundwater 

management will become increasingly urgent in the near future. 

 

Conclusions 

The results of this study provide the first multidisciplinary assessment of the extent of 

UGW use in India through mid-century, its importance in sustaining food production, and the 

potential role of large infrastructure projects in decreasing India’s dependence on UGW. Our 

results emphasize that under a business as usual scenario, climate change induced precipitation 
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increases in certain areas will not necessarily alleviate groundwater stress, due to the expansion 

of irrigated areas. This analysis also points to the need for a thorough analysis of farmer 

decision-making responses to infrastructure projects such as the NRLP and other policy 

measures that affect the availability of irrigation water supplies,  as it is likely that subsistence-

level food security concerns may drive these decisions. While we quantify here the potential for 

the NRLP to alleviate groundwater stress, it is possible that expansion of irrigated areas in 

response to the project (as has been promoted by NRLP-planners) will negate these potential 

benefits.  

 

Supplemental Information 

Agricultural data 

The historical agricultural data used in our analysis was acquired from the International 

Crop Research Institute for the Semi-Arid Tropics (ICRISAT) and their Village Dynamics in 

South Asia (VDSA) database, which collates data from State Directories of Agriculture, State 

Bureaus of Economics and Statistics, State Planning Departments, various Agricultural Censuses, 

and government reports. It provides documentation of the different sources used in compiling 

data across various variables.  This is the only long-term publicly available recording of district 

level statistics. The dataset includes district-level irrigation and crop area data for both Kharif 

(wet) and Rabi (dry) season crops across all major agricultural states in India from 1966 to 2006. 

Data for a large proportion of districts in India are available from 1969 to 2005. We therefore use 

data from 1970-2005 in the historical econometric analysis. A district is an administrative unit 

under the Indian state that is the lowest level of disaggregation for which agricultural data are 

uniformly available across India. Since Indian district boundaries change over time and larger 
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districts have been split into smaller ones (219 new districts were formed between 1966 and 

2007), we use district boundaries from the year 1966 to allow for comparisons over time. To 

construct time-series data, we must have a consistent district definition. Therefore, districts 

formed after 1966 are mapped back to their parent districts (i.e. districts from which they were 

formed) based on the percentage of geographical area of the parent district that was transferred to 

the new district. 

District-level agricultural statistics provided by the government’s land use surveys (LUS) 

report annual irrigated area for each crop, and season-wise irrigated area for sorghum and rice. 

The online LUS database provides these statistics only 1998 onwards. The ICRISAT database, 

on the other hand, uses all the land use surveys to compile season-wise irrigated area for 

sorghum from 1970 to 2005, but not rice. Apart from rice, the other crops used in the 

econometric analysis are largely grown in either the wet or dry season. The wet season coincides 

with the timing of the summer monsoon, which spans approximately June through September. 

The dry season spans approximately November through February. On average, most wet and dry 

season crops are grown across these two seasons. While rice is predominantly grown in the wet 

season in India, some states in the South and East (such as Andhra Pradesh, Assam, Bihar, 

Karnataka, Kerala, Maharashtra, Orissa, Tamil Nadu and West Bengal) grow rice in both seasons 

(Frolking, Yeluripati, and Dougles, 2006). For these states, we split annual irrigated area, as 

reported in the ICRISAT database, into seasons using district-level wet-season and dry-season 

irrigated area from the early- to mid-1990s (Huke and Huke, 1997), as follows: 

1. We first calculated the proportion of total irrigated area for rice that fell in either the wet 

or dry season for each district covered in Huke and Huke (1997).  
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2. Since district boundaries changed over time, we intersected the 1966 boundaries that we 

used in our analysis with those used in Huke and Huke (1997) and apportioned the area 

weighted average for each season’s crop to the 1966 districts.  

3. These seasonal proportions were then multiplied by the annual total for irrigated rice area 

in our dataset to get each season’s irrigated area.  

Thus, the underlying assumption used to split data into seasons is that districts have different 

amounts of seasonal irrigated rice area over time, but the proportion of wet- and dry-season 

irrigated rice area stays constant. Only states that grow rice in both seasons are used in 

regressions that involve dry-season rice. Additionally, for these regressions the previous five 

year average of crop area is calculated using annual crop area.  

 

Historical weather data 

Observed temperature and precipitation data were acquired from the gauge-based 

observationally-gridded daily dataset Asian Precipitation Highly Resolved Observational Data 

Integration Towards Evaluation of Water Resources (APHRODITE) (Yasutomi, Hamada, and 

Yatagai, 2011; Yatagai et al., 2012) compiled by the Research Institute for Humanity and Nature 

(RIHN) and the Meteorological Research Institute of Japan, Meteorological Agency (MRI/JMA).  

Data are available at a spatial resolution of 0.25° X 0.25° for 1951-2007. Precipitation data is 

from the Monsoon Asia product APHRO_MA_V1101R2, and temperature data is from 

AphroTemp_V1204R1. This is the only long-term continent-scale daily product that contains a 

dense network of daily rain-gauge data for Asia including the Himalayas, South and Southeast 

Asia, and the mountainous areas in the Middle East (Yatagai et al., 2012). We re-scale the 

gridded weather data to the district level by taking an area-weighted average of grid values in 
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each district. There is a large degree of variation in the amount of rainfall and the frequency of 

rainy days during the monsoon season (Fig. S 2.2). Regions in the northwest tend to have lower 

amounts of both precipitation measures. Regions in the south have lower amounts of total 

rainfall, but a more even distribution of rain over the monsoon period 

 

Future Climate Projections 

Climate projections from five general circulation models (GCMs) using representative 

concentration pathway (RCP) 8.5 and initial condition r1i1p1 were bias-corrected and 

downscaled for use in this project. These models were CCSM4, GFDL-CM3, GFDL-ESM2G, 

MIROC-ESM-CHEM, and NorESM1-M. All five models were part of the World Climate 

Research Programme’s Coupled Model Intercomparison Project Phase 5, or CMIP5 (Taylor, 

Souffer, and Meehl, 2012; Table S 2.1). We chose these models because they (i) come closest to 

characterizing India’s historical monsoon (Menon et al., 2013; Sooraj, Terray, and Mujumdar, 

2014), and (ii) demonstrate a wide distribution of future climate changes, including both 

increases and decreases in monsoon rainfall and the number of rainy days within the monsoon 

season (Fig. S 2.3). The bias correction method and number of models and initial condition used 

follows the approach of the Inter-Sectoral Impact Model Intercomparison Project (Warszawaski 

et al., 2014; Hempel et al., 2013). The bias correction method is recommended for use in 

hydrology models as it preserves future trends in precipitation and growing degree day 

variability in addition to their mean trends (Hempel et al., 2013). The climate models were 

downscaled to the 0.25° spatial resolution of the APHRODITE historical data (Hempel et al., 

2013).  
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Econometric Model Specification  

In our econometric model, we use both total monsoon rain and the number of rainy days 

to distinguish between cumulative impacts of rainfall and the associated impacts of its 

distribution over the months of June-September, which are likely to have different implications 

for wet and dry season crops (Fig. S 2.2), following past studies (Auffhammer, Ramanathan, and 

Vincent, 2012; Fishman, 2012). Since historical precipitation and temperature are correlated, 

omitting temperature means that the coefficient on precipitation will measure the combined 

effect of both temperature and precipitation (Auffhammer et al., 2013). Therefore to obtain 

unbiased estimates of the effects of changes in precipitation, we also include growing degree 

days by season, 𝐺𝐷𝐷, calculated by using daily mean temperature (Schlenker, 2006). Since 

irrigation can be applied at any time during the growing season in response to planting decisions, 

controlling for extent of crop area is necessary. This can help absorb residual variation and 

generate more precise estimates. However, inclusion of the contemporaneous cropping decision 

could create a potential source for endogeneity bias, especially if time varying unobservables that 

impact irrigation decisions also impact planting decisions, or if these decisions occur 

simultaneously as in the dry season. Additionally, contemporaneous crop area is itself an 

outcome of weather changes and we would be unable to estimate the true effect of weather on 

irrigation, due to an over-controlling problem (Dell, Jones, and Olken, 2014). To address this, we 

use the previous five-year averages of crop area 𝐴!,!!!,!!!, to eliminate the bias at least 

contemporaneously. In all Tobit regressions we use cluster-robust SEs allowing for within-

district clustering of errors and arbitrary correlation of observations across time. For the ordinary 

least squares (OLS) regressions, SEs are corrected for spatial and serial correlation (Hsiang, 

2010). 
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Dependent variable 

The dependent variable used in the econometric model is irrigated area, in 1000s of 

hectares, for different crops grown in the wet and dry season. It takes on properties of a nonlinear 

corner solution outcome since many districts report zero irrigated area in a given year, especially 

for wet season crops and rice grown in the dry season. Of the estimation samples used in our 

regression models, zeros for irrigated area range from as low as 8% to as high as 67% (wet- 

season rice: 8%, maize: 22.4%, sorghum: 67%, cotton: 9%, dry- season rice: 16%). A variable 

with this type of distribution – a variable with a large numbers of zeros with a latent mixing 

distribution that takes on positive values with positive probability – requires the use of a Tobit 

model (Wooldridge, 2010). For this type of behavioral model, the zeros reflect a natural outcome 

from a decision-making process conditional on changes in a set of observed independent 

variables. Thus, we are interested not only in the properties of  𝐸(𝑦|𝑥), but also in  𝑃(𝑦 = 0|𝑥) 

which renders a linear OLS estimation inappropriate. Our results from a linear estimation model 

applied to wet-season crops and dry-season rice are shown in Table S 2.3. We find that the signs 

and significance of the coefficients are largely consistent with the results from the Tobit models 

reported in Tables 2.1 and S 2.2 except for the coefficient on wet season growing degree days in 

the dry- season rice regression. For wheat and barley, however, only 0.25% and 3% of the 

observations in the samples have zero irrigated areas, so we can ignore the zeros problem and 

perform standard OLS estimation (applying a Tobit model to a sample with a small number of 

censored observations is less efficient than simply running OLS). We log transform the 

dependent variables our econometric models as most of the variables are log-normally 

distributed, and allow the weather variables to affect irrigated area proportionally. Thus, for the 
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OLS models we take into account only positive values of the dependent variable. In the tobit 

models, our dependent variable is of the form ln(𝑌!" +1) to retain year-district observations that 

have zero values in the estimation sample.  

 

Time-varying unobservables 

Despite the use of fixed effects and state specific trends, there could be other factors 

affecting irrigation decisions that may be correlated with weather. In this case, panel data models 

could still suffer from omitted variables bias. We include an interaction between a set of five-

year time dummies and the latitudes and longitudes coordinates for each of our districts to create 

a smooth spatial function (Banzhaf and Lavery, 2010). This function, which creates a smooth 

spatial surface at each of our five year increments, captures deviations from each district’s long-

term time trend and controls for any additional spatiotemporal confounding effects. The results 

from this model are shown in Table S 2.4. The signs, significance, and magnitude for the average 

partial effects and the coefficients are largely consistent with Table 2.1 and S 2.2, suggesting that 

our preferred model is able to capture all confounding factors.  

 

Panel fixed effects  

A potential problem with including panel level fixed effects in a non-linear model such as 

Tobit is the incidental parameters problem if the number of panel units goes to infinity and the 

number of time periods is fixed (Neyman and Scott, 1948). In theory, this can make it difficult to 

estimate fixed effects consistently, and can affect the consistency of parameters of interest. 

However Greene (2004) shows, using Monte Carlo simulations, that the bias generally believed 

to result from such a model is quite limited as long as the number of time periods is greater than 
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five (Greene, 2004). Since the time dimension in our historical analysis is as large as 35 years, 

with an equally large number of districts, our estimates reported in Table1 will be consistent and 

asymptotically efficient. An alternative specification to the fixed effects Tobit model is a more 

general random effects model that includes averaged values of all the time-varying variables in 

the model to account for time-invariant district level unobservables (Wooldridge, 2010; 

Chamberlain, 2004). We apply this correlated random effects model in Table S 2.5 and bootstrap 

standard errors allowing for within-district clustering to account for potential heteroscedasticity 

and correlation of observations across time within each cross-sectional unit. The direction and 

significance of the average partial effects (APE) remains largely similar to Table 2.1 and S 2.2; 

however significance on the APE for total precipitation in the regression for cotton, and that for 

wet season degree days in the regression for dry-season rice is lost. Also, unlike before, the 

regression for wet-season rice picks up significance for the APEs related to number of rainy days 

and wet season growing degree days  

 

Lagged dependent variable 

Including the lagged dependent variable in the specification is important since there is 

substantial serial correlation in irrigation outcomes at the district level that is not accounted for 

with common trends. In dynamic panel data models with unobserved effects, the treatment of the 

initial observations is an important theoretical and practical problem. When using short panels, 

including lags in OLS models biases coefficient estimates (referred to as Nickel bias). In long 

panels (here T=35), this bias can safely be considered second order as it declines at the rate of 

1/T (Nickell, 2981). Similarly in Tobit models, using lags causes an initial condition problem 

caused by the presence of both the past value of the dependent variable and an unobserved 
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heterogeneity term in the equation, and the correlation between them. Here too, the impact of the 

initial conditions diminishes if the number of sample periods T is large (Honoré, Vella, and 

Verbeek, 2008). In Table S 2.6, we exclude the lag dependent variable and the average crop area 

over the last five years. The coefficients and average partial effects on the precipitation measures 

are largely consistent with Table 2.1 in terms of sign and significance; apart from those on rainy 

days for barley and sorghum which are no longer significant.  

 

Residual Variation in Weather  

A concern with using fixed effects is that these controls can absorb much of the variation 

in weather. Table S 2.7 shows the R-square and standard deviation of the residual weather 

variation not absorbed by fixed effects. These are calculated by running regressions of total 

monsoon precipitation and rainfall frequency on (1) intercept, (2) year fixed effects (3) district 

fixed effects (4) district-year fixed effects and (5) district-year-state specific trends, our preferred 

empirical approach. Including only year fixed effects preserves a significant amount of 

precipitation variation. When we remove district fixed effects, the remaining variation decreases 

substantially, suggesting that much of the precipitation variation comes from spatial differences. 

Including state-specific time trends does not lead to further reduction in the variation. If the 

variation remaining after removing the fixed effects is as large as the weather changes projected 

in the climate change models, then we can identify the effects of climate change on irrigated area 

from the data. Column 3a in Table S 2.7 shows that under NorESM1-M, annual monsoon-season 

precipitation is projected to increase by 27.5 mm in the RCP 8.5 scenario. The percentage of 

observations that have a residual greater than this projected change after controlling for our 

preferred fixed effects is reported in Column 3b as 83%. Across the models, we find a 
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considerable overlap between variation of precipitation and number of rainy days in our 

estimation sample, and the projected changes under different climate futures.   

 

Irrigated area projections: note about cropped area 

We do not project future cropped area, or constrain future irrigated areas to historical 

cropped areas. However, projected national net irrigated area never exceeds the historical 

national net cropped area. The largest historical annual net cropped area, as reported by 

ICRISAT, was 188.95 million hectares. Our projections of national total net irrigated area reach 

a maximum 110.37 million hectares. At the district level, a minimum of 8 and a maximum of 81 

(out of 311) districts are projected to have greater net irrigated area than historical district-level 

net cropped area (range due to different GCM projected climates). All these districts lie in states 

with large irrigated areas: Madhya Pradesh (0 – 10 districts; range due to different GCM 

projected climates), Punjab (6 – 11 districts), Rajasthan (1 – 20 districts), Tamil Nadu (0 – 7 

districts), Uttar Pradesh (0 – 24 districts), Andhra Pradesh (0 – 1 districts), Gujarat (0 – 6 

districts), Haryana (1 – 7 districts), and Himachal Pradesh (0 – 1 districts). We recognize that in 

these districts, our projections may be biased upwards due to the already-large irrigated areas and 

high ratio of historical irrigated to cropped area. 

 

WBMplus details 

Model inputs 

WBMplus is a gridded, process-based, hydrology model (Wisser et al., 2010; Grogan et 

al., 2015), which here uses a 30-arcminute grid resolution with the simulated topological river 

network STN-30p (Vörösmarty et al., 2000b; Vörösmarty et al., 2000b).  The climate inputs – 
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both historical and future – are the same as used for the econometric analysis and projections.  

WBMplus simulated the climate for each GCM separately, including a 10-year spin-up with each 

GCM’s historical output (1996-2005).  Historical agricultural data (i.e., irrigated area by crop 

type) is from ICRISAT, and future agricultural data is from the econometric model projections.  

The field capacity and wilting point of soils is a required input for calculating both crop and non-

crop potential evapotranspiration (PET).  We use the FAO/UNESCO Soil Map of the World 

(FAO/UNESCO, 2003) for both, as well as for the soil drainage classes.  Soil drainage class is 

used to estimate water seepage through flooded rice paddies.  Large reservoirs are represented as 

river segments with the reservoir’s storage capacity; data on large reservoir capacity, location, 

and primary purpose are from the GRanD database (Lehner et al., 2011).   

 

Unmet irrigation water demand 

Quantifying unmet irrigation water demand under a scenario with limited access to 

unsustainable groundwater required two sets of WBMplus model runs. The first run will be 

referred to here as WBMplus-Base.  WBMplus-Base computes the net irrigation water needed by 

each crop to avoid water stress (Grogan et al., 2105; Allen et al., 1998).  It then computes the 

daily gross irrigation water supply required, accounting for irrigation inefficiency:  

𝐼!"#$$ =
!!"#
!!""

                        (S 2.1) 

where Igross (km3) is gross irrigation, Eeff (-)is irrigation efficiency, and  Inet (km3) is net irrigation. 

In WBMplus-Base, gross irrigation water requirements, Igross, are 100% fulfilled. To fulfill gross 

irrigation water requirements, irrigation water is abstracted from these sources in order: 1) 

groundwater recharge, GWr-Base (km3), 2) rivers and reservoirs, RRBase (km3), 3) unsustainable 

groundwater (UGWBase) (km3).  Note, UGWBase is only used when the sustainable surface water 
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supplies are not sufficient to fulfill Igross requirements.  The sum of abstracted irrigation water in 

WBMplus-Base, AbstBase (km3), is equivalent to gross irrigation demands: 

𝐴𝑏𝑠𝑡!"#$ = 𝐼!"#$$ = 𝐺𝑊!!!"#$ + 𝑅𝑅!"#$ + 𝑈𝐺𝑊!"#$                      (S 2.2) 

In the second model run, called WBMplus-NoUGW, all model inputs and parameters are 

the same as WBMplus-Base.  Therefore, Inet and Igross are equal in WBMplus-Base and 

WBMplus-NoUGW.  The only difference is that for WBMplus-NoUGW, unsustainable 

groundwater is not available as a water source.  In this model run gross irrigation water 

requirements cannot always be fulfilled because there are only two sources available from which 

to abstract water: 1) groundwater recharge, GWr,NoUGW (km3), and 2) rivers and reservoirs, 

RRNoUGW (km3): 

𝐴𝑏𝑠𝑡!"#$% = 𝐺𝑊!,!"#$% + 𝑅𝑅!"#$%                    (S 2.3) 

where AbstNoUGW (km3) is the water abstracted for irrigation in WBMplus-NoUGW.  The 

difference between AbstBase and AbstNoUGW is defined as the unmet irrigation water demand, Iunmet 

(km3): 

 𝐼!"#$% = 𝐴𝑏𝑠𝑡!"#$ − 𝐴𝑏𝑠𝑡!"#$%                            (S 2.4) 

This allowed us to quantify the amount of irrigation water demand that would be unmet if 

unsustainable groundwater resources were unavailable.  Iunmet was calculated separately for the 

dry (rabi) season, Iunmet,d and the wet (kharif) season, Iunmet,w.  For grid cells in which Iunmet > 0, 

we assume there are irrigated crop production losses.  Unmet irrigation water demand was 

assumed to lead to contraction of irrigated areas.  As a first-order assumption, we applied the 

contraction of irrigated area equally to all crops within a grid cell. In the dry season, reduction of 

irrigated areas is assumed to equal a reduction in crop area, as most dry season crops cannot be 

grown without irrigation (Kumar et al., 2004). In the wet season, we assumed that without 
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sufficient irrigation water, farmers would grow the same area of crops, but under rainfed 

conditions.  Therefore, dry season crop production losses, Ploss,d  (tons), due to Iunmet,d > 0 are: 

𝑃!"𝑠𝑠!! =
!!"#$%,!
!!"#$$,!

∗ (𝐴! ∗ 𝐼𝑌! +⋯+ 𝐴! ∗ 𝐼𝑌!)                   (S 2.5) 

where AN is the area (ha) of crop N,  and IYN (tons/ha) is the irrigated yield of crop N, and Igross,d 

(km3) is the gross irrigation demand in the dry season.  Wet season crop production losses, Ploss,w  

(tons), due to Iunmet > 0 are: 

𝑃!"##,! =
!!"#$%,!
!!"#$$,!

∗ (𝐴! ∗ (𝐼𝑌! − 𝑅𝑌!)+⋯+ 𝐴! ∗ (𝐼𝑌! − 𝑅𝑌!))                 (S 2.6) 

where AN is the area (ha) of crop N, IYN (tons/ha) is the irrigated yield of crop N, and RYN 

(tons/ha) is the rainfed yield of crop N, and Igross,w (km3) is the gross irrigation demand in the wet 

season.  ICRISAT provided only total crop production, without separating irrigated yields from 

rainfed yields.  Therefore, where both irrigated and rainfed crops were present within a district, 

we assumed IYN = 2 x RYN (33). 

It is important to note that Iunmet ≠ UGWBase.  Rather, Iunmet  is larger than UGWbase.  This 

difference is entirely due to irrigation inefficiencies, which, if the irrigation water source is UGW, 

will increase surface water supply. Therefore, Iunmet is sensitive to the irrigation efficiency 

estimate used in WBMplus.  We use the FAO-reported 34% irrigation efficiency for all of India 

(AQUASTAT, 2008; Guerra et al., 1998; Rohwer, Gerten, and Lucht, 2007).  Inefficient 

irrigation leads to surface and sub-surface runoff and groundwater recharge from irrigated 

cropland.  To represent this inefficiency, WBMplus (both –Base and –NoUGW) abstracts water 

in response to gross irrigation water demands, allows the inefficient portion of this water (gross 

irrigation minus net irrigation) to evaporate to meet grid-cell evaporative demands, and then the 

remainder is returned to the groundwater recharge pool and to surface runoff. 
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𝐼!"#$ =
𝑃𝐸𝑇!"#$ − 𝐴𝐸𝑇!"#$   𝑖𝑓   𝐼!"#$$ − 𝐼!"# ≥ 𝑃𝐸𝑇!"#$ − 𝐴𝐸𝑇!"#$
𝐼!"#$$ − 𝐼!"#                          𝑖𝑓   𝐼!"#$$ − 𝐼!"# < 𝑃𝐸𝑇!"#$ − 𝐴𝐸𝑇!"#$

                          (S 2.7) 

𝑅!" = 0.5 ∗ 𝐼!"#$$ − 𝐼!"# − 𝐼!"#$           (S 2.8) 

𝑅!" = 0.5 ∗ 𝐼!"#$$ − 𝐼!"# − 𝐼!"#$           (S 2.9) 

where Ievap is evaporation from the inefficient portion of irrigation water, PETgrid is the potential 

evapotranspiration from the entire grid cell, AETgrid is the actual evapotranspiration from the 

entire grid cell, Rsr is inefficient irrigation water return to surface runoff, and Rgr is inefficient 

irrigation water return to groundwater recharge.  In order to meet gross irrigation water 

requirements, water is abstracted first from the sustainable sources of rivers, reservoirs, and 

groundwater recharge.  If the sum of these sources is insufficient to meet gross irrigation water 

requirements, the model will abstract additional water from the unsustainable groundwater 

(UGW) pool (in WBMplus-Base only).  The proportions of UGW and sustainable water that 

make up Igross, Inet, Ievap, Rsr, and Rgr are assumed to be equal to the proportion of water abstracted 

from UGW versus sustainable sources.  Whenever UGW is used, some of it is returned to surface 

runoff and groundwater recharge (Rsr and Rgr).  This water can be re-abstracted for irrigation, but 

this subsequent re-abstraction is counted as water from sustainable sources.  In this way, UGW 

increases the (apparent) sustainable surface water supplies.  Therefore, in the simulation in which 

UGW is unavailable, no UGW enters the surface water system, and the unmet irrigation water 

demand reflects this loss. 

A few recent studies have pointed out that irrigation from wells can have a higher 

efficiency than from surface water due to reduced conveyance distances and improved timing of 

water delivery (Biemans et al., 2013).  Increased efficiency for groundwater irrigation would 

decrease our estimate of UGW demand and the estimate of unmet irrigation water demand.  
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However, since WBMplus always uses sustainable surface water supplies before turning to 

UGW, which is not always how farmers choose to irrigate (Shah, 2010), our estimates of UGW 

and unmet irrigation water demand are already conservative. 

 

NRLP and other inter-basin transfers 

Two types of inter-basin water transfers were modeled by WBMplus (Table S 2.8).  The 

first type is existing transfers for which canals have already been completed: the Kurnool 

Cuddapah Canal System, the Periyar Project, the Parambikulam Aliyar Project, the Teluga 

Ganga Project, and the Indira Gandhi Canal.  Data for these completed inter-basin transfers is 

from Ghassemi and White (2007) and Jain, Reddy and Chauge (2005).  These completed 

transfers were implemented in all WBMplus simulations.  The second type of inter-basin 

transfers were only included in the simulation to assess the National River Linking Project 

(NRLP).  These transfers are not yet completed, and have only been proposed by NRLP project 

planners. They include all links of both the Himalayan and Peninsular components of the NRLP.  

Data for these inter-basin transfers is from Ghassemi and White (2007), Jain, Reddy and Chauge 

(2005), and Adhikari, Verhoeven and Iroch (2009).   

For all inter-basin transfers (completed and proposed), five parameters are used to model 

the transfer.  These are: the donor/from latitude and longitude, the recipient/to latitude and 

longitude, a minimum allowed flow, a maximum allowed flow, and a rule for flow volumes 

between the minimum and maximum (Table S 2.8a,b).  In some cases, maximum allowed flow is 

based on published reported annual transfer capacities (Table S 2.8b).  In addition to the reported 

latitudes and longitudes of the transfers, Table S 2.8a also lists STN latitudes and longitudes; 

these are the grid cell based locations of each transfer, which in some cases are different than the 
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reported location because they were adjusted to ensure they linked to the correct rivers within the 

STN-30p network version 6.02.  Any NRLP inter-basin transfer for which latitude and longitude 

points could not be found are included in Table S 2.8a (starred), but could not be included in the 

model simulation. The completed transfers were implemented in the year that construction was 

completed (Table S 2.8b).  Proposed NRLP transfers were turned on for the entire future 

simulation (2006 – 2050), as there is no set date for completing construction of these transfers.  

The impact of the NRLP on unsustainable groundwater demand was only assessed for the last 

decade of the simulation, 2040-2050, and so these results are not sensitive to any construction 

date prior to 2040. The simulation in which new reservoirs were implemented included an 

additional 10-year spin-up time to allow the reservoirs to fill.  

The volume of water transferred through each canal is calculated as: 

𝐷 =
0                                                  𝑖𝑓  𝑄! ≤ 𝑄!"#

𝑄! − 𝑄!"# ∗ !
!""

                    𝑖𝑓  𝑄!"# >   𝑄! ≥ 𝑄!"#  
𝑄!"#                                𝑖𝑓  𝑄! > 𝑄!"#

               (S 2.10) 

where D (m3s-1) is the amount of water diverted through the canal, Qd (m3s-1) is the donor river 

discharge, Qmin (m3s-1) is the minimum flow parameter, Qmax (m3s-1) is the maximum flow 

parameter, and P is the percent flow parameter. 

The transfer volume, D, is corrected to Dcorr for small transfer volumes:  

𝐷!"## =   0  𝑖𝑓  𝐷 < 0.01         (S 2.11) 

Evaporation from open water along the canals is removed from the transfer volume: 

𝐷!"#!! =
𝐷!"## − 𝐸  𝑖𝑓    (𝐷!"## − 𝐸) > 0.001
0                                    𝑖𝑓  (𝐷!"## − 𝐸) ≤ 0.001      (S 2.12) 

where Dcorr_e (m3s-1) is the transfer volume corrected for evaporation, and E (m3s-1) is the 

evaporation volume:  

𝐸 = 𝐿 ∗𝑊 ∗ 𝐹𝑊𝐸          (S 2.13) 
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where L (m) is the length of the canal (listed in Table S 2.8b where published data is available, or 

calculated based on a straight line between to/from points), FWE is free-water evaporation 

(mm/day) which can be calculated through various free-water evaporation models (Dingman, 

2002) or by scaled calculated potential evapotranspiration by the Hamon method (Park, 1977); 

and W (m) is the width of the canal: 

𝑊 =   
𝜏 ∗ 𝐷!"##

!     𝑖𝑓  (𝜏 ∗ 𝐷!"##
! ) ≥ 0.01

0                                𝑖𝑓  (𝜏 ∗ 𝐷!"##
! ) < 0.01

                  (S 2.14) 

where 𝜏 (8.0) and 𝜑 (0.58) are held constant (Park, 1977). 

Water is transferred on a daily time step.  Several of the lengthy inter-basin transfers were 

split into multiple transfer segments for the purpose of the simulation (Table S 2.8a,b).  This 

allowed for water to be released and/or stored along the canal route, from where it can be 

accessible for irrigation withdrawals.   

We developed two model simulations to assess the potential for the NRLP to alleviate 

groundwater stress.  The first implemented only the NRLP inter-basin transfers, with no 

additional water storage mechanisms for the water transferred.  The plans for locations and 

capacity of the NRLP transfers have been published (Ghassemi and White, 2007; Gain, Reddy, 

and Chauge, 2005).  This assessment showed that mid-century UGW demand could only be 

alleviated by 1% - 4% when the inter-basin transfers were implemented alone.  This small 

percentage is primarily due to the transfer rules; since a percentage of donor-river discharge is 

transferred, the largest water transfers occur in the wet (Kharif) season, while the majority of 

UGW demand occurs in the dry (Rabi) season.  While NRLP plans have included increased 

water storage (Amarasinghe, Shah, and Malike, 2009), there is insufficient detail on storage 

methods, locations, or capacities to accurately simulate an NRLP-storage scenario.  We chose to 

develop a scenario that would allow all wet season water transfers to be stored until the dry 
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season, then be released to optimize supply during periods of high irrigation water demand.  This 

scenario is hypothetical, and should only be interpreted as an upper bound on the potential of the 

NRLP to alleviate UGW demand.  We recognize that there are other, non-irrigation NRLP goals 

– particularly hydropower generation (Amarasinghe, Shah, and Malike, 2009) – which may 

require a different water transfer and storage schedule than modeled here.  Wet season water 

transfers were stored by implementing large reservoirs at the donor river location for each 

transfer (Table S 2.8).  Each reservoir has a capacity equal to the 10-year average (1996-2005) 

simulated wet season transfer volume, and releases water in proportion to the historical irrigation 

water demand in the region surrounding the reservoir.  Reservoir capacity was limited to the 

capacity of the largest existing irrigation reservoir in India (11 km3, Nagarjuna Reservoir; 

GRanD database, Lehner et al., 2011).  Notably, while the hypothetical NRLP reservoirs in the 

northwestern states of Punjab, Haryana, and Gujarat are each < 5km3 in capacity, they sum to a 

total of ~15 km3 of increased reservoir capacity through the region.  Simulated historical (1990-

2005) UGW demand across these states was ~ 20 km3/year.  

In practice, there are many potential problems and impediments to constructing large 

reservoirs; e.g., cost, the large areas of land needed (or cleared) for the project, the potentially 

lengthy construction and fill-up time, and the considerable displacement of people.  Constructing 

a larger number of small reservoirs, and even investing in very small on-farm tanks and storage 

structures (Wisser et al., 2010) may be another way to implement the storage component of the 

NRLP.  Further study of small reservoirs and tanks would improve upon the results shown here.  
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Within-basin transfers 

WBMplus represents within-basin water transfer systems by allowing the irrigation water 

demand of a given grid cell can be fulfilled by surface water not only within the grid cell, but by 

surface waters stored in grid cells up to 150 km away.  This surface water is used before the 

model uses any unsustainable groundwater. 

Irrigation reservoirs are often the starting point of extensive canal systems, and are 

managed to provide irrigation water.  The GrAND database (Lehner et al., 2011) indicates the 

primary purpose of each reservoir. In WBMplus, reservoirs with “irrigation” as their primary 

purpose are parameterized to release water as a function of the 30-year average downstream 

irrigation water demand. 

 

WBMplus model validation 

FAO-AQUASTAT national statistics were used for national- and large basin-scale validation. 

We compared AQUASTAT to WBMplus’s historical output of the following key variables 

(Table S 2.9):  

 

1. Internal renewable surface water resources, which the FAO defines as the sum of 

exploitable regular renewable surface water and exploitable irregular renewable surface 

water.  Exploitable regular renewable surface water is defined as the annual average 

quantity of surface water that is available with an occurrence of 90 percent of the time. In 

practice, it is equivalent to the low water flow of a river. It is the resource that is offered for 

withdrawal or diversion with a regular flow. Exploitable irregular renewable surface 

water is defined as equivalent to the variable component of water resources (e.g. floods). It 
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includes the seasonal and inter-annual variations, i.e. seasonal flow or flow during wet years. 

It is the flow that needs to be regulated.  The WBMplus result reported here for comparison 

is the average annual runoff across the entire country.   

2. Annual primary groundwater withdrawals, defined as the annual gross amount of water 

extracted from aquifers. It includes withdrawal of renewable groundwater, water extracted 

from deep fossil aquifers (non-renewable water) and potential over-abstraction of renewable 

groundwater.  The WBMplus result reported for comparison is the sum of renewable 

groundwater abstractions and unsustainable groundwater abstractions.  

3. Annual average runoff within major river basins. Notably, the R2 value of WBMplus 

versus APHRODITE average annual runoff for the 8 largest river basins is 0.99.   

To validate the groundwater storage results from our model, we compare the historical model 

simulation of unsustainable groundwater (UGW) extraction to historical well level data (Russo, 

personal communication) from eight districts within the state of Punjab (Table S 2.10).  These 

data were collected twice per year, once pre-monsoon and once post-monsoon, from 1973-2003.  

While we cannot assess two disjoint 30-year periods in the historical analysis as we did for the 

future projections, we can instead apply the same analysis to two disjoint 10-year periods: 1973-

1982 and 1993-2002.  We take the decadal average of all well data within a district to be the 

decadal district-level groundwater level.  We use GWL to indicate ground water level (well level 

data), and UGW to indicate unsustainable ground water. We use the same categories of 

interpretation as the future analysis: 

Category 1: Decreased rate of GWL decline (yellow in Figure 2.3) 

This category is defined as:  
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a) For model results: UGW extraction in 1993-2002 is positive, but less than UGW 

extraction in 1973-1982. 

b) For well level data: Ground water levels in 1993-2002 are more than 0 mbgl (meters 

below ground level), but the change in ground water level is less than 10% of the 

1973-1982 ground water levels.   

Category 2: Same rate of GWL decline (red in Figure 2.3) 

This category is defined as:  

a) For model results: UGW extraction in 1993-2002 is more than UGW extraction in 

1973-1982, but not more than 50% greater than UGW extraction in 1973-1982. 

b) For well level data: Ground water levels in 1993-2002 are deeper than in 1973-1982, 

but the change in ground water level is not more than 50% of the 1973-1982 ground 

water levels.   

Category 3: Increased rate of GWL decline (dark red in Figure 2.3) 

This category is defined as:  

c) For model results: UGW extraction in 1993-2002 is more than UGW extraction in 

1973-1982, and the change is > 50% of UGW extraction in 1973-1982. 

d) For well level data: Ground water levels in 1993-2002 are deeper than in 1973-1982, 

and the change is > 50% of the 1973-1982 ground water levels.  

Category 4: GWL decline begins in the later period (orange in Figure 2.3) 

This category is defined as:  

e) For model results: UGW extraction in 1973-1982 is 0 km3yr-1, and in 1993-2002 is > 

0 km3yr-1. 
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f) For well level data: Ground water levels in 1973-1982 are 0 mgbl, and in 1993-2002 

are > 0 mbgl. 

Category 5: GWL recovers/stays static (blue in Figure 2.3) 

This category is defined as:  

g) For model results: UGW extraction in 1973-1982 is > 0 km3yr-1, and in 1993-2002 = 

0 km3yr-1. 

h) For well level data: Ground water levels in 1973-1982 are > 0 mgbl, and in 1993-

2002 = 0 mbgl. 

Validation results (Table S11) show that the hydrologic model does well at the level of 

interpretation described above (i.e., categories), capturing the range of increased to continued 

rates of groundwater level declines, as well as recovery/static groundwater levels.  Notably, the 

model under-estimates rates of decline in two of the three districts in which the data show that 

rates of decline increase: in both Amritsar and Gurdaspur, data show increased rates of GWL 

decline while the hydrologic model shows only continued GWL declines.  This disagreement is 

due to the conservative definition of “increased decline rates” (category 3).  The model shows 

that in Amritsar UGW extraction is 23% higher in 1993-2002 than in 1973-1982, and in 

Gurdaspur UGW extraction is 14% higher in 1993-2002 than in 1973-1982.  These rates do not 

meet our conservative definition of 50% higher extraction in the latter period, but are consistent 

with the well level data. 
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Tables 

 

Table 2.1. Regression estimates on weather-related variables in agro-economic model 

 
Wet Season Dry Season 

 
(1)  (2)  (3)  (4)  (5)  (6)  (7)  

  Rice Maize Sorghum Cotton Rice Wheat Barley 
No. of rain days 0.03 -

0.327*** 
-0.054+ -

0.199*** 
-0.003 -0.005 -

0.180* 
 (0.038) (0.087) (0.030) (0.000) (0.032) (0.071) (0.091) 
         
Rainfall JJAS 0.070*** -0.014 -

0.039*** 
0.045*** 0.166*** 0.250*** -0.026 

 (0.020) (0.019) (0.011) (0.000) (0.023) (0.034) (0.043) 
         
Wet GDD -0.048 -0.099* 0.027 -

0.310*** 
0.301** 0.089 0.066 

 (0.040) (0.039) (0.027) (0.000) (0.115) (0.069) (0.110) 
         
Dry GDD       -0.316 -0.159 0.068 
      (0.243) (0.099) (0.184) 
Model Tobit Tobit Tobit Tobit Tobit OLS OLS 
N 8248 7244 5178 3244 3770 7460 3882 
0 Observations  632 1628 3520 277 586 19 128 

Average partial effects for Tobit models and coefficient estimates for ordinary least square (OLS) models 
represent the effect of monsoon precipitation (June-September), rainfall distribution (number of 
rainy days in June-September), and seasonal growing degree days (GDD) on irrigated area 
decisions, 1970-2005. A Tobit model is used for crops where a large fraction of the observations 
are clustered at 0. Standard errors in parentheses are clustered at the district level for the Tobit 
models and corrected for spatial and serial correlation for OLS models. The dependent variable 
is the logarithm of district-level crop irrigated area in 1000 ha. All regressions include district 
and year fixed effects, and state-specific trends to control for time-invariant district 
characteristics, country-wide trends, and time-varying differences between states. See S1-S4 for 
data sources, results for non-weather variables and robustness checks. Statistical significance is 
given by + p<0.10 * p<0.05 ** p <0.01 ***p < 0.001  
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Table 2.2 The impact of unsustainable groundwater (UGW) on irrigated agriculture and food 
supply. 
* 2,000 kcal per day diet. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Irrigated 
agriculture 
production 

[million 
tons] 

Production loss in 
absence of UGW 

[million tons],  
(% of total 
production) 

Calorie loss in 
absence of 

UGW 
[billion kcal] 

# People fed by 
UGW-dependent 

calories* 
[millions] 

Dry Season  75.4 38.7 (51%) 121,300 166 
Wet Season  73.4 2.8 (4%)   4,750   7 
Annual total 148.8 41.5 (28%) 126,000 173 
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Figures 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  
Figure. 2.1: Coupled human- and physical- system model schematic. Human system 
analysis uses an econometric model to identify historical irrigated area sensitivity to 
weather changes. Climate drivers from 5 GCMs are combined with historical regression 
estimates to project future crop-wise irrigated areas. These projections, and the climate 
drivers, are inputs to a physically-based hydrology model, which simulates future irrigation 
water demand and unsustainable groundwater demand. 
	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  
Figure. 2.2: Econometric model-projected aggregate dry season (red) and wet season (blue) 
irrigated areas. Historical period (1970-2005) data is from ICRISAT. Future period (2006-
2050) solid line is the multi-model mean of projections based on 5 GCM climate futures, 
with a shaded range of uncertainty due to GCM differences.	  
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Figure. 2.3: Trends in district-level ground water levels (GWL) between 1979-2000 
and 2029-2050, inferred from the multi-model mean of changing need for 
unsustainable groundwater (UGW) to meet irrigation water needs. Decreases in UGW 
demand will slow down GWL declines (yellow); continued demand will lead to 
continued GWL declines (red); increased demand will increase GWL declines (dark 
red); new positive demands can start GWL declines (orange); demand going to 0 can 
allow GWL to recover (blue). Black lines are state boundaries . Colored (non-grey) 
regions account for 90% of future modeled national UGW demand. Fig. S6 shows 
trends in GWL for 5 individual GCM climate futures. 
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Figure. 2.4: District-level reduction in current (c. year 2000) annual crop production, 
in million metric tons, that would occur if unsustainable groundwater supplies became 
unavailable. Black lines are state boundaries. 
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Figure. 2.5: A) Mid-century annual unsustainable groundwater (UGW) demand at the 
district level. The National River Linking Project (NRLP) is a proposed solution for 
alleviating this demand. B) and C) Light blue lines: NRLP water transfer canals; red dots: 
water donor locations; blue dots: water recipient locations. Blue dots along chained canals 
are both receiving and donating. B) The % of each district’s mid-century UGW demand that 
could be alleviated with the implementation of NRLP canals and construction of new 
reservoirs along canal routes. Blue: UGW demand is alleviated; yellow and red: UGW 
demand is worsened. National total UGW alleviation is 16%. C) The % of each district’s 
mid-century UGW demand that could be alleviated with the implementation of NRLP canals 
only. National UGW alleviation is 1-4% with transfers only. Gray lines are state boundaries. 
B) and C) share a scale bar. 

 
	  



	   91	  

 

Supplemental Information Tables 

 
Table S 2.1: GCMs contributing to the present analysis along with institutions that provided 
model output 

 

 

 

 

 

 

 

 

 

  

Modeling Center (or Group)  Institute ID Model Name 
National Center for Atmospheric Research NCAR CCSM4 

NOAA Geophysical Fluid Dynamics 
Laboratory 

NOAA GFDL 
GFDL-CM3 
GFDL-ESM2G 
 

Japan Agency for Marine-Earth Science 
and Technology, Atmosphere and Ocean 
Research Institute (The University of 
Tokyo), and National Institute for 
Environmental Studies 

MIROC 
MIROC-ESM-
CHEM 

Norwegian Climate Centre NCC 
 
NorESM1-M 
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Table S 2.2 Full regression results for agro-economic model in Table 2.1 

Notes: Table S 2.1 reports all average partial effects for Tobit models and coefficient estimates 
for OLS models from 7 separate crop regressions reported in Table 1. District-level data are from 
ICRISAT and APHRODITE for years 1970-2005. A Tobit model is used for crops where a large 
fraction of the observations are clustered at 0. Standard errors reported in parentheses are 
clustered at the district level for the Tobit models and corrected for spatial and serial correlation 
for OLS models. All variables are in natural logarithms. Statistical significance is given by + 
p<0.10 * p<0.05 ** p <0.01 ***p < 0.001. 
  

 
Wet Season Dry Season 

 
(1)  (2)  (3)  (4)  (5)  (6)  (7)  

  Rice Maize Sorghum Cotton Rice Wheat Barley 
No. of rain days 0.03 -0.327*** -0.054+ -0.199*** -0.003 -0.005 -0.180* 

 (0.038) (0.087) (0.030) (0.000) (0.032) (0.071) (0.091) 
         
Rainfall JJAS 0.070*** -0.014 -0.039*** 0.045*** 0.166*** 0.250*** -0.026 
 (0.020) (0.019) (0.011) (0.000) (0.023) (0.034) (0.043) 
         
Kharif degree days -0.048 -0.099* 0.027 -0.310*** 0.301** 0.089 0.066 
 (0.040) (0.039) (0.027) (0.000) (0.115) (0.069) (0.110) 
         
Rabi degree days      -0.316 -0.159 0.068 
      (0.243) (0.099) (0.184) 
         
Lag log irrigated area 0.664*** 0.383*** 0.228*** 0.572*** 0.501*** 0.686*** 0.705*** 
 (0.023) (0.042) (0.014) (0.000) (0.034) (0.033) (0.041) 
         
Log Previous 5 yr avg 
crop area 

0.107*** 0.099*** 0.034*** 0.128*** 0.100** 0.071+ 0.146*** 

  (0.024) (0.019) (0.009) (0.000) (0.032) (0.036) (0.033) 

Model Tobit Tobit Tobit Tobit Tobit OLS OLS 
Year fixed effects Yes Yes Yes Yes Yes Yes Yes 
District fixed effects Yes Yes Yes Yes Yes Yes Yes 
State specific trends Yes Yes Yes Yes Yes Yes Yes 

N 8248 7244 5178 3244 3770 7460 3882 

N left censored at zero 632 1628 3520 277 586 19 128 

Log likelihood -1171.7091 -2700.00 -1300.00 -1800.00 740.535 
  R-sq 

   
  

 
0.990 0.990 

Pseudo-R-sq 0.929 0.759 0.772 0.692 1.108     
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Table S 2.3: Regression results using linear estimation for wet season crops and dry season rice 

 
Wet Season Dry Season 

 
(1)  (2)  (3)  (4)  (5)  

  Rice Maize Sorghum Cotton Rice 
No. of rain days 0.021 -0.527* -0.303 -0.126 0.049 
 (0.097) (0.223) (0.274) (0.133) (0.088) 
       
Rainfall JJAS 0.080* -0.151+ -0.317** 0.114+ 0.275*** 
 (0.041) (0.079) (0.106) (0.059) (0.043) 
       
Kharif degree days -0.133 -0.003 0.798 -0.338** -0.024 
 (0.115) (0.274) (0.636) (0.112) (0.357) 
       
Rabi degree days      -0.565 
      (0.424) 
       
Lag log irrigated area 0.687*** 0.451*** 0.566*** 0.716*** 0.665*** 
 (0.025) (0.038) (0.029) (0.024) (0.037) 
      

 Log Previous 5 yr avg 
crop area 

0.226*** 0.341*** 0.135* 0.118*** 0.208** 

  (0.035) (0.037) (0.064) (0.025) (0.069) 
Model OLS OLS OLS OLS OLS 
Year fixed effects Yes Yes Yes Yes Yes 
District fixed effects Yes Yes Yes Yes Yes 
State specific trends Yes Yes Yes Yes Yes 
N 7521 5298 1848 2901 3171 
R-sq 0.998 0.991 0.988 0.997 0.999 

Notes: Table S 2.2 reports all coefficient estimates and SEs from 5 separate regressions for crops 
grown in the wet season and for rice grown in the dry season. District-level data are from 
ICRISAT and APHRODITE for years 1970-2005. Standard errors reported in parentheses are 
corrected for spatial and serial correlation. All variables are in natural logarithms. Statistical 
significance is given by + p<0.10 * p<0.05 ** p <0.01 ***p < 0.001. 
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Table S 2.4: Regression results after accounting for additional time-varying unobservables 

 
Wet Season Dry Season 

 
(1)  (2)  (3)  (4)  (5)  (6)  (7)  

  Rice Maize Sorghum Cotton Rice Wheat Barley 
No. of rain days -0.015 -

0.323*** 
-0.074* -

0.172*** 
-0.013 -0.051 -0.225* 

 (0.039) (0.083) (0.031) (0.000) (0.031) (0.070) (0.094) 
         
Rainfall JJAS 0.086*** -0.014 -0.030** 0.048*** 0.169*** 0.253*** -0.017 
 (0.020) (0.020) (0.011) (0.000) (0.023) (0.034) (0.044) 
         
Kharif degree days -0.065 -0.092* 0.023 -

0.275*** 
0.313** 0.085 0.065 

 (0.040) (0.039) (0.025) (0.000) (0.121) (0.072) (0.113) 
         
Rabi degree days      -0.281 -0.126 0.078 
      (0.257) (0.105) (0.188) 
         
Lag log irrigated area 0.664*** 0.385*** 0.228*** 0.571*** 0.500*** 0.686*** 0.707*** 
 (0.023) (0.041) (0.014) (0.001) (0.035) (0.032) (0.040) 
         
Log Previous 5 yr 
avg crop area 

0.105*** 0.097*** 0.035*** 0.125*** 0.103** 0.070* 0.143*** 

  (0.024) (0.019) (0.009) (0.000) (0.032) (0.035) (0.033) 
Model Tobit Tobit Tobit Tobit Tobit OLS OLS 
Spatial variables Yes Yes Yes Yes Yes Yes Yes 
Year fixed effects Yes Yes Yes Yes Yes Yes Yes 
District fixed effects Yes Yes Yes Yes Yes Yes Yes 
State specific trends Yes Yes Yes Yes Yes Yes Yes 
N 8248 7244 5718 3244 3770 7460 3882 
0 observations 632 1628 3520 277 586 

  R-sq 
   

  
 

0.999 0.998 

Log likelihood -1100.00 -2700.00 
-

1300.0000 -1800.00 803.028 
  Pseudo-R-sq 0.932 0.763 0.778 0.702 1.110     

Notes: Table S 2.3 reports all average partial effects for Tobit models and coefficient estimates 
for OLS models from 7 separate crop regressions. District-level data are from ICRISAT and 
APHRODITE for years 1970-2005. A Tobit model is used for crops where a large fraction of the 
observations are clustered at 0. Standard errors reported in parentheses are clustered at the 
district level for the Tobit models and corrected for spatial and serial correlation for OLS models. 
All variables are in natural logarithms. Spatial variables indicate presence of two-way and three-
way interactions of five yearly time dummies with latitude and longitude. Statistical significance 
is given by + p<0.10 * p<0.05 ** p <0.01 ***p < 0.001. 
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Table S5: Regression results using correlated random effects Tobit  

 
Wet Season 

Dry 
Season 

 
(1)  (2)  (3)  (4)  (5)  

  Rice Maize Sorghum Cotton Rice 
No. of rain days 0.089** -0.284** 0.014 -0.218** 0.015 
 (0.034) (0.095) (0.032) (0.075) (0.038) 
       
Rainfall JJAS 0.051* -0.015 -0.067*** 0.055 0.167*** 
 (0.020) (0.016) (0.012) (0.034) (0.023) 
       
Kharif degree days -0.115** -0.200** 0.023 -0.170** 0.141 
 (0.042) (0.072) (0.027) (0.054) (0.103) 
       
Rabi degree days      -0.319 
      (0.218) 
       
Lag log irrigated area 0.835*** 0.492*** 0.289*** 0.695*** 0.592*** 

 (0.023) (0.039) (0.015) (0.040) (0.033) 
      

 Log Previous 5 yr avg crop 
area 

0.024 0.057*** 0.014 0.085** 0.059* 

  (0.022) (0.015) (0.010) (0.028) (0.027) 
Model Tobit Tobit Tobit Tobit Tobit 

Means ofTime varying vars Yes Yes Yes Yes Yes 

Year fixed effects Yes Yes Yes Yes Yes 
District fixed effects Yes Yes Yes Yes Yes 
State specific trends Yes Yes Yes Yes Yes 
N 8248 7244 5718 3244 3770 
0 observations 632 1628 3520 277 586.000 
Log likelihood -1800 -3300.00 -1700.00 -2000.00 460.093 
Notes: Table S 2.4 reports all average partial effects for correlated random effect Tobit models 
from 5 separate regressions for crops grown in the wet season and for rice grown in the dry 
season. District-level data are from ICRISAT and APHRODITE for years 1970-2005. A Tobit 
model is used for crops where a large fraction of the observations are clustered at 0. 
Bootstrapped Standard errors are given in parenthesis and are clustered by district, based on 100 
replications. All variables are in natural logarithms. Statistical significance is given by + p<0.10 
* p<0.05 ** p <0.01 ***p < 0.001. 
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Table S 2.6: Regression results without additional controls 

 
Wet Season Dry Season 

 
(1)  (2)  (3)  (4)  (5)  (6)  (7)  

  Rice Maize Sorghum Cotton Rice Wheat Barley 
No. of rain days -0.059 -0.234** 0.037 -0.264*** -0.073 -0.122 -0.099 
 (0.067) (0.083) (0.039) (0.000) (0.054) (0.094) (0.198) 
         
Rainfall JJAS 0.083*** -0.025 -0.057*** 0.076*** 0.146*** 0.284*** -0.090 
 (0.025) (0.022) (0.015) (0.000) (0.026) (0.046) (0.077) 
         
Kharif degree 
days 

0.095 0.036 0.117* -0.150*** 0.489** -0.017 0.143 

 (0.091) (0.053) (0.055) (0.000) (0.179) (0.123) (0.176) 
         
Rabi degree days      0.212 -0.178 -0.035 
      (0.479) (0.128) (0.221) 
         

Model Tobit Tobit Tobit Tobit Tobit OLS OLS 
Year fixed 
effects Yes Yes Yes Yes Yes Yes Yes 
District fixed 
effects Yes Yes Yes Yes Yes Yes Yes 
State specific 
trends Yes Yes Yes Yes Yes Yes Yes 
N 8613 7544 5903 3359 3989 7739 4054 
0 observations 665 1723 3649 289.000 617.000 19 128 
R-sq 

   
  

 
0.999 0.994 

Log likelihood -4850.002 -4200.00 -2000.0000 -2800.00 -899.256 
  Pseudo-R-sq 0.7174 0.640 0.651 0.536 0.884     

Notes: Table S 2.5 reports all average partial effects for Tobit models and coefficient estimates 
for OLS models from 7 separate crop regressions. District-level data are from ICRISAT and 
APHRODITE for years 1970-2005. A Tobit model is used for crops where a large fraction of the 
observations are clustered at 0. Standard errors reported in parentheses are clustered at the 
district level for the Tobit models and corrected for spatial and serial correlation for OLS models. 
All variables are in natural logarithms. Statistical significance is given by + p<0.10 * p<0.05 ** 
p <0.01 ***p < 0.001. 
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Table S 2.7: Residual variation in weather 
Panel A         

 Monsoon 
precipitation(mm) 

Frequency of rainy days 

 
1a 1b 2a 2b 

 R sq SD of 
residual 

R sq SD of 
residual 

No FE  428.9242  18.01787 
Year Fe 0.0346 421.4372 0.0998 17.09494 
District FE 0.8238 180.0324 0.7336 9.29931 
District FE, Year FE 0.8539 161.3846 0.8334 7.353272 
District FE, Year FE, state specific 
trend 

0.8553 160.5031 0.8365 7.285278 

Panel B         

 

Monsoon 
precipitation(mm) 

Frequency of rainy days 

 
3a 3b 4a 4b 

 Projected 
change 

% 
observations 

Projected 
change 

% 
observations 

NorESM1-M 27.5 83 -1.4 77 
MIROC-ESM_CHEM 82.31 54 3.55 56 
CCSM4 50.89 70 -0.13 99 
GFDL-CM3 -15.69 92 -1.02 88 
GFDL-ESM2G -53.87 69 -8.4 25 

Notes: Variation of monsoon precipitation and number of rainy days absorbed by fixed effects. 
Panel A summarizes regressions of monsoon precipitation and no. of rainy days on various sets 
of fixed effects. Columns (a) report the R-square of the regression and Columns (b) report the 
standard deviation of the residuals (remaining monsoon precipitation, and no. of rainy days 
variation) in mm and days. Panel B reports the percentage of observations (Columns (b)) with 
absolute value of residuals greater than the projected change in precipitation and number of rainy 
days between 1970-79 and 2040-29 as shown in Columns (a). 
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Table S 2.9: Comparison of WBMplus national-level simulated irrigation results with 
reported water use statistics from FAO AQUASTAT’s report: Irrigation in Southern 
and Eastern Asia in Figures – AQUASTAT Survey – 2011. All values are km3 yr-1. 
 
 AQUASTAT WBMplusa 

Year 2010 national total 
irrigation water 
withdrawals 

688 716  

Year 2010 internal 
renewable surface 
water resources 

1,404    1,283    

Year 2010 surface water 
withdrawals 396  395 / 415b  

Year 2010 primary 
groundwater 
withdrawals 

251  320  

Year 1990 national total 
irrigation water 
withdrawals 

460  375  

Year 1990 primary 
groundwater 
withdrawals 

190  153  

Year 1996 average 
annual runoff of major 
river basins: 
   Ganges  
   Godavari 
   Krishna 
   Indus  
   Mahanadi 
   Narmada 
   Cauvery 
   Pennar 

 
 
 
 

525 
111 
78 
73 
67 
46 
21 
6.3 

 
 
 
 

411 
110 
79 
78 
43 
44 
22 
3.5 

a WBMplus values for years post-2005 are the average results from simulations using 5 
bias-corrected GCM climate drivers, and econometrically projected crop maps. 
WBMplus values for years pre-2005 are from simulations using APHRODITE Monsoon 
Asia climate drivers, and ICRISAT crop maps. 
 b WBMplus separates surface water withdrawals from groundwater recharge 
withdrawals. However, AQUASTAT statistics say that there is an overlap between their 
reported surface water withdrawals and renewable groundwater withdrawals. WBMplus 
reports surface water withdrawals of 395 km3 yr-1 when only rivers and reservoirs are 
considered. Adding 10% of WBMplus’s renewable groundwater withdrawals to this 
result brings the estimate up to 415 km3 yr-1.  
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Table S 2.10: Description of Punjab well-level data, collected from 1973 – 2003. 

District No. of wells 
No. of wells that go dry 
within sampling period 

Amritsar 231 86 

Bathinda 84 1 

Gurdaspur 174 24 

Firozpur 136 3 

Hoshiarpur 116 12 

Jalandhar 177 62 

Patiala 160 2 

Sangrur 140 5 

 
 
 
Table S 2.11: Model validation: comparison of historical district-level groundwater 
level data and hydrologic model simulation of changes in groundwater levels. 

District 
Model-based 
category 

Data-based 
category Agree Comment 

Amritsar 2: same rate 
3: increase 
rate NO 

Model is 
conservative 

Bathinda 5: recover/ 
static 

5: recover/ 
static YES  

Gurdaspur 
2: same rate 

3: increase 
rate NO 

Model is 
conservative 

Firozpur 5: recover/ 
static 

5: recover/ 
static YES  

Hoshiarpur 3: increase 
rate 

3: increase 
rate YES  

Jalandhar 2: same rate 2: same rate YES  

Patiala 2: same rate 2: same rate YES  

Sangrur 2: same rate 2: same rate YES  
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Supplemental Information Figures 

Fig. S 2.1. Each panel reports values aggregated in each period over the district sample used 
in the analysis of (A) rice and(B) wheat, with values of log irrigated area, log crop area and 
log production reported on the right axis. Blue bars are normalized monsoon anomalies 
(MA), whose values are reported on the left axis. Crop data are from ICRISAT, and 
monsoon anomalies are from the APHRO_MA_V1101R2 precipitation product.  
 

Fig. S 2.2. Average (1970-2005) (A) June to September monsoon rainfall (mm), and (B) 
number of monsoon rainy days (days with precipitation>0.1mm from June to September). 
Gridded APHRO_MA_V1101R2 data were aggregated to district values; state borders are 
in black.   
 

 

A	   B	  

A	   B	  
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Fig. S 2.3. (a) Percent change in decadal average monsoon precipitation and (b) Percent 
change in decadal average number of rainy days in the monsoon season from the 1970s to 
the 2040s from 5 CMIP5 GCMs: A) MIROC-ESM-CHEM, B) CCSM4, C) GFDL-CM3, D) 
GFDL-ESM2G, and E) NorESM1-M. Differences are taken between the bias-corrected 
model historical runs and bias-corrected model future runs for RCP 8.5.  
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Fig. S 2.4. Seasonal growing degree days in the (A) wet (Kharif) and (B) dry (Rabi) seasons. 
The solid lines represent the multi-model mean of five different GCM climate futures, and 
the shade bands the five-model range. 
 

	  
Fig. S 2.5 Econometric model generated irrigated area projections for (A) dry season and (B) 
wet season crops in million hectares. The historical period (1970-2005) reflects data from 
ICRISAT. For the future period (2006-2050), the solid line reflects the multi-model mean of 
econometric projections based on five different GCM climate futures, with the range of 
uncertainty due to differences in GCM projections in the shaded region. Note that the y-axis 
scales are different 
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Fig. S 2.6. Trends in groundwater levels (GWL) between 1979-2000 and 2029-2050, 
inferred from need for unsustainable groundwater (UGW) to meet irrigation water demand, 
from 5 GCMs: A) MIROC-ESM-CHEM, B) CCSM4, C) GFDL-CM3, D) GFDL-ESM2G, 
and E) NorESM1-M. Decreases in UGW demand will slow down GWL declines (yellow); 
continued demand will lead to continued GWL declines (red); increase in UGW demand 
will increase groundwater level (GWL) declines (dark red); relying on unsustainable sources 
for the first time can start GWL declines (orange); future reliance on sustainable sources can 
allow GWL to recover (blue). Map has district-level summaries, with state boundaries 
drawn in black. Colored (non-grey) regions account for 90% of modeled mean national 
UGW demand (2029-2050). 
  

  Decreased rate of GWL declines 
  Same rate of GWL declines 
  Increased rate of GWL declines  
  GWL decline begins in the future  
  GWL recovers/stays static 
   
  < 10% of national UGW demand   
  No UGW demand 
   
  Not modeled 
   

GFDL-‐ESM2G	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  NorESM1-‐M 

	  	  MIROC-‐ESM-‐CHEM	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  CCSM4	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  GFDL-‐CM3 

A	   B	   C	  

D	   E	  



	   112	  

 
Fig. S 2.7. Historical and projected UGW demand.  The shaded ribbon shows the range in 
future projections of UGW based on 5 different climate model simulations. 
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CHAPTER III: 

 

THE USE AND REUSE OF UNSUSTAINABLE GROUNDWATER: A GLOBAL 

BUDGET 

 

Abstract 

Groundwater supplies nearly half of all water used in irrigated agriculture (Aeschbach-

Hertig and Gleeson, 2012), making it critical to global food production.  Many of the 

world’s major groundwater aquifers are rapidly depleting due to unsustainable groundwater 

pumping, much of it for agriculture (Aeschbach-Hertig and Gleeson, 2012; Rodell et al, 

2009; Gleeson et al, 2012; Wada et al 2012), while demand for food production – and 

therefore demand for irrigation water – is increasing (FAO, 2015).  Unsustainable 

groundwater is defined broadly as groundwater extraction in excess of recharge (Aeschbach-

Hertig and Gleeson, 2012; Rodell et al, 2009; Gleeson et al, 2012; Wada et al 2012).  While 

it is clear that groundwater users will be impacted by reductions in groundwater availability, 

there is a major gap in our understanding of potential impacts downstream of groundwater 

pumping locations.  Here, we quantify the amount of unsustainable groundwater extracted 

and reused downstream of pumping sites, estimate the amount of unsustainable groundwater 

needed to sustain agriculture even under high irrigation efficiency scenarios, and present the 

first global budget of unsustainable groundwater reuse through agricultural systems. 

Previous global studies of agricultural water reuse assessed only surface water supplies (see 
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review by Simmons et al., 2015): we find that groundwater reuse is responsible for a quarter 

to a third of total irrigation water supplies in many Asian river basins, and ~10% total 

irrigation water suppliesglobally. Some studies have called for increasing irrigation 

efficiency as a solution to water shortages (Gleick, 2001; Wada, 2014).  We find that, 

because inefficiencies allow irrigation water to be reused, increasing irrigation efficiency in 

many major agricultural river basins reduces but does not eliminate the demand for 

unsustainable groundwater pumping; even with 100% irrigation efficiency, global demand 

for unsustainable groundwater is 186 km3yr-1.  As inefficiencies also allow groundwater to 

enter surface water systems, in many basins an increase in irrigation efficiency leads to 

decreased downstream river flows.   

 

Introduction 

Classical irrigation efficiency is defined as the ratio beneficial crop water use 

(evapotranspiration and water required to flood rice fields) to gross irrigation water 

extracted from water sources.  This measure of irrigation efficiency is a misleading indicator 

of water use efficiency in the case of groundwater (Foster and Perry, 2010; Hafeez et al., 

2007), because a fraction of the unused portion of extracted groundwater can return to both 

surface water and groundwater pools. Classical irrigation efficiency is estimated at ~37% - 

50%,(FAO, 2011; Postel, 1993), allowing significant amounts of extracted groundwater to 

become runoff and recharge.  Groundwater provides nearly half of all global irrigation water 

(Aeschbach-Hertig and Gleeson, 2012), and recent global-scale assessments have found that 

unsustainable groundwater provides ~20% of total irrigation water supplies (Gleeson et al., 

2012; Wada et al., 2012).  Here, we define unsustainable groundwater (UGW) as the 
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average annual groundwater extracted in excess of average annual recharge.  While this 

definition does not account for potentially complex surface water-groundwater interactions 

(Aeschbach-Hertig and Gleeson, 2012), it serves as a large-scale indicator of groundwater 

depletion (Gleeson et al., 2012; Wada et al., 2010, 2012; Wisser et al., 2010).  Previous 

studies of irrigation efficiencies and return flows have not included UGW in their analyses, 

though it has been shown that groundwater extractions can alter surface water storage 

volumes and river flows (Döll et al., 2012; de Graaf et al., 2014).  Both satellite-based and 

model-based estimates of global groundwater depletion show that aquifers in important 

agricultural regions are losing mass (Aeschbach-Hertig and Gleeson, 2012; Rodell et al., 

2009; Gleeson et al., 2012; Wada et al., 2010, 2012), and cannot continue providing current 

levels of groundwater supplies indefinitely.  To more fully understand the implications of 

decreasing groundwater supplies, it is important to take UGW reuse into account in order to 

assess both the reliance of agriculture on UGW, and the potential for increased irrigation 

efficiency to reduce this reliance.   

  While classical irrigation efficiency is sufficient for assessing on-field water use 

efficiency, it is now recognized as insufficient at larger scales (Simmons et al., 2015; 

Vörösmarty et al., 2005; Seckler et al., 2003), leading several studies to highlight the need to 

understand return flows from irrigated areas (Simmons et al, 2015; Vörösmarty et al., 2005; 

Seckler et al., 2003; Tornqvist and Jarsio, 2011), and develop of over a dozen different 

metrics to quantify irrigation water reuse at field- to basin-scales (Simmons et al, 2015).  

Alternatives include the basin closure concept, which assesses water use efficiency at a 

whole-basin scale by comparing basin inflows to outflows (Molden and Boss, 2005), the 

water reuse index, which quantifies surface water reuse along an entire river transect 
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(Vörösmarty et al., 2005), and the net efficiency concept, which aims to assess what 

proportion of agricultural runoff is suitable for reuse (Seckler et al., 2003).  These metrics 

cannot separate UGW– an unsustainable water source – from analyses of sustainable surface 

water supplies. 

Here, we introduce both the unsustainable groundwater reuse index R, as well as the 

first estimate of minimum unsustainable groundwater dependence. The unsustainable 

groundwater reuse index quantifies how many times extracted UGW is reused within a river 

basin due to irrigation inefficiencies.  The minimum unsustainable groundwater dependence 

is the quantity of unsustainable groundwater extraction required to meet irrigation water 

requirements under a 100% irrigation efficiency scenario.  This metric quantifies the lower 

bound of the current agriculture system’s reliance on unsustainable water sources.   

We calculate gross irrigation water requirements, UGW extraction, and the amount 

of UGW that enters river systems and groundwater recharge using the global gridded Water 

Balance Model (Wisser et al., 2010) (WBM, see Materials and Methods).  UGW that enters 

streams by way of runoff and baseflow is tracked downstream through WBM’s simulated 

river network, and can be extracted from the (well-mixed) rivers and large reservoirs, as 

well as groundwater recharge pools, to meet simulated irrigation water requirements.  Use 

and re-use of UGW is tracked through model storages and flows, including soil moisture, 

reservoir storage, groundwater storage, baseflow, and river discharge.  All values reported 

here are 30-year mean annual values and one standard deviation, based on contemporary 

distribution of crops and weather variability from 4 different climate input datasets (see 

Materials and Methods).   
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Results  

A global groundwater budget 

We find that global UGW pumped for irrigation is 378 (±49) km3yr-1, or ~12% of 

gross irrigation (3,244 (±240) km3yr-1).  By tracking UGW reuse, we find that 238 (±35)  

km3yr-1 contributes directly to crop evapotranspiration (ET) (Fig. 1).  This crop ET volume 

is due to 145 (±18) km3yr-1 of direct use of the efficient portion of irrigation, and an 

additional 91 (±20) km3yr-1 of crop ET from UGW_r .  In total, 63% (±9%) of the initial 

pumped volume of UGW becomes crop ET.  Only 97 (±8) km3yr-1, or 26% (±2%)  of the 

initial pumped volume, leaves river systems by discharge to the ocean and internal basins 

(Fig. 1). UGW discharge directly to the ocean is 90 (±7) km3yr-1, or 0.25 (±0.02) mm of Sea 

Level Equivalents, which is within the range of previous estimates (0.075 – 0.8 mm) 

(Konikow, 2011).  An additional 43 (±13) km3yr-1 is lost to non-beneficial evaporation from 

fields and conveyance structures. 

 

The groundwater reuse index 

Basins that have high levels of UGW reuse are more dependent upon this 

unsustainable source of water than estimates of groundwater depletion imply.  We define a 

UGW reuse factor, R, which is calculated as [R = ((UGW + UGW_r) / UGW)  - 1], as a 

measure of the number of times a unit of water extracted from UGW is reused in a river 

basin. In basins with R > 1.0, all extracted UGW is reused more than once, effectively 

acting as twice as much water (or more) within the basin irrigation system.  In basins with a 

reuse factor of 0.5 half of extracted UGw is reused. 
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The highest values of both UGW (Fig. 3.2a) and R (Fig. .32b) occur in central, 

south, and east Asia.  By overlapping maps of irrigated areas  (MIRCA 2000) and 

population density data (UN Dept. of Economic and Social Affairs, 2013) with the basin 

reuse factor map, we find that basins with R > 0.5   contain 89 million hectares of irrigated 

land (41% of global irrigated area), and are home to 1.7 billion people.  Basins with R > 1.0 

contain 33 million hectares of irrigated land and are home to 1.3 billion people.   

 
 

Unsustainable groundwater contributes to surface water flows 

We find that UGW returning from irrigated areas contributes 10% – 50% to basin-

level average annual discharge (Fig. 3a). Given this dependence on an unsustainable water 

source for river flows, how will increasing irrigation efficiency alter river flows, and how 

will reductions in access to UGW alter river flows?  To answer these questions, we 

developed three model simulations, referred to here as Business As Usual (BAU), Global 

Irrigation Efficiency 70% (GIE70), and No UGW (NoUGW).  The BAU simulation uses 

WBM to track UGW under current (c. year 2000) conditions, as described above.  In GIE70, 

irrigation efficiency is increased to 70% in all model grid cells with irrigation.  In noUGW, 

irrigation efficiency remained at current FAO-based levels, but no UGW was extracted, and 

total irrigation demand was not met.  Average annual river discharge decreased in both 

experiments for river segments across Asia, the Middle East, and the US southwest (Fig. 3).  

GIE70 resulted in 100% decrease (i.e., complete drying of the river segment) in multiple 

headwater grid cells across all three of these regions (Fig. S 3.1).  UGW can contribute a 

significant amount of irrigation water through river system reuse.  For example, the Ganges 

and Indus river systems supply 285 and 262 km3yr-1 of irrigation water, respectively.  
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However, 17% and 15% of these surface water supplies are only present due to the 

inefficiencies of upstream UGW irrigation, and half of the river and reservoir water used in 

both the Sabarmati and Brazos basins is attributable to UGW runoff from upstream 

irrigation (Table 3.1).   

 

Effects of increasing irrigation efficiency 

Much of the debate over water reuse metrics, measurements, and concepts stem from 

proposals to increase irrigation efficiency (Simmons et al, 2015; Gleick, 2001; Wada 2012).  

Several studies have shown that irrigation efficiency improvements can lead to unintended 

increased water use due to the perceived increase in water availability (Contor and Taylor, 

2013; Ward and Pulido-Velazquez, 2008), but none have assessed the downstream impact of 

reducing upstream groundwater pumping.   

 Increased irrigation efficiency will impact irrigation requirements, extraction of 

UGW, and river flow; these changes will depend upon the balance between irrigation water 

requirements, and the reuse index R. With a higher irrigation efficiency, total irrigation 

water requirements - and therefore UGW - may be decreased, leading to decreased return 

flow and consequently lower river discharge.  Lower total irrigation water demands could 

also reduce irrigation water extraction from rivers, leading to increased river discharge.   To 

explore the effect of increaseing irrigation efficiencies, we simulated a series of incremental 

increases in the national minimum irrigation efficiency: 34% (current minimum national 

irrigation efficiency: FAO, 2011), 40%, 50%, …, 100%.  With each increase, the irrigation 

efficiencies of all countries that are below the new minimum threshold are raised to that 

threshold.  These simulations represent hypothetical changes; we do not propose pathways 
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or timelines for implementing these changes, but rather use these simulations to quantify the 

potential lower bound for global UGW demand.  At 100% efficiency, UGW_r goes to zero, 

and gross irrigation water demand is equal to net irrigation water demand.  The 100% 

irrigation efficiency scenario identifies the minimum global UGW dependence, i.e., the 

minimum potential volume of UGW that is required to meet current agricultural water 

requriements.   

We find that the mimimum global UGW dependence is 180 (±28) km3yr-1 (Fig. 3.4), 

a reduction of ~52% from current UGW demand.  To reduce UGW demand further will 

require additional or alternative changes irrigated agriculture (e.g., switching to less water 

consuming crops, or varieties with increased water use efficiency; Wada 2012).  For each 

increased irrigation efficiency scenario, we also quantify the total amount of UGW used for 

agriculture (UGW + UGW_r), which is equivalent to the water deficit that would occur 

under each irrigation efficiency scenario if UGW resources were unavailable (Fig. 3.4).  At 

100% irrigation efficiency, UGW_r is zero.  However, at current efficiency levels, total 

UGW (UGW + UGW_r) is 748 (±107) km3yr-1, approximately one quarter of global gross 

irrigation water requirements.  This shows that the loss of UGW resources – either due to 

complete depletion of aquifers, or economical reasons   – would lead to a 25% shortage of 

irrigation water supplies globally.  Under a 100% efficiency scenario, UGW makes up about 

15% of global gross irrigation water requirements. 

 

Discussion 

 Use of unsustainable groundwater for irrigation has been the focus of several recent 

global-scale analyses (Wada et al., 2012;  Aeschbach-Hertig and Gleeson, 2012; Gleeson et 
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al., 2012), all showing aquifer depletion and the spatial patterns of regional reliance on 

groundwater for irrigated agriculture.  However, there are significant differences in how this 

water is used and reused once it has been extracted. Here, we find that the unsustainable 

groundwater reuse index, R, is a tool that can be used in conjunction with estimates of 

unsustainable groundwater extraction to reveal the reliance of irrigated agriculture not only 

on unsustainable groundwater, but also on reuse of unsustainable groundwater.  Basins with 

high reuse factors have an outsized reliance on this unsustainable resource, which estimates 

of groundwater extraction alone cannot accurately assess.  Additionally, basins with high 

reuse factors have a diminished ability to reduce their reliance on unsustainable groundwater 

by improving irrigation efficiency, as higher efficiencies lead to reductions in reuse.  By 

finding the potential minimum amount of unsustainable groundwater required by irrigated 

agriculture, we are able to quantify the volume by which other (non irrigation efficiency) 

water saving measures must reduce the reliance on UGW in order to achieve sustainable 

groundwater use. 

 

Materials and Methods 

Irrigation 

 Crop maps of both irrigated and rainfed land, along with crop type and season length 

are from the MIRCA2000 database (Portmann, Siebert, and Doell, 2010).  National statistics 

on the ratio of surface water (from rivers and reservoirs) to groundwater (groundwater 

recharge and UGW) supplies used for irrigation at a country level (FAOSTAT, 2015) are 

used to determine source of irrigation water withdrawals in WBM. WBM’s grid-cell level 

irrigation water extractions occur in three stages: 1) surface water and renewable 
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groundwater (i.e., groundwater ) are extracted in the FAOSTAT (FAOSTAT, 2015) based 

ratio of surface- to groundwater if possible; 2) if (1) is not possible, irrigation water demand 

is fulfilled using any remaining surface water or groundwater; and 3) if irrigation water 

demand is still not met after (2), then UGW is extracted to fulfill the remaining demand.  All 

other methods for irrigation water demand and application are based on Allen (1998), as 

described in Wisser et al (2010) and Grogan et al (2015).  See Supplemental Information for 

validation of UGW extractions and total groundwater extractions. 

 The inefficient portion of all irrigation water extractions (the difference between 

gross and net irrigation water volumes) is split into three portions.  First, it can evaporate to 

meet local evaporative demand: 

E = (PETi – AETi) * IrrAreaFraci        (3.1) 

where PETi is the potential evapotranspiration volume grid cell i, AETi is the actual 

evapotranspiration for grid cell i (calculated after applying irrigation water to soils within 

the irrigated area), and IrrAreaFraci is the fraction of grid cell i that is irrigated.  After 

evaporation occurs, the remaining inefficient portion of irrigation water extractions is 

divided equally between surface runoff and groundwater recharge.  See Supplemental 

Materials for a sensitivity analysis of this parameterization of return flows. 

 

Tracking UGW 

 WBM tracks UGW, as well as non-UGW sources (precipitation and snow melt) of 

water through all model stocks and flows (Fig. S 3.2).  At each daily time step, the 

proportion of each stock is updated based on inflows and outflows of water, and that water’s 

proportional composition of water sources.  We assume all stocks are well-mixed; if a stock 
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is X% UGW, then outflows from that stock are also X% UGW.  In this way, a unit of water 

retains its identity as UGW even as it passes through surface water flows.  We define UGW 

extracted from surface water flows and groundwater recharge pools as UGW_r.  

 

Supplemental Information 

Uncertainty and sensitivity analysis 

 Five sources of uncertainty were assessed: 1) inter-annual weather variability, 2) 

climate input data sets, 3) rice paddy percolation rates, 4) irrigation return flow distribution 

between surface runoff and groundwater recharge, and 5) WBM’s irrigation water search 

distance parameter.  Uncertainties due to the first four sources are reflected in all reported 

values in this study. 

 To address (1) and (2), we simulated 30 years (1980-2009) of weather based on 4 

different climate input datasets (Dee et al, 2011 ERA interim; Rienecker et al, 2011 MERRA; 

Saha et al, 2011 NCEP; UDEL (2.0) Willmott and Matsuura, 2001).  These 30 years do not 

represent a time series of irrigation water demand because irrigation land areas were not 

altered.  Rather, the 30-year time period allows quantification of inter-annual variability in 

all hydrological variables of interest, circa year 2000.  Inter-annual variability in UGW is 36 

– 51 km3yr-1, based on the climate data set used.   

 Rice paddy percolation rates are based on soil drainage class (FAO/UNESCO, 

2003), and range from 2 mm day-1 to 8 mm day-1, as described in Wisser et al (2010).  

Irrigation water applied to rice paddies to maintain flooding is considered part of net 

irrigation, and therefore paddy percolation is not counted towards inefficient water “losses”.  

However, since this water percolates through soils at the rates described above and enters 



	   124	  

groundwater recharge as opposed to crop evapotranspiration, it has the potential to 

significantly effect UGW flows to groundwater recharge and baseflow.  To assess the 

impact of rice percolation rates on irrigation water percolation, UGW demand, and UGW_r, 

we simulated alternative rice paddy percolation rates, reducing rates by 10%, 20%, 30%, 

40% and 50%.  We find that global total paddy percolation of irrigation water ranges from 

322 km3yr-1 to 535 km3yr-1.  This volume is significant, as 535 km3yr-1 is 18% of gross 

irrigation water demand.  However, reducing percolation rates by 50% globally only 

resulted in a 5% decrease in global UGW demand. 

 Irrigation return flow distribution between surface runoff and groundwater recharge 

is assessed by altering the distribution within WBM.  Actual distribution of irrigation return 

flows will be dependent upon the process by which irrigation water is lost (e.g., canal 

leakage versus flood irrigation), soil drainage properties, previous levels of soil saturation, 

and irrigation methods.  These all vary in space and time.  However, we find that the 

distribution has little impact (1% – 8%) in total UGW_r, although it alters the relative 

proportion of UGW_r through surface water versus groundwater.   

 Uncertainty (5) WBM’s irrigation water search distance parameter, is a significant 

source of uncertainty to estimates of global UGW.  Within WBM, irrigation water demand 

and available water resources (from surface water, reservoirs, and groundwater recharge) are 

assessed in each 30° grid cell on a daily basis.  Grid cells which contain large rivers 

therefore have access to significantly more sustainable surface water than other grid cells.  

This makes the amount of sustainable surface water available – and therefore the demand 

for UGW – dependent upon the spatial resolution of the model.  Additionally, in reality 

many agricultural regions contain extensive canal networks that transport water away from 
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river mainstems.  To address both the spatial resolution issue and the reality of small canal 

systems, a “search distance” is set within the model; this search distance identifies the radius 

of a circle around the centroid of each grid cell.  The grid cell at the center is able access 

sustainable surface water (from rivers, reservoirs, and groundwater recharge) from all other 

grid cells that fall within the circle.  How large the radius of such a circle should be to best 

represent the spatial characteristics of a given regions is likely a function of topography and 

infrastructure development.  Future work in modeling macro-scale irrigation systems should 

identify spatial variations in appropriate values for the search distance.   

 In the results shown here, the search distance is set globally to 75 km, resulting in an 

annual average UGW demand of 378 (±49) km3yr-1 (averaged across 30 years of climate 

input data for each of 4 climate data sets).  Eliminating the search distance function 

(effectively setting it to 0 km) results in an higher UGW demand of 663 (±55) km3yr-1; 

using a larger search distance of 150 km results in a lower UGW demand, 232 (±23) km3yr-

1.  This large range of values brackets previous estimates of UGW from Wada et al. (2012), 

who report 256 (±58) km3yr-1 of groundwater depletion, and the 527 km3yr-1 UGW 

calculated from the results provided in Gleeson et al. (2012).  The spatial distribution of 

UGW demand sensitivity to the search distance parameter matches the spatial distribution of 

UGW demand: regions with high UGW demand are highly sensitive to the search distance 

parameter (Fig. S 3.3).  While this large sensitivity makes the UGW estimates of WBM and 

similar models more uncertain, it also suggests that within-basin canals infrastructure can 

play a significant role in reducing UGW demand.  This subject would benefit from further 

analysis. 
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Validation 

 We compare our country-level results to FAO reports of year-2000 (AQUASTAT) 

irrigation water withdrawal, fresh surface water withdrawal, and fresh groundwater 

withdrawal (Fig. S 3.4).  There are 61 countries for which FAO repots at least one of these 

values for the year 2000 (Table S 3.1); we used all of these countries for comparison.  For 

countries with no irrigation water withdrawal data available, we used FAO reported total 

agricultural water withdrawal data.  FAO does not report unsustainable groundwater use 

separately from sustainable groundwater use; therefore, we compare the sum of WBM-

simulated UGW and WBM-simulated irrigation withdrawals from groundwater recharge to 

FAO fresh groundwater withdrawal data.  WBM-simulated irrigation withdrawals from 

rivers and reservoirs are compared to  FAO’s fresh surface water withdrawals for irrigation.  

Considering countries for which there are comparable values for each category, the R2 value 

of WBM-simulations compared to FAO data is 0.92 for irrigation water withdrawals, 0.90 

for groundwater withdrawals, and 0.75 for surface water withdrawals.   

We compare WBM  global and basin-level UGW results to the groundwater 

recharge and extraction data provided in the supplemental data from Gleeson et al. (2012).  

This supplemental information is provided as 30-minute gridded data; by subtracting the 

groundwater extraction grid from the recharge grid, we estimate UGW in each grid cell.  

Aggregation to the basin level is appropriate to account for potential spatial differences 

between the model parameters and input data used in Gleeson et al. (2012) and this study.  

Globally, we estimate Gleeson et al (2012) UGW volume is 527 km3yr-1.  Thi sis 149 km3yr-

1 higher than this study’s average global UGW volume (378 ±49 km3yr-1), but only 12 

km3yr-1 higher than the maximum global UGW – resulting from 30 years of climate data 
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from each of 4 different climate drivers – of  515 km3yr-1.  Three basins account for more 

than 50% of the difference between the global mean WBM and Gleeson et al. (2012) results: 

compared to Gleeson et al (2012), WBM underestimates UGW in the Indus basin by 44 

km3yr-1, in the Mississippi basin by 25 km3yr-1, and in the Ganges basin by 15 km3yr-1 (Fig S 

3.5).  While UGW in some basins are overestimated by comparison, none are overestimated 

by more than 2 km3yr-1.   
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Tables 

Table 3.1. The 20 basins which supply the largest volume of reused UGW through river and 
reservoir water to irrigated crops are listed.  RR Irr. Water is the volume of river and 
reservoir water used for irrigation.  UGW in RR Irr. Water is the volume (percent) of 
UGW in the RR Irr. Water due to inefficiencies and reuse.  RR % of Gross Irr. Water 
Demand is the % of gross irrigation water demand supplied by RR Irr. Water.  UGW is the 
unsustainable groundwater pumping required to meet gross irrigation water requirements.  
Basin UGW Discharge Fraction is the basin-wide fraction of average annual discharge 
that is due to UGW.   

River Basin 

RR Irr. 
Water 
[km3yr-1] 

UGW  in 
RR Irr. 
Water 
[km3yr-1] 
(%)  

RR % of 
Gross Irr. 
Water 
Demand 
[%] 

UGW 
[km3yr-1] 

Basin UGW 
Discharge 
Fraction [-] 

Ganges 285 47 (17%) 62% 59 0.07 
Indus 262 39 (15%) 67% 43 0.14 
Hai Ho 26 5  (19%) 55% 9 0.13 
Huai 44 4  (9%) 68% 5 0.09 
Godavari 46 3  (7%) 72% 4 0.02 
Huang He 40 2  (5%) 73% 4 0.02 
Amu-Darya 20 2  (10%) 67% 6 0.02 
Narmada 11 2  (19%) 55% 4 0.03 
Sabarmati 4 2  (50%) 36% 4 0.21 
Mahi 7 2  (29%) 47% 4 0.11 
San Joaquin 4 2  (50%) 71% 2 0.02 
Krishna 51 2  (4%) 65% 6 0.01 
Shatt el Arab 21 2  (10%) 60% 2 0.01 
Tarim 13 2  (15%) 57% 3 0.07 
Liao 9 1  (11%) 64% 5 0.01 
Mississippi 27 1  (4%) 74% 1 0.01 
Cauweri 23 1  (4%) 29% 3 0.12 
Brazos 2 1  (50%) 51% 4 0.02 
Colorado 
(Arizona) 5 1  (20%) 71% 2 0.02 
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Figures 

  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  
Fig. 3.1: A global budget of unsustainable groundwater (UGW).  UGW used for 
irrigation is tracked, starting from initial pumping volumes (at bottom) and through 
efficient irrigation use to crop ET, inefficient losses to rivers and groundwater 
recharge, and reuse from river and groundwater recharge.  The total amount of UGW 
contribution to crop evapotranspiration is 238 (±35) km3yr-1.  145 (±18) km3yr-1 is 
from direct use of UGW; the remainder is from UGW reuse through rivers and 
groundwater recharge.  
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Fig. 3.2:  Unsustainable groundwater pumped and reused. (A) Average annual 
UGW demand [km3yr-1] at 0.5° spatial resolution. (B) Basin-level UGW reuse 
factor, R, aggregated from 0.5° grid cells, for all major river basins in which UGW 
demand is ≥1 km3yr-1. R is the number of times UGW is reused due to agricultural 
runoff and percolation.  R > 1.0 indicates that all UGW extracted is reused more 
than once.  Basins with a high R have a lower potential to reduce UGW 
dependency through increased irrigation efficiency.  
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Fig. 3.3:  Unsustainable groundwater contribution to river flow. (A) Basin-level average 
UGW % in river discharge.  Basin-level values are the aggregate of grid-cell values.  Basins 
and grid cells with average annual discharge <10 m3s-1 or UGW < 0.1 % are not shown.  (B) 
River transects of average annual discharge (black line, Q [m3s-1]) following the mainstem 
of the six basins with the greatest volume of UGW used for irrigation by way of reuse 
through river systems (Table 3.1).  Average annual Q is shown under both GIE70 (red 
dashed line) and NoUGW (blue line) scenarios. UGW within river discharge is shown for 
both the BAU simulation (black dashed line) and the GIE70 scenario (red dashed line). 
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Fig. 3.4: Changes in global gross irrigation water requirements (green line), UGW 
(red line), UGW_r (orange), total UGW (black) as the minimum global irrigation 
efficiency increases.  At 100% irrigation efficiency, 300 (±24) km3yr-1 UGW is still 
required to meet contemporary irrigation water requirements. Bands around each solid 
line show 1 standard deviation due to 30 years of inter-annual climate variability.     
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Supplemental Information Tables 
 
Table S 3.1 Country-level comparison of WBM results to FAO data.  Countries are listed in 
order of ascending irrigation water withdrawals.  IWW is irrigation water withdrawals 
(FAO) and WBM gross irrigation water withdrawals.  SW is fresh surface water 
withdrawals, and GW total is fresh groundwater withdrawals.   

Index country 
IWW SW GW total 

WBM FAO WBM FAO WBM FAO 
1 Lebanon 1 1 0.3 0.4 1 1 
2 Guyana 1 1 1  0.1  
3 Nigeria 1 7 1  0.3  
4 United 

Republic of 
Tanzania 1 5 1  1  

5 Armenia 1 1 1 2 0.4 1 
6 Israel 1 1 0.2  1  
7 Oman 1 1 0.1 0.0 1 1 
8 Tunisia 2 3 0.4 1 1 2 
9 Dominican 

Republic 2 6 0.4  1 0.4 
10 Kyrgyzstan 2 7 1 7 1 0.3 
11 Colombia 2 6 2 11 0.1 1 
12 Canada 2 5 1 40 1 2 
13 Malaysia 3 3 2 5 0.5 0.2 
14 Mali 3 5 3 5 0.3 0.1 
15 Libya 3 4 0.1 0.0 3 4 
16 Azerbaijan 3 10 3 11 0.4 1 
17 Uruguay 3 3 2 4 1 0.1 
18 Malawi 3 1 1  2  
19 Chile 3 29 1 33 2 3 
20 Tajikistan 3 10 3 9 0 2 
21 United Arab 

Emirates 3 3 0 0 3 3 
22 Cuba 4 5 1 4 3 3 
23 Ukraine 4 1 3  1  
24 Portugal 5 6 3  2  
25 France 5 3 2 25 2 6 
26 Peru 5 12 3 12 2 2 
27 Kazakhstan 6 14 4 19 1 1 
28 Yemen 6 3 0 1 6 2 
29 Cambodia 6 2 6  1  
30 Greece 7 8 2 6 4 4 
31 Ecuador 8 8 5  2  
32 Morocco 8 9 2 8 6 2 
33 Algeria 8 4 1  7  
34 Italy 10 13 6  4  
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35 Sudan 10 26 8  2  
36 Afghanistan 10 20 5 17 5 3 
37 Turkmenistan 10 26 7 28 3 0 
38 Nepal 10 9 7  3  
39 South Africa 11 8 3  7 1 
40 Argentina 11 28 6 26 5 11 
41 Madagascar 11 16 2  9 0 
42 Saudi Arabia 11 21 1 1 11 22 
43 Turkey 12 34 6 32 6 12 
44 Australia 13 13 4  10 5 
45 Sri Lanka 14 11 13  1  
46 Myanmar 18 30 17 30 1 3 
47 Iraq 23 52 18  4  
48 Spain 24 20 10 26 14 6 
49 Mexico 28 62 12 49 16 30 
50 Brazil 28 45 18  10  
51 Japan 31 55 25 73 6 16 
52 Philippines 31 67 28 78 4 3 
53 Uzbekistan 35 50 23 44 12 5 
54 Egypt 35 59 27  9 7 
55 Thailand 82 52 69 47 13 10 
56 Indonesia 109 93 74 96 35 18 
57 Bangladesh 116 32 84 7 31 28 
58 United States 

of America 116 192 66 367 50 108 
59 Pakistan 303 172 202 122 101 62 
60 China 799 358 596 453 203 101 
61 India 1017 688 615 397 402 251 
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Supplemental Information Figures 

                         
Fig. S 3.1.  UGW impacts surface water flows. (A) Grid-cell level fraction of river 
discharge composed of UGW. (B) Grid-cell level decrease (fraction) in average annual 
river discharge in the GIE70 simulation. (C) Grid-cell level decrease (fraction) in 
average annual river discharge in the NoUGW simulation. 
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Fig. S 3.2: Stocks and flows of water in WBM, including unsustainable groundwater 
(UGW).  Unless otherwise specified (as in GIE70) UGW is assumed to be fully 
available to meet irrigation demand.  UGW is only connected to other water stocks 
and flows via irrigation withdrawals.  UGW is tracked through all these stocks and 
flows. 
	  

Fig. S 3.3. Average annual difference in UGW [mm] between a model simulation with 
a search distance of 0 km and a with a search distance of 150 km.  Blue values indicate 
UGW is lower with a 0 km search distance (minimum value: -132 mm), and red 
values indicate UGW is higher with a 0 km search distance than a 150 km search 
distance. 	  
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Fig. S 3.4. Country-level comparison to FAO.  In all panels, WBM simulation 
results are black dots with one standard deviation shown as error bars; FAO year-2000 
reported data are shown in blue squares. Note the log axis on the y scale in all panels. 
See Table S 3.1 for index of country names.   (A) Country-level irrigation water 
withdrawals; (B) Country-level surface water irrigation water withdrawals; (C) 
Country-level total groundwater irrigation water withdrawals.   
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Fig. S 3.5. Basin-level comparison of UGW.  Green indicates that the mean (of 30 
years of climate inputs from each of 4 different climate data products) WBM-
simulated annual UGW is lower than the basin-aggregate difference between 
groundwater extraction and recharge reported in Gleeson et al (2012).  Orange 
(maximum value: 1.46 km3yr-1) indicates WBM-simulated results are higher.  
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CONCLUSIONS 

Agriculture’s reliance on unsustainable groundwater has been recognized by 

numerous studies and reports (e.g., Giordano and Villholth, 2007; Siebert and Doll, 2010; 

Aeschbach-Hertig and Gleeson, 2012; Wada et al., 2012), with widespread agreement that 

changes to groundwater management will be necessary in the future if we are to both 

produce more food and achieve sustainable levels of groundwater extraction (FAO, 2003; 

Giordano and Villholth, 2007; Shah, 2009; Foley et al, 2011).  In order to achieve these 

goals, we must first understand what happens to groundwater after it is extracted; simply 

accounting for the volumes currently removed from aquifers is not sufficient due to the 

spatial agricultural networks created by river systems, as well as changes to the water cycle 

due to both climate change and human-built infrastructure.  This dissertation contributes to 

understanding the impacts of over-extracting groundwater now and into the future by 

answering the following questions:  How much food does unsustainable groundwater grow, 

and what are the regional differences in agriculture’s reliance on this resource?  How will 

this change into the future, considering both climate change and human responses to climate 

change?  What happens to the non-consumed portion of groundwater extractions?  How can 

constructed water infrastructure alter agriculture’s demand for unsustainable groundwater? 

Chapter I quantifies the amount of crop production directly attributable to 

unsustainable groundwater irrigation in China.  We found that without unsustainable 

groundwater, grain production would be reduced by 15-27% (range due to 20 years of 

climate variability), representing a reversion to 1980s levels of agricultural production.  The 

North China Plain alone would suffer a loss of 101 million tons of carbon (crop production) 
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per year, a 10% loss in national production.  While 15-27% is a large portion of national 

crop production, it is worth noting that unsustainable groundwater currently supplies 20-

49% of all irrigation water in China, indicating a non-linear relationship between reliance on 

unsustainable groundwater and crop production due to use of this groundwater resource.  

Even in the case that unsustainable groundwater supplies 49% of all irrigation water 

supplies, crop production suffers only a 27% loss.  This non-linearity is due to regional 

differences in both the volumes of groundwater needed for irrigation and the amount by 

which irrigation boosts crop productivity.   

One potential strategy for reducing agriculture’s reliance on unsustainable 

groundwater in China would be to plan future agricultural expansion and intensification in 

regions with both low relative reliance on unsustainable groundwater and small gains in 

crop production due to using irrigation water in excess of available surface water supplies.  

An alternative approach would be to construct canals to move surface water into regions that 

are currently relying on unsustainable water sources and that also have large yield gains due 

to irrigation.  The Chinese government has already committed to the latter approach, and are 

constructing the North-South Water Transfer which will move water from the Yangtze to 

the Yellow River.  Based on the conclusions of Chapter I, providing more water to the 

Yellow River – which passes through the important agricultural regions of Henan, 

Shandong, and Shaanxi – is likely to alleviate demand for unsustainable groundwater.  

Further work is required to fully assess the hydrologic and agricultural impacts of the North-

South Water Transfer, as this transfer will not only increase the Yellow River flow, but also 

decrease the Yangzte river flow and could therefore have unintentional downstream 

consequences.  Additionally, the combined hydrologic-crop production model framework 
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provided here could be used to compare the impact of the North-South Water Transfer to 

different methods of water management and agricultural development. 

 Chapter II assesses the impact of humans, climate change, and water infrastructure 

on the future of unsustainable groundwater demand in India.  The most important aspect of 

this work is the interdisciplinary collaboration, highlighting the role of (aggregate) farmer-

level human decisions on the trajectory of water resources into the future.  While the 

physical sciences have thoroughly shown that there are many possible trajectories for 

climate change, combined econometric-hydrologic model results from Chapter II emphasize 

that for each climate trajectory, there is a matching human response.  It will be the combined 

climate-human trajectory that ultimately determines irrigation water demand, and the future 

reliance of India’s agricultural system on unsustainable groundwater.  

Chapter II also simulates a future in which a massive water infrastructure project has 

been completed in India.  India’s National River Linking Project (NRLP) involves both a 

series of canals, and a large number of “storages”.  While the location of the canals, along 

with some details of transfer capacities, have been publicized, the “storages” component of 

the project remains extremely vague in NRLP-related publications (Amarasinghe et al, 

2008).  Results in Chapter II show that implementing NRLP canals without concurrently 

increasing reservoir storage capacities along the canal routes has little ability to alleviate 

India’s unsustainable groundwater demand (1-4% alleviation nationally).  Increased storage 

capacity can boost the potential of the NRLP to alleviate unsustainable groundwater demand 

to 16% nationally.  Clearly, it would be helpful to all researchers interested in India’s NRLP 

to know both the location and storage capacities of the planned NRLP storages; whether or 

not these storages are even agreed upon by the government implementers of the project are 
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unclear.  Historically, construction of new large reservoirs has been contentious in India 

(and in other countries) due to their impact on ecosystems, downstream river flows, and  

human displacement (Dhawan, 1989).  Recognition for the need to increase water storage 

capacity in India has lead to proposals for small tanks and ponds (e.g., Wisser et al, 2010), 

as well as increased artificial recharge (Sakthivadivel, 2007; Amarasinghe, 2016).  Further 

work is needed to quantifying the potential for each of these possible infrastructure solutions 

to alleviate groundwater stress, both individually and as concurrent efforts.   

 Projections of changes in the rates of regional groundwater level declines in India 

are included in Chapter II.  These projections are based on the fundamental fact that 

extracting groundwater in volumes that far exceed recharge (which is the case across much 

of India, including extractions two orders of magnitude greater than recharge in 

northwestern India) leads to declines in groundwater levels.  The current volume of water 

contained within India’s aquifers is unknown as of this date, and therefore these projections 

cannot be used to estimate when aquifer reserves will run out.  However, complete aquifer 

depletion is unlikely to be the first cause of unsustainable groundwater “loss” – rather, 

limitations to human access will most likely occur first, as groundwater levels drop below 

both economic and technological thresholds in well drilling and pumping.  These thresholds 

have inspired the authors of Chapter II’s associated publication to propose new research to 

build upon the results in Chapter II.  This proposed research includes: a) developing an 

improved groundwater table module for the hydrologic model WBM that will more 

accurately represent changes in the groundwater table due to pumping, and b) completing 

the feedback loop between the hydrologic model and economics model used in Chapter 2, 
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allowing not only the hydrologic system to respond to human-based changes, but also the 

human-economic system to respond to changes in surface and groundwater supplies.  

 Chapter III presents the first global budget of groundwater use and reuse, illustrating 

the importance of groundwater to agriculture and surface water systems after it has been 

extracted from aquifers.  We show that despite a ratio of global net irrigation to gross 

irrigation of ~ 38% (indicating that 62% of water extracted for irrigation is “wasted” due to 

inefficiencies), 63% of the total volume of extracted unsustainable groundwater becomes 

crop evapotranspiration.  Approximately one third of this crop evapotranspiration is due to 

reuse of unsustainable groundwater.  Because of reuse through agricultural systems, 

increasing irrigation efficiency – decreasing the “wasted” portion of irrigation water 

extractions – can reduce the demand for unsustainable groundwater, but it cannot eliminate 

it.  This result shows that while improved irrigation efficiency may be one way to reduce 

global agriculture’s reliance on unsustainable groundwater, it should not be the only strategy 

employed by water resource managers, particularly in regions where river flows are highly 

dependent upon groundwater entering surface water systems.  Furthermore, any assessment 

of future surface water resources – whether for irrigation, domestic or industrial water 

supply, or hydropower production – should take into consideration potential reductions in 

surface water flows due to decreased groundwater extractions in the case that irrigation 

efficiencies improve or access to groundwater resources is reduced. 

 The United Nations has declared access to sufficient, safe, and accessible water to be 

a human right (United Nations General Assembly, 2010).  Assuring this right is realized on 

a global level will require protection against the extremes of climate, as precipitation 

patterns and temperature both contribute to droughts, and climate projections point to the 
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increased possibility of long-term mega-droughts (Cook, Ault, and Smerdon, 2015).  

Groundwater acts as a natural reservoir, built over millions of years, and is often of good 

quality for drinking and agricultural use.  While some groundwater aquifers are drawn down 

only in times of drought others have become a baseline resource for agriculture, drinking, 

and economic development (Giordano and Willholth, 2007).  Recognizing that many of the 

world’s large aquifers are being depleted (Aeschbach-Hertig and Gleeson, 2012), water 

managers and national- to international planning organizations are seeking ways to 

transition away from unsustainable groundwater use (United Nations General Assembly, 

2010, 2015; FAO, 2011).  The results presented in this dissertation help quantify 

agriculture’s current reliance on groundwater, as well as assess possible strategies for 

reducing this reliance in the future.  More work must be done to identify local, regional, and 

global strategies for achieving groundwater sustainability; the cross-disciplinary (hydrology-

crop biogeochemistry, and hydrology-econometrics) frameworks presented here can be used 

to assess a wide range of strategies of water management and irrigation system 

development.  These frameworks can also be built upon, further developing the areas of 

macro-scale groundwater modeling, hydrology-economics system modeling, and 

infrastructure optimization, all of which are identified as important areas of further study by 

the results presented here. 

 



APPENDIX A

Water Balance Model Documentation

A1 WBM purpose and scope

The Water Balance Model (WBM) was first developed by the Water Systems Analy-
sis Group at the University of New Hampshire, Durham, (C. J. Vörösmarty, 1990s).
Since then, it has branched into a family of models including WBMplus (e.g., Wisser
et al., 2008, 2010) and FrAMES (e.g. Wollheim et al., 2008a,b). This appendix de-
scribes the version of WBMplus that was used for all studies within this dissertation.

WBM is a variable-scale, gridded model that simulates both the vertical ex-
change of water between the ground and the atmosphere, and the horizontal trans-
port of water through runoff and stream networks. In addition to the natural water
cycle, WBM can simulate human use and management of water, such as irrigation
withdrawals and water transfers through canals. The core of the model is a water
accounting system, tracking all water entering and leaving each grid cell. There are
optional components of the model that can be turned on or off, including: large
reservoirs, small reservoirs, dam operation rules, irrigated and rainfed croplands,
inter-basin water transfers, and glacier melt.

A2 Spatial and temporal resolution

WBM can be run at various spatial resolutions. It can also simulate grid cells over
the entire land surface of the world, or be restricted to specific geographic regions.
WBM calculates all water flows and stocks at a daily time step.

A3 Model inputs

WBM takes data as gridded static layers (maps), gridded time series, or geograph-
ically referenced databases. Non-gridded data formats such as shapefiles can be
pre-processed and turned into a gridded format. Gridded files with spatial res-
olutions different from the river network resolution can be aggregated (if a finer
resolution) or resampled (if larger resolution) to match the river network spatial
resolution.
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Table A1: WBM input data. Inputs with the note ”optional” after them will be given a
default value in the model if the associated process is implemented but no input is provided.

(a) Required inputs

Process Inputs

Soil moisture, runoff, & evapotran-
spiration

Soil wilting point map

Soil field capacity map
Rooting depth map
Soil available water capacity map (optional: can
be substituted for above three map inputs)
Precipitation time series

Evapotranspiration Temperature time series
River flow River network

(b) Optional inputs

Process Inputs

Canopy interception of precipitation Leaf area index time series
Reservoir storage and release Large reservoir database
Small reservoir storage Small reservoir capacity map
Inter-basin water transfers Inter-basin transfer database
Storm runoff over impervious areas Impervious area map
Glacier melt contribution to runoff Glacier area map

Glacier melt time series
Temperature and precipitation time series

Water temperature Leaf area index time series
Cloud fraction time series
Wind direction & speed time series
Humidity time series
Groundwater temperature time series
Canopy height time series

Surface processes over different land
cover/land use types

Land cover/land use map

Leaf area index map associated with land
cover/land use map

Irrigation water demand & use Irrigation efficiency map
Irrigated cropland time series
Crop coefficient (Kc) time series
Crop available water time series
Rice paddy percolation rate time series
Ratio of surface water to groundwater extrac-
tions map (optional)
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A4 Potential Evapotranspiration

Potential evapotranspiration, PET, is the maximum amount of water that can be
lost from soil through combined evaporation and transpiration, assuming no shortage
of soil water. It provides an upper bound on non-irrigated actual evapotranspira-
tion, and is used as a baseline reference for calculating irrigated evapotranspiration.
There are many methods available for calculating PET. Vörösmarty, Federer, and
Scloss (1998) compared 11 different methods of calculating daily potential evapo-
transpiration for use in a 30 min global gridded water balance model. These methods
fall into two general categories: the first category is reference-surface PET, defined
as the evapotranspiration that would occur from a hypothetical ”reference crop”
under given climate conditions; the second category is surface-dependent PET, de-
fined as the evapotranspiration that would occur under a given (variable) land cover
or surface.

WBMplus uses the Hamon method (Hamon,1963) to calucalte PET: PETH
[mm]. This is the least data-intensive method, and it was found to estimate global
average PET as well as other, more data-intensive methods. Additionally, Vörösmarty
(1998) found that amongst the reference-surface PET methods, the Hamon method
produced both the lowest mean annual error and the smallest bias when compared to
obseravation data. Previous versions of WBMplus, as well as the FrAMES member
of the WBM model family (Wollheim et al., 2008a,b) have alternative PET function
options.

PETH = 330.2 Λ ρsat (A.1)

where: T = daily mean temperature

Λ = day length, expressed as a fraction of a 12-hr period,

ρsat = 2.167Psat/(T + 273.15), and (A.2)

Psat =

{
0.61078e(17.26939T/(T+237.3)) 0 ≤ T
0.61078e(21.87456T/(T+265.5)) T < 0

(A.3)

T is in [◦ C], ρsat is in units of [g m−3], and Psat is in units of [kg m−1s−2].

A5 Snow

While precipitation as rainfall adds water directly to the soil moisture balance, snow
may form a snow pack, then melt at a later time. The WBMplus keeps track of
snowfall, Ps [mm], snow pack, Sp [mm], and snow melt, Ms [mm]. When mean daily
air temperature is below the snowfall threshold, Ts [◦ C] (default value −1◦C) all
precipitation is treated as snow; otherwise, all precipitation is treated as rain. When
mean daily air temperature is above the snowmelt threshold Tm [◦ C] (default value
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1◦C) a portion of the snow is melted. Each time step’s snow pack is updated, taking
into account precipitation as snow, and snowmelt.

In the following equations, the subscript ”i” is used to indicate the current
timestep, ”i-1” for the previous time step. Snow melt is never allowed to exceed the
size of the snow pack.

Spi = δSp/δt+ Spi−1 (A.4)

where: δSp/δt = Ps −Ms, (A.5)

Ps =

{
P T < Ts

0 Ts ≤ T and,
(A.6)

Ms =

{
2.63 + 2.55 · T + 0.0912 · T · P Tm < T

0 T ≤ Tm.
(A.7)

where P is total precipitation [mm] (snow or rainfall).

A6 Canopy interception

Vegetation canopies intercept precipitation, preventing it from becoming soil mois-
ture. WBMplus calculates interception by the canopy, Ic [mm] as:

Ic = s · LAI (A.8)

where s [mm] is a storage capacity constant (default value 0.25 mm (Dickinson,
1984)), and LAI is the leaf area index [-]. If no leaf area index input dataset is
provided, Ic = 0.

A7 Soil Moisture

Soil moisture balance, Ws [mm], is calculated with an accounting system that tracks
a grid cell’s water inputs, water outputs, and soil moisture pool holding capacity.
The soil moisture pool depth is determined by the rooting depth. Inputs come in
the form of precipitation as rain, Pr [mm], and as snow melt, Ms. Water intercepted
by the canopy, Ic, reduces how much precipiatation reaches the soil. Output is via
potential evapotranspiration, PET (here, PET = PETH), modified by a soil drying
function, g(Ws). The drying function is employed when water inputs are less than
potential evapotranspiration. The amount of water that can be drawn out of the
soil moisture pool depends on the current soil moisture, and the available water
capacity (see Figure A1). The drying function g(Ws) also depends on an empirical
constant, α [-], (default value 5.0) in order to best match the drying curve of Pierce
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(1958). The coefficient α can be adjusted to calibrate the model based on regional
climate.

Available water capacity, Wcap [mm], indicates the portion of the soil moisture
storage pool within the grid cell that is available to receive water inputs. Available
water capacity is determined by taking the difference between the field capacity, Fcap
[-], and the wilting point, Wpt [-], each expressed as fractions of the total depth.
This difference is then scaled by the total rooting depth, Rd [mm], to determine
the depth in mm which the grid cell has available to receive water. Field capacity,
wilting point, and rooting depth are all input from global datasets based on soil and
vegetation type. Alternatively, available water capacity Wcap can be input directly
into the model instead of calculated.

Wsi =
δWs

δt
+Wsi−1 (A.9)

where:

δWs

δt
=


0 ifWcap = 0

g(Ws) · (Pa − PET ) ifPa < PET

Pa − PET ifPET ≤ Pa and (Pa − PET ) < (Wcap −Ws)

Wcap −Ws ifPET ≤ Pa and (Wcap −Ws) ≤ (Pa − PET ),

(A.10)

where:

g(Ws) =
1− e(−αWs/Wcap)

1− e−α
, (A.11)

Wcap = (Fcap −Wpt)Rd, (A.12)

Pa = P +Ms − Ic. (A.13)

A8 Evapotranspiration

Actual evapotranspiration cannot be equal to potential evapotranspiration, PET ,
when there is a soil mositure deficit. Therefore, we calculate an estimated actual
evapotranspiration, AET [mm]:

AET =

{
Pa − (δWs/δt) if (Pa − (δWs/δt)) ≤ PET
PET if (Pa − (δWs/δt)) > PET.

(A.14)
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Figure A1: Soil drying function schematic. Solid lines show how g(Ws) changes
with higher (gray) and lower (black) available water capacity, and with increas-
ing and decreasing soil moisture. g(Ws) is always ≤ 1 because the amount of
water removed from the soil moisture pool cannot exceed 100% of the available
water capacity.

A9 Runoff and Baseflow

When water inputs to a grid cell exceed the amount of water that can be stored as
soil moisture and be lost to evapotranspiration, then a surplus, S [mm], is formed. A
fraction (1− γ [-]) of this surplus becomes surface runoff, Rs [mm]. The remaining
fraction (γ [-]) of the surplus infiltrates into the groundwater storage pool, Wg

[mm]. Water leaks out of the groundwater storage pool through baseflow, which is
a fraction (β [-]) of the total groundwater storage. The total change in groundwater
is then the infiltration from surplus, (i.e., recharge), minus the loss to baseflow.

The combined surface runoff and baseflow exit the grid cell, and are collected in
a river network that allows the water to be transported downstream, the details of
which will be discussed in Section A 10. The total amount of water that exits the grid
cell and enters the network (total runoff, Rt [mm]) is the sum of the surface runoff
and baseflow. γ and β are empirical values (defalut: 0.5 and 0.0167, respectively).
Note that here, γ is an infiltration fraction, setting how much of the surplus enters
the groundwater pool. In Vörösmarty, 1998, γ indicates a surface runoff fraction,
setting how much of the surplus becomes surface runoff.

150



Rt = Rs + βWg (A.15)

where: Rs = (1− γ)S, (A.16)

δWg/δt = γS − βWg, (A.17)

Wgi = Wgi−1 + δWg/δt, and (A.18)

S = Pa − δSp/δt− Es − δWs/δt (A.19)

A9.1 Runoff from impervious areas

Impervious areas prevent water from entering soils and increase overland runoff.
If provided with an impervious area map, WBMplus calculates overland runoff in
impervious areas, Rimp [mm] as:

Rimp = Cimp Aimp(Pa +Ms) (A.20)

where Cimp [-] is a unitless scalar for impervious surfaces that determines the frac-
tion of precipitation over impervious areas that is directly routed to rivers, Aimp
[m2] is impervious area, Pa is precipitation and snowmelt (minus canopy intercep-
tion), and Ms is snowmelt.

A10 Water transport model

WBMplus transports surface runoff downstream from one grid cell to another, sim-
ulating a river network. There are two components to the water transport mode: 1)
a river network map that identifies the direction of river flow within each grid cell,
and 2) a water routing scheme that determines the flow velocity of river discharge.
The river network is a model input; the Water Systems Analysis Group has devel-
oped such an input dataset, called the Simulated Topological Network (STN-30p),
(Vörösmarty et al. 2000a; Vörösmarty et al., 2000b), described below in Section
A 10.1. Other networks can be used, provided they include consistant river basin
boundaries.

A10.1 Simulated Topological Network (STN-30p)

The Simulated Topological Network (STN-30p) was first described in (Vörösmarty et
al., 2000b) and (Vörösmarty et al., 2000c). To determine the maximum topographic
gradient in each grid cell, (Vörösmarty et al., 2000c) first spatially aggregated (at
30 min longitude and latitude grids) the Global Gridded Elevation and Bathymetry
(ETOPO5) 5-10 min DEM (Ewards, 1989), then used an ARC/INFO (ESRI, 1992)
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algorithm to find the gradient. Each grid cell represents 1000 - 3000 km2 of land
surface, depending on latitude. Based on the maximum gradient, flow directions
were assigned and given a direction of N, NE, E, SE, S, SW, W, or NW. While
inflow of water to a grid cell can be from any and all directions, outflow is assigned
to only one direction.

The STN-30p was checked against known stream locations, and manual recon-
figuration was required to correct errors. The University of New Hampshire - Global
Hydrological Archive and Analysis System (UNH-GHAAS) compared the STN-30p
to atlases, regional maps, operational navigational charts, and other digital river
maps (Figure A2). See (Vörösmarty et al., 2000b) for comparison details.

A10.2 Flow routing

WBMpus estimates the flow rate and water level in each grid cell’s stream using a
distributed flow routing model based on the Saint-Venant partial differential equa-
tions for one-dimensional flow. Specifically, we use the Muskingum-Cunge kinematic
wave model that approximates the solution to the Saint-Venant partial differential
equations (Maidment, 1992). These equations require six assumptions:

1. Flow from grid j to grid j + 1 is one-dimentional,

2. The stream length through the grid cell is significantly larger than the flow
depth,

3. Vertical acceleration and vertical changes in pressure are negligable,

4. Water density is constant,

5. Channel bed and banks are immobile, and

6. Channel bottom slope is small, less than 15%.

Additionally, WBM assumes a rectangular channel bed and no loss of water from
the channel to groundwater

The Muskingum-Cunge solution estimates the outflow, Qt+1
j+1 [m3s−1], at time

t+1 and grid cell j+1, as a linear combination of three known inflows and outflows.
These are: 1) the inflow of the current time step and previous grid cell, Qt+1

j [m3s−1],

2) outflow of the previous time step and current grid cell, Qtj+1 [m3s−1], and 3) inflow

from the previous time step and adjacent upstream grid cell, Qtj [m3s−1]:

Qt+1
j+1 = C0Q

t+1
j + C1Q

t
j+1 + C2Q

t
j (A.21)

The coefficients C0 [-], C1 [-], and C2 [-], are defined such that:

C0 + C1 + C2 = 1, (A.22)

152



Figure A2: Figure 1 from Vörösmarty et al. (2000b), showing the process of
building and modifying data to form the STN-30p. Black dots in the lower
right panel refer to river monitoring sites for which independent basin and sub-
basin attributes were available.
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and if any of these three coefficients are less than 0, they are reset to 1, 0, and 0,
respectively. The coefficients are unitless functions of the Courant number, C, and
Reynolds number, D.

C0 =
−1 + C +D

1 + C +D
(A.23)

C1 =
1 + C −D
1 + C +D

(A.24)

C2 =
1− C +D

1 + C +D
(A.25)

Both C and D depend on riverbed geometry, and are defined as:

C = UwVm
δt

L
(A.26)

D =
Ym

S0UwL
(A.27)

where Uw [m3 s−1] is the speed of wave propogation (also referred to as the wave
celerity), Vm is the mean fluid velocity [m s−1], L is the river length in the grid cell
[m], ∆t [s] is the time step length (daily), Ym is the mean flow depth [m], and S0 is
the riverbed slope [m km−1]. These variables are defined or calculated as:

Uw = 1 +
2
3σ

σ + 1
(A.28)

where the shape parameter σ = 2 [-],

Vm =
Qm

YmWm
(A.29)

where Qm is the mean annual discharge in the river segment [m3s−1] , and Wm

is the corresponding mean annual channel width [m]:

Wm = τQφm (A.30)

where τ [-] and φ [-] are constants 8.0 and 0.58, respectively (Knighton,
1998).

L = N
√
Ac (A.31)

whereN =

{
1 for flow directions N, S, E, W

1
sin(π/4) for flow directions NW, SW, NE, SE

(A.32)
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where Ac is the area of the grid cell [m2].

δt = 86, 400 = seconds in one day, (A.33)

Ym = ηQνm (A.34)

where η and ν are empirical constants of 0.25 and 0.4, respectively (Knighton,
1998), and

S0 =
0.1

1000
. (A.35)

As the discharge is calculated for each time step within a grid cell, the discharge
value is stored so that it can be used to determine the mean annual discharge in
future calculations.

When irrigation water is withdrawn from a grid cell’s stream, discharge is ad-
justed to reflect the removal:

Qt+1
j+1 = C0Q

t+1
j + C1Q

t
j+1 + C2Q

t
j (A.36)

Grid cells which are defined as open water (e.g., lakes) use a flush routing scheme,
in which water is transported immediately between the grid cell and the open water
outlet point. In this case, the coefficiencts C0, C1, and C2 are re-defined as open-
water coefficients C0o [-], C1o [-], and C2o [-]:

C0o = 1 (A.37)

C1o = C2o = 0 (A.38)

An alternative routing scheme can be used in WBMplus: Linear reservoir rout-
ing. Linear reservoir routing re-defines the coefficient C0:

C0 = 1/(1 + L
sd

Vf/δt
) (A.39)

where sd is a conversion factor of 3600 [s d−1],

L =

{√
AC if N = 1
√
AC · 1

sin(π/4) if N 6= 1
(A.40)

Vf = 2.18(1− 0.077 · log(
Sc
0.5

)) (A.41)

where L [m] is the river length, Vf [m h−1] is the flow velocity, Sc is the size of the
cell expressed in degrees. Note that the equation for Vf applies a correction factor
of 2.18 to the ratio of the grid cell size as compared to a grid cell size of 0.5◦; this
follows Fekete et al. (2001).
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Table A2: Parameter values for large reservoirs.

Reservoir type Dmin Sopt a b

Generic 0.2 0.8 2/3 10
Hyropower 0.2 0.9 1 40
Irrigation 0.1 0.8 0.5 10
Natural lake 0.0 0.5 2/3 1.6

A11 Reservoirs

Reservoirs in WBMplus are divided into two classes: large and small. Large reser-
voirs interact with the transport of water by altering discharge out of their grid
cells, are are explicitly represented as a part of the simulated river network. They
represent large lakes as well as constructed water impoundments. This is in contrast
to small reservoirs, which in WBMplus are treated as water storage outside the river
network that intercepts local runoff in non-irrigated grid-cell areas. Small reservoirs
represent farm ponds and tanks (Wisser et al. 2010).

A11.1 Large Reservoirs

Large reservoirs alter the flow of rivers by storing water and potentially preventing
it from traveling downstream. Large reservoir discharge at time t, Dt [m3s−1], is:

Dt =

{
Q̄(Dmin + ln(kSa + 1)) if Sl < Sopt

Q̄× eb(Sl−Sopt)2 if Sl ≥ Sopt
(A.42)

where Q̄ is the 5-year average annual discharge [m3 s−1], Dmin is the minmum
allowed reservoir release [-], Sl is the reservoir storage at time t [fraction of maximum
storage volume], Sopt is the optimal level of reservoir storage [fraction of maximum
storage volume], a and b are calibrated parameters, and:

k =
1

Sαopt
[exp(1−Dmin)− 1] (A.43)

Except for Q̄, all parameters can be calibrated. WBMplus sets the values of
these paramters based on the type and purpose of the reservoir, as defined in the
reservoir dataset (Table A2).

A11.2 Small Reservoirs

WBMplus representation of small reservoirs for the purpose of irrigation was de-
velped by Wisser et al. (2010). Unlike large reservoirs, small reservoirs do not
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intersect river segments; rather, they collect a portion of surface runoff from the
non-irrigated part of a grid cell and store it as a separate stock. This stored water
can then be used to supply water for irrigation to the irrigated portion of a grid cell.
See Section A 13.1.1 for further details about irrigation.

ASR =
CSR
dSR

(A.44)

where ASR is the small reservoir area [m2], CSR is the small reservoir capacity [m3],
and dSR is the depth of the small reservoir [m] (default value 2m). Water is only
removed from the small reservoir storage pool when irrigation water is required
within the grid cell.

Evaporation from small reservoirs, ESR is calculated as:

ESR = 0.6× PETH ×
ASR
1000

(A.45)

where PETH is potential evapotranspiration (see Section A 4). ESR cannot be
larger than the amount of water stored within the reservoir, so there is an upper
bound of SSR.

A12 Inter-basin transfers

Inter-basin transfers are canal systems that move water from one river basin into
another. In this section, ”donor” referes to the location from which water is being
moved, and ”recipient” refers to the location to which water is being moved by
an inter-basin transfer. WBMplus uses eight paramters to simulate these transfers.
There parameters are (1) the donor latitude and longitude, (2) the recipient latitude
and longitude, (3) a minimum permitted donor river flow, Qmin [m3s−1], (4) a
maximum permited donor river flow, Qmax [m3s−1], (5) a fraction of flow volumes
to be removed from the donor river when discharge is between the minimum and
maximum, F [-], (6) the year in which the inter-basin transfer is implemented,
(7) the length of the transfer canal, and (8) the width of the transfer canal. For
parameters (1) and (2), all relevant latiutudes and longitudes are associated with a
specific river network, as hand-checking is required to assure that the correct river
is being identified for transfers by the simulation. The volume of water transfered,
QT [m3s−1], through each inter-basin transfer canal is:

QT =


0 ifQd ≤ Qmin
(F (Qd −Qmin) ifQmin < Qd ≤ Qmax
Qmax ifQd > Qmax

(A.46)
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where Qd is the donor river discharge on day d. The transfer volume QT is adjusted
to QTa for small transfer volumes (volume measured in m3s−1):

QTa =

{
0 if QT < 0.01

QT if QT ≥ 0.01
(A.47)

Evaporation from open water along the inter-basin transfer canal is removed from
the transfer volume, resulting in the arrival volume Qa:

Qa =

{
QTa − Ec if (QTa − Ec) > 0.001

0 if (QTa − Ec) ≤ 0.001
(A.48)

where Ec is the canal evaporation volume:

Ec = L ·W · Efw (A.49)

where L [m] is the length of the canal, W [m] is the width of the transfer canal, and
Efw is the free-water evaporation volume [m s−1], which can be calculated through
various free-water evaporation models (Dingman, 2002). If W is not available for
the canal, it can be estimated as:

W =

{
τ ·QφTa if (τ ·QφTa) ≥ 0.01

0 if (τ ·QφTa) < 0.01
(A.50)

where τ is an empirical constant (default value 8.0).

A13 Land use/land cover types

When provided with a map of land use/land cover (LULC) types, WBMplus calcu-
lates each water balance component - canopy interception (optional, based on leaf
area index input), soil moisture, potential evapotranspiration, actual evapotranspi-
ration, and runoff - for each LULC type individually. Equations for these compo-
nents (Equations A.8 –A.14) are modified by providing LULC-specific maximum
leaf area index and available water capacity (or root depth). WBMplus has three
modes for calculating the LULC-specific water balance components: 1) sub-grid cell
processes, 2) average grid cell processes, or 3) dominant LULC type processes.

In (1), sub-grid cell processes, WBMplus calculates each water balance compo-
nent seperately for each LULC type. Soil moisture values for each sub-grid cell type
is tracked at every time step. Grid cell values for runoff and evapotranspiration are
output based on the sum of the sub-grid cell components.

For (2), average grid cell processes, WBMplus requires the LULC type maps
to be pre-processed. The pre-processor takes an area-weighted average across all
grid cell subtypes and outputs a single value for the grid cell average available water
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capacity (or root depth) and maximum leaf area index. WBMplus uses these average
values to calculate soil moisture, evapotranspiration, and runoff.

For (3), dominant LULC type, WBMplus requires the LULC type maps to be
pre-processed. The pre-processor identifies the LULC type with the largest area
within each grid cell. Only the available water capaicty (or root depth) and maxi-
mum leaf area index values for the maximum LULC type are used within the grid
cell. This method is most appropriate for high spatial resolution model simulations
in which the dominant LULC type typically occupies more than half of a grid cell.

Impervious areas can be input as part of a general LULC map, or input as a
separate map. See Section A 9.1 for details on impervious areas. Croplands, both
rainfed and irrigated, can also be input as independent maps. Croplands require
additional input datasets; they are described below.

A13.1 Cropland

Cropland can be irrigated or rainfed. All cropland data inputs are pre-processed
to fit WBMplus formatting requirements. The pre-processor makes a daily grid-
ded time series of available water capacity and crop coefficient (kc) for each crop
type (both rainfed and irrigated). For all crops, Equations A.10 and A.11 for soil
moisture change are modified such that g(Ws) = 1. Equation A.14 for actual evap-
otranspiration is modified such that PET becomes a crop-specific PETc:

PETc = kc · PET (A.51)

Crop coefficients kc are time-varying, crop-specific parameters. The use of crop
coefficients follows the methodology of Allen (1998), in which kc modifies the refer-
ence evapotranspiration (PET ) over the course of the growing season so that crops
require more water as they grow larger, and less water at the end of the growing
season once they’ve reach full size. Each crop has four growth stages: initial, de-
veloping, middle, and late. The default crop kc values for WBMplus are based on
Siebert and Döll (2010), which provides crop coefficients and rooting depth (used
to calculate available water capcity) for 26 different crop types. Three kc values
are provided by Siebert and Döll (2010) for each crop: one value each for the ini-
tial, mid, and end-of-late growth stages. The length of all four crop growth stages
for each crop are also provided by Siebert and Döll (2010). The WBMplus crop
pre-processor assumes there is a linear increase in kc from the initial to the middle
growth stage, and a linear decrease in kc from the middle to the end-of-late growth
stage. See Figure A3 for examples of time-varying kc values for typical perennials,
vegetables, rice and other types of crops.

A13.1.1 Irrigated cropland

WBMplus calculates the irrigation water requirements of all irrigated croplands
based on crop water requirements and soil moisture content. When the soil moisture
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Figure A3: Crop coefficient, kc, for four example crop categories, plotted against
the number of days since the crop was planted. Note that each kc line here is
plotted beginning at 0 days, but the different crop categories’ planting dates are
not necessarily the same calendar date.

content of an irrigated cropland area goes below a crop-specific threshold, water is
applied to the soil to increase soil moisture up to the available water capacity.
The crop-dependent soil moisture threshold, Ctc for each crop c is determined by
the field capacity, Fcap, crop-specific rooting depth, Rdc , wilting point, Wpt, and a
crop-specific scalar, sc. The WBMplus crop pre-processor calculates available water
capacity, Wcapc for each crop c in each grid cell:

Wcapc = (Fcap −Wpt)Rdc (A.52)

The crop-specific soil moisture threshold is:

Ctc = sc ·Wcapc (A.53)

The crop-specific scalar sc represents a crop’s inability to completely remove all
water from the soil.

Once soil moisture, Wcapc , is below Ctc , the amount of irrigation water required
to bring the soil back up to available water capacity is calulated:

Inetc = Wcapc −Wsc (A.54)

Irrigation water extraction, conveyence, and application systems are not per-
fectly efficient. Rather, water can evaporate from canals and from irrigation sprin-
klers, it can percolate to groundwater storage due to leaky canals and pipes, and it
can become surface runoff and percolation to groundwater storage when more water

160



is applied to irrigated areas than is required. Inet must be modified in each grid
cell by an irrigation efficiency scalar, Eeff , to determine the amount of water that
must be withdrawn from water storage pools in order to deliver enough water the
irrigated cropland area. The amount of water that must be withdrawn is the gross
irrigation amount, Igross:

Igrossc =
Inetc
Eeff

(A.55)

The volume of water Inet is applied either to soil moisture or to rice paddies (see
Section A 13.1.2 below for a description of rice paddy irrigation water requirements).
The remainder, Igross− Inet becomes non-beneficial evaporation Enb, surface runoff,
Rro, and percolation, Rperc:

Enb = min(Ia(PET −AET ), (Igross − Inet)) (A.56)

Rro = r(Igross − Inet − Enb) (A.57)

Rperc = (1− r)(Igross − Inet − Enb) (A.58)

where Ia is the irrigated cropland area fraction, PET is the potential evapotranspi-
ration of the entire grid cell, AET is the actual evapotranspiration of the entire grid
cell, and r is a parameter that splits the return flows between runoff and percolation
(default value 0.5).

Like all LULC types, irrigated cropland can be represented as individual sub-grid
cell processes, as an average grid-cell, or as the dominant irrigated crop type within
each grid cell. When irrigated croplands are represented as individual sub-grid cell
processes, grid-cell values of both Inet and Igross are the sum of all the individual
Inetc and Igrossc values.

Irrigation water can be extracted from five different water storage pools and
moved to the soil pool. The amount of water extracted is a function of the soil
moisture deficit and irrigation efficiency These five pools are: (1) small reservoirs,
(2) groundwater storage pool, (3) rivers, (4) large reservoirs and (5) unsustainable
groundwater. Water storage pools (1) and (4) are only used if the associated reser-
voir database inputs are used in the model simulation. The default order in which
water is extracted from these pools is (1) through (5), in numerical order. This
order can be re-set. Alternatively, the target ratio, Rw (Rwε[0, 1]), of water ex-
tracted from rivers and reservoirs compared to groundwater storage can be input to
WBMplus as a map layer. Additionally, water can be extracted to meet the needs
of a single grid cell not only from that grid cell, but also from the largest river
and reservoir storage of any grid cell within a defined search distance. In the case
of a target surface-to-groundwater extraction ratio, water extractions to meet the
irrigation water demand of a grid cell are:

Irr0 = min(Rw ·Rmax(Igross − Isr), Rstor) (A.59)
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where Irr0 is water extracted from river and large reservoir storage within the search
distance, Rw is the target ratio, Rmax is the maximum allowed fraction of all river
and reservoir storage that can be extracted (default value 0.8), Isr is irrigation water
withdrawan from small reservoir storage, and Rstor is the total water stored in rivers
and large reservoirs within the grid cell search distance.

Ig0 = min((1−Rw)(Igross − Isr),Wg) (A.60)

where Ig0 is water extracted from groundwater storage, and Wg is the water in
groundwater storage in the grid cell.
If (Igross − Isr − Irr0 − Ig0) > 0, then additional water is taken from groundwater
storage:

Ig1 = min((Igross − Isr − Irr0 − Ig0),Wg) (A.61)

where Ig1 is additional water extracted from groundwater storage, regardless of the
target ratio. If irrigation water demand Igross is still unfulfilled, then additional
water is taken from river and large reservoir storage, regardless of the target ratio:

Irr1 = min((Igross − Isr − Irr0 − Ig0 − Ig1), Rmax ·Rw) (A.62)

where Irr1 is additional water extracted from river and large reservoir storage, re-
gardless of the target ratio.

The total amount of water extracted from rivers and reservoirs for irrigation in
a grid cell is:

Irr = Irr0 + Irr1 (A.63)

The total amount of water extracted from groundwater storage for irrigation in a
grid cell is:

Ig = Ig0 + Ig1 (A.64)

If water extracted from small reservoirs, rivers and large reservoirs, and ground-
water storage still falls short of Igross, then additional water is extracted from un-
sustainable groundwater, Iugw, to make up the difference:

Iugw = Ul(Igross − Isr − Irr − Ig) (A.65)

where Ul (Ulε[0, 1]) is a coefficient that limits the amount of unsustainable ground-
water that can be extracted (default value 1).
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A13.1.2 Irrigated rice paddies

In addition to water for crop evapotranspiration, irrigated rice paddies also require
irrigation water to flood the paddy area. The WBMplus crop pre-processor generates
a daily time series of rice paddy flood water requirements. These requirements
are: (1) flood water added to the paddy on the day that rice is planted (default
value 50 mm), and (2) water added every day of the paddy rice growing season to
account for percolation. Percolation occurs at a rate determined by the grid cell’s soil
drainage class. The WBMplus crop pre-processor assumes the following percolation
rates based on input soil drainage classes: WBM estimates percolation rates as:
8 mm day−1 for extremely well drained soils, 5 mm day−1 for well-, moderately-
and imperfectly-drained soils, and 2 mm day−1 for poorly and very poorly drained
soils. If no soil drainage class input data are provided, WBMplus assumes a global
percolation rate of 3 mm day−1.

A13.1.3 Crop rotations

Over the course of a year, the fractional portion of a grid cell occupied by each crop
type can change. This change occurs when one crop season ends and the next begins.
The amount of water stored within the soil moisture pool is a function of the root
depth of the LULC type. Therefore, when the crop areas change and a different
set of crops are present, the root depth and soil moisture capacity simulated by
WBMplus also change. To accomodate multiple cropping seasons, WBMplus moves
water between the soil moisture pool and the groundwater storage pool in order to
maintain a constant soil moisture fraction through the crop-switching process:

Ws1 = Ws0 + δWs1 (A.66)

Wg1 = Wg0 − δWs1 (A.67)

where:

δWs = (Rd1 −Rd0)
Ws

Rd0(Fcap −Wpt)
(A.68)

where Rd1 is the rooting depth of the Rd0 is the rooting depth of the previous crop.

A14 Tracking water components

WBMplus can track water from a specific source through flows and stocks within the
model. Stocks include river storage, large and small reservoir storage, groundwater
storage, and soil moisture. Flows include runoff, percolation, river discharge, water
discharge from large large reservoirs, water removed from any stock for irrigation,
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inter-basin transfers, and evporation. For any water component w in water storage
stock ST at time t:

STw,t =
(STw,t−1 · STt−1) +

∑m,n
i=1,j=1[(Ii,w · Ii)− (Oj,w ·O j)]
STt

(A.69)

where STw,t is the water component w [volume] in stock ST , Ii are inflows (i = 1...n)
to and Oj are outflows (j = 1...m) from stock ST at time t. For each flow (in or
out), the water component fraction at time t is:

Iw =
w

I
(A.70)

Ow =
w

O
(A.71)

All stocks and flows are considered well-mixed, so that the flows out of a stock have
the same fractional water source components as the stock itself. WBMplus current
has the capability to track the following water component categories:

• Water sources: rain water, snowmelt, glacier melt, and unsustainable ground-
water

• Runoff sources: glacier melt, snowmelt, surface runoff, baseflow

• Irrigation return flows: water that has been extracted for irrigation, water
that has not been extracted for irrigation

• Land area sources: a map of source areas identifies water to be categorized
onto components based on all runoff orriginating from the source regions.

A15 Water temperature

The temperature of water in the river is a function of the temperature and volume of
surface runoff, baseflow, and previous water temperature, as well as the weather con-
ditions air temperature and cloud coverage, and canopy shading. The temperature
model is described in Stewart et al (2013).

First, the volume-weighted average of the previous water in the river segment
and the incoming runoff is calculated:

Tw,0 = Tw,t−1 +Rt δtTRt (A.72)

where Tw,0 is the temperature of the water (not yet corrected for equilibration with
air or solar radiation; see Eq A.75 below), Rtδt is surface runoff volume, and TRt is
the temperature of the surface runoff water:

TRt =

{
TrAv(Rs+Rro)+βWgTb

Rt
if Ms

Pa
< 0.1

βWgTb
Rt

if Ms
Pa
≥ 0.1

(A.73)
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where Rs is surface runoff, Rro is irrigation surface runoff, βWg is baseflow, Rt
is total runoff, Ms is snowmelt, and Pa is the balance of precipitation, snowmelt,
and canopy interception (see Eq. A.13), TrAv is the 5-day running average air
temperature and Tb is the temperature of baseflow:

Tb = TWg + ω(TbAv − TWg) (A.74)

where TWg is the groundwater temperature (input time series), ω is a groundwater
temperature scaling factor (default value 0.59), and TbAv is the 15-day running
average air temperature.

Water within the river segment is then adjusted for equilibration with water
previously in the river, energy exchange with the air, and incoming solar radiation:

Tw,t = Te + (Tw,0 − Te) · e(−Ec∗·L)/(ñCwhVw) (A.75)

where Tw,t is the temperature of river water at time t (minum value allowed is 0◦C),
L is the length of the stream segment within the grid cell [m], ñ is the density
of water [kg m−3], Cw is the specific heat of water [KJ kg−1◦C−1], h is the water
depth [m], Vw is the stream velocity [m d−1], and Te is the in-stream equilibrium
temperature including the wet bulb correction:

Te =
273 · Es

17.27− Es
(A.76)

where:

Es = log(Hr · 107.5Se/(237.3+Se)) (A.77)

where Hr is relative humidity, and

Se = T +
ER − E0

Ec
(A.78)

where T is the mean daily air temperature, ER is the net incoming solar radiation
[KJ m−2d−1], Eo is the heat loss rate [KJ m−2d−1], and Ec is the energy exchange
coefficient [KJ m−2d−1 ◦C−1]:

E0 =

{
105 + 23Va if CSfr < 0.95

−73 + 9.1Va if CSfr ≥ 0.95
(A.79)

Ec =

{
35 + 4.2Va if CSfr < 0.95

37 + 4.6Va if CSfr ≥ 0.95
(A.80)

where Va is wind speed and CSfr is the cloud cover fraction, considering canopy
shading:

CSfr = Cfr + (1− Cfr)
LAI

max(LAI)

HC

w
(A.81)

where Cfr is the cloud cover fraction, LAI is the leaf area index, HC is the canopy
height [m], and w is the stream width [m].
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A16 Notation
In order of appearance:

PET potential evapotranspiration [mm day−1]
PETH Hamon-method PET [mm day−1]
T mean daily air temperature [◦C]
Λ day length [rad], π = 12 hrs
ρsat saturated vapor density [g m−3]
Psat saturated vapor pressure [kg m−1s−2]
P total precipitation (snow + rainfall) [mm day−1]
Ps snow fall [mm day−1]
Sp snow pack [mm]
MS snow melt [mm day−1]
Ts snowfall threshold temperature [◦C]
Tm snowmelt threshold temperature [◦C]
Ic canopy interception [mm day−1]
s canopy storage capacity [mm]
LAI leaf area index [-]
Ws soil moisture [mm]
Pr precipitation as rain [mm day−1]
α soil drying function constant [-]
Wcap available water capacity [mm]
Fcap field capacity [-]
Wpt wilting point [-]
Rd rooting depth [mm]
Pa balance of precipitation, snowmelt, and canopy interception [mm day−1]
AET actual evapotransiration [mm day−1]
S surplus water to become runoff [mm day−1]
γ groundwater storage infiltration constant [-]
Rs runoff from surface [mm day−1]
Wg groundwater storage [mm]
β baseflow constant [-]
Rt total runoff [mm day−1]
Rimp runoff from impervious surfaces [mm day−1]
Cimp impervious surface scalar [-]
Aimp impervious surface area [m2]
Qtj instantaneous discharge at time t and grid j [m3 s−1]

C0, C1, C2 coefficients for flow routing [-]
C0o, C1o, C2o coefficients for open water flow routing [-]
C Courant number [m2]
D Reynolds number [m−2]
Uw speed of wave propogation, i.e. wave celerity [m3 s−1]
Vm mean fluid velocity [m s−1]
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L river length across grid cell [m]
Ac grid cell area [m2]
Ym mean annual channel depth [m]
Wm mean annual channel width [m]
S0 riverbed slope [m km−1]
σ shape coefficient [-]
Qm mean annual discharge [m3 s−1]
η, ν, τ, φ channel shape parameters [-]
N flow direction paramter [-]
Vf flow velocity [m h−1]
sd conversion factor of 3600 [s d−1]
Sc grid cell size in degrees [◦]
Dt large reservoir discharge at time t [m3 s−1]
Q̄ 5-year average discharge [m3 s−1]
Dmin minimum allowed reservoir release [-]
Sl reservoir storage level [-]
Sopt optimal reservoir storage level [-]
a, b reservoir constants [-]
ASR small reservoir area [m2]
CSR small reservoir capacity [m3]
dSR small reservoir depth [m]
ESR evaporation from small reservoirs [mm]
QT discharge through inter-basin transfer [m3 s−1]
Qd donor river discharge [m3 s−1]
Qmin minimum allowed donor river flow [m3 s−1]
Qmax maximum allowed donor river flow [m3 s−1]
F fraction parameter for inter-basin transfer flows [-]
QTa adjusted QT for evaporation [m3 s−1]
Qa inter-basin transfer arrival water volume [m3 s−1]
Ec evaporation volume from canal [m3 d−1]
L canal length [m]
W canal width [m]
Efw free-water evaporation from canals [m s−1]
PETc crop-specific potential evapotranspiration [mm]
kc crop coefficient [-]
sc crop-specific scaler [-]
Ctc crop-specific soil moisture threshold [-]
Inet net irrigation [mm]
Igross gross irrigation [mm]
Eeff irrigation efficiency [-]
Enb non-benficial evaporation from irrigation water [mm]
Ia irrigated cropland area fraction [-]
Rro irrigation return flow as surface runoff [mm]
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Rperc percolation to groundwater storage from irrigation water [mm]
Irr irrigation water withdrawn from rivers and reservoirs [mm]
Rw target extraction ratio between surface water and ground water [-]
Rmax maximum allowed river water withdrawal [-]
Iugw irrigation water withdrawn from unsustainable groundwater [mm]
Ul unsustainable groundwater coefficient [-]
STw water component w in water storage stock ST [-]
Iw inflow of component w [-]
Ow outflow of component w [-]
Tw,0 water temperature, not corrected for equilibration with air or solar radiation [◦C]
TRt temperature of total runoff [◦C]
TrAv 5-day average air temperature [◦C]
Tb baseflow temperature [◦C]
TWg groundwater temperature [◦C]
ω groundwater temperature scaling factor [-]
TbAv 15-day running average air temperature
Tw water temperature [◦C]
ñ density of water [kg m−3]
Cw specific heat of water [KJ/kg/C] [KJ m−2 kg−1 ◦C−1]
h water depth [m]
Vw stream velocity [m d−1]
Te in-stream equilibrium temperature, including wet bulb correction [◦C]
Es wet bulb correction factor [◦C]
Hr relative humidity [-]
Se in-stream equilibrium temperature [◦C]
Ec energy exchange coefficient [KJ m−2 d−1 ◦C−1]

Va wind speed [m−2 d−1|]
CSfr cloud cover fraction corrected for canopy shading [-]
Cfr cloud cover fraction [-]
w stream width [m]
Isr irrigation water withdrawn from small reservoirs [mm]
Ig irrigation water withdrawn from groundwater storage [mm]
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APPENDIX B 

WBM RIVER DISCHARGE COMPARISON 
 

This appendix contains a comparison of Water Balance Model simulated river discharge 
to available discharge data for each of the three dissertation chapters.  Model fit is 
assessed using the Nash-Sutcliffe efficiency (NSE) metric (Nash and Sutcliffe, 1970): 
 

𝑁𝑆𝐸 = 1−   
𝑂𝑏𝑠 − 𝑆𝑖𝑚 !

𝑂𝑏𝑠 − 𝑂𝑏𝑠!"#$ ! 

          
where Obs is the observation data, Sim is the model simulated data, and Obsmean is the 
mean of the observation data.  The NSE compares model simulations against the mean of 
the observation data.  If the NSE < 0, then the observed mean is a better predictor than the 
model; if the NSE > 0, then the model is a better predictor than the observed mean; an 
NSE = 1 indicates a perfect fit between the model and observation data.  

For all analysis shown below, both Obs and Sim are monthly mean river discharge 
[m3 s-1].  Observation and simulation values are only compared for months in which both 
values are present; where the observation data time series has gaps, the gaps are left out 
of the analysis.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(B.1) 
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B1. River discharge simulations in Chapter 1: China 
 
Observation data are from the Global Runoff Data Center (GRDC), 
http://www.bafg.de/GRDC/EN/Home/homepage_node.html, and were downloaded in 
April of 2012.  The GRDC compiles river discharge time series from gauge stations that 
have at least 20 years of data and capture a basin area > 10,000 km2.  Model simulations 
are described in Chapter 1; WBM uses the MERRA climate data product, and simulates 
the years 1981-2000.  At the end of this section (B1), all monthly hydrographs are shown, 
comparing model and observation river discharge. 
  

 
 
Fig B 1.1 Nash-Sutcliffe efficiency values for modeled versus WBM-simulated 
river discharge for the 16 GRDC river gauges that have data in the modeled time 
period. 
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Fig B 1.2 Modeled versus observed monthly average discharge from all 16 GRDC 
river gauge stations in China (A) on a linear scale, and (B) on a log-log plot.  Each 
data point is one month’s value; only months with both data and observation are 
shown.  Comparison of the model trend line (red) to the 1:1 line (grey) shows that the 
model typically over-estimates monthly average discharge.  The R2 value is 0.95. 

A 

B 
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Fig B 2.3 Nash-Sutcliffe efficiency (NSE) plotted against catchment area for each of 
the 16 GRDC river gauge stations in China.   
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Table B 1.1 Summary of Nash-Sutcliffe efficiency (NSE) values for each of the 16 
GRDC gauge stations with available data in China during the model simulation period.  
The % Data Cov. shows the % of non-missing monthly data points within the given date 
range (Start Date to End Date).  For gauges with % Data Cov. < 100%, there are data 
gaps within the river discharge time series.  Model results which coincide with gaps in 
the river discharge time series are not used in the NSE calculation.   
 

River 
GRDC 
Station Lat Lon 

Catchment 
Area [km2] start date end date 

% data 
Cov. NSE 

YANGTZE DATONG 30.77 117.62 1,705,383 1981  2000  40 0.02 
YANGTZE HANKOU 30.58 114.28 1,488,036 1981  1986  100 0.15 
YANGTZE YICHANG 30.66 111.23 1,010,000 1981  1986  100 0.22 

HUANG 
HUAYUAN
KOU 34.92 113.65 730,036 1981  2000  40 -8.65 

SONGHUA HAERBIN 45.77 126.58 391,000 1981  1987  100 -1.64 
XI WUZHOU 23.48 111.3 329,705 1981  2000  30 -2.27 
BRAHMA-
PUTRA YANGCUN 29.28 91.88 153,191 1981  1982  100 -6.33 
HUAI BENGBU 32.93 117.38 121,330 1981  2000  45 0.64 
YU NANNING 22.8 108.37 75,500 1981  1984  100 -3.98 
WU GONGTAN 28.9 108.35 58,300 1981  1982  100 0.19 
GAN JIAN 27.1 114.98 56,200 1981  1984  100 0.17 
SONGHUA JILIN 43.88 126.53 44,100 1981  1986  100 -0.76 
LUAN LUAN 39.73 118.75 44,100 1981  2000  40 -25.08 
HAN ANKANG 32.68 109.02 41,400 1981  1986  100 0.40 
BEI HENGSHI 23.85 113.27 34,013 1981  1987  100 0.08 
DONG BOLUO 23.17 114.3 25,325 1981  2000  35 0.26 
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B2. River discharge simulations in Chapter 2: India 
 
Observation data for river discharge in India is from the Water Resources Information 
System of India (India-WRIS).  This data was downloaded from: http://www.india-
wris.nrsc.gov.in in August of 2015, and includes monthly mean river discharge from 20 
different gauge stations.  Only observation data that overlaps with the model historical 
period (1970-2005) are used for the comparisons shown below.  At the end of this section 
(B2), all monthly hydrographs are shown, comparing model and observation river 
discharge. 
 
 
 

 
 
 
 
 

 
  
Fig B 2.1 Nash-Sutcliffe efficiency values for modeled versus WBM-simulated river 
discharge for the 20 river gauges with available data in India. 
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Fig B 2.2 Modeled versus observed monthly average discharge from all 20 river gauge 
stations on (A) linear axes, and (B) on a log-log plot.  Each data point is one month’s 
value; only months with both data and observation are shown.  Comparison of the 
model trend line (red) to the 1:1 line (grey) shows that the model typically under-
estimates monthly average discharge.  The R2 value is 0.82. 
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Fig B 2.3 Nash-Sutcliffe efficiency (NSE) plotted against catchment area for each of 
the 18 river gauge stations NSE > -3.  The two stations with NSE < -3 have catchment 
areas of 712 km2 (NSE = -63) and 3,721 km2  (NSE = -18). 
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Table B 2.1 Summary of Nash-Sutcliffe efficiency (NSE) values for each of the 20 gauge 
stations with available data through the IWRIS.  The % Data Coverage shows the % of 
non-missing monthly data points within the given date range (Start Date to End Date).  
For gauges with % Data Coverage < 100%, there are data gaps within the river 
discharge time series.  Model results which coincide with gaps in the river discharge time 
series are not used in the NSE calculation.   
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B3. River discharge simulations in Chapter 3: Global 
 
Observation data are from the Global Runoff Data Center (GRDC), 
http://www.bafg.de/GRDC/EN/Home/homepage_node.html, and were downloaded in 
April of 2012.  The GRDC compiles river discharge time series from gauge stations that 
have at least 20 years of data and capture a basin area > 10,000 km2.   
 Chapter 3 uses 4 different climate input data sets for WBM to simulate river 
discharge.  These four datasets are described in Chapter 3, and will be referred to here as 
ERA, MERRA, NCEP, and UDEL.  Only GRDC data that was available for the model 
simulation time period (1980-2009) were used; in total, 599 GRDC gauge stations were 
used. 
 
 
 

 
 
 
 
 

 

 
Fig B 3.1 Percent of Nash-Sutcliffe Efficiency (NSE) values < 0 and ≥ 0 for each of 
the 4 input climate data sets.  	 
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   Fig B 3.6 The m
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 Fig B 3.7 The m
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inputs.  R
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s the range of difference values, w
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colors indicating larger differences.	 
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Fig B 3.8 Modeled versus observed monthly average discharge.  Each data point is 
one month’s value; only months with both data and observation are shown.  
Comparison of the model trend line (red) to the 1:1 line (grey) shows that the model 
typically under-estimates monthly average discharge.  The R2 value for the WBM 
simulation using (a) ERA climate is 0.78; (b) MERRA climate is 0.74; (c) NCEP 
climate is 0.80; (d) UDEL climate is 0.87.  All data points in the blue oval in (a) are 
from the Congo River. 
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Fig B 3.8 Nash-Sutcliffe efficiency (NSE) plotted against catchment area for each of 
the 18 river gauge stations NSE > -10.  All catchments with NSE values < -10 have 
catchment areas < 2,000,000 km2.  	 
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Fig B 3.9 Nash-Sutcliffe efficiency (NSE) values of each of the global WBM simulations 
over India, using the IWRIS river discharge data (see Section B2 above) as the observation 
data set.  The IWRIS data for rivers in India is not part of the GRDC; the maps shown here fill 
in an important gap in the GRDC dataset for the purposes of analyzing the WBM simulations 
for Chapter 3, as India is an important agricultural producer and groundwater user.  None of 
the four global simulations perform as well over India as the India-specific WBM simulations 
analyzed in Section B2.  The model input data used for Chapter 2 and Section B2 for both 
climate and agricultural land use are specific to India; the APHRODITE climate product 
claims to be the best gridded climate product for use over the monsoon regions of Asia, and 
the agricultural land use maps were produced by the International Crops Research Institute for 
the Semi-Arid Tropics.  WBM-simulated river discharge better matches observed discharge 
(higher NSE value) when the region-specific input data is used; this result indicates that input 
data error is one significant source of uncertainty in the model, potentially leading to poor 
NSE values. 	 
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