

University of New Hampshire University of New Hampshire Scholars' Repository

PREP Reports & Publications

Institute for the Study of Earth, Oceans, and Space (EOS)

9-24-2013

Shellfish Tissue Monitoring in Piscataqua Region Estuaries 2010 and 2011

Matthew A. Wood New Hampshire Department of Environmental Services

Philip R. Trowbridge New Hampshire Department of Environmental Services

Follow this and additional works at: https://scholars.unh.edu/prep

Part of the Marine Biology Commons

Recommended Citation

Wood, Matthew A. and Trowbridge, Philip R., "Shellfish Tissue Monitoring in Piscataqua Region Estuaries 2010 and 2011" (2013). PREP Reports & Publications. 253.

https://scholars.unh.edu/prep/253

This Report is brought to you for free and open access by the Institute for the Study of Earth, Oceans, and Space (EOS) at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in PREP Reports & Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

Shellfish Tissue Monitoring in Piscataqua Region Estuaries 2010 and 2011

A Final Report to

Piscataqua Region Estuaries Partnership University of New Hampshire Durham, New Hampshire

Submitted by

Matthew A. Wood
Philip R. Trowbridge, P.E.
New Hampshire Department of Environmental Services
Watershed Management Bureau
Concord, New Hampshire

July 5, 2012 Revised - September 24, 2013

This project was funded in part by a grant from the Piscataqua Region Estuaries Partnership, as authorized by the U.S. Environmental Protection Agency's National Estuary Program.

Table of Contents

INTRODUCTION	4
PROJECT GOALS AND OBJECTIVES	4
METHODS	4
RESULTS	7
CONCLUSIONS AND RECOMMENDATIONS	9
REFERENCES	9

APPENDICES

APPENDIX A: SAMPLING SUMMARY REPORT FOR 2010

APPENDIX B: SAMPLING SUMMARY REPORT FOR 2011

APPENDIX C: NH GULFWATCH DATA FOR 2010 - ORGANICS

APPENDIX D: NH GULFWATCH DATA FOR 2011

Introduction

Conducted by a committee of Canadian and US government and university scientists, Gulfwatch examines the effects of decades of development and industrialization on the water quality of the Gulf as it relates to human health primarily through assessing contaminant exposure of marine organisms. Gulfwatch scientists collect blue mussels at over 60 US and Canadian sites Gulfwide, and analyze the organisms' tissue for potentially harmful levels and concentrations of toxins including heavy metals, chlorinated pesticides, polychlorinated biphenyls (PCBs), and polycyclic aromatic hydrocarbons (PAHs).

New Hampshire increased the number of Gulfwatch sampling locations from two sites per year in 1997 to an average of five sites per year from 1998-2011. The increased spatial coverage provides comprehensive information for contaminant concentrations throughout the New Hampshire estuarine waters.

All samples collected for the Gulfwatch monitoring program, from the Canadian provinces as well as the New England states involved, have been sent to the same laboratories for analysis. All of the samples have been analyzed at the same time in the same laboratories in an effort to reduce error and variability. This practice has ensured the consistency that was necessary to allow a region-wide assessment of the health of the Gulf.

The mussels prepared for organic contaminant analysis in 2010 were archived due to funding shortfalls. The 2010 organic analysis was conducted in conjunction with the 2011 samples. As a result, this report includes organic data from 2010 and 2011. The laboratory results for metals for the 2010 samples are summarized in a previous report (Wood and Trowbridge, 2011). During the 2010 sampling season, mussels were collected at six sampling locations in New Hampshire and Maine (MECC, NHHS, NHDP, NHRH, NHPI and NHLH). During the 2011 sampling season, mussels were collected at five sampling locations in New Hampshire and Maine (MECC, NHHS, NHDP, NHFP, and NHSS).

Project Goals and Objectives

The goal of this project was to provide data for two PREP indicators of estuarine condition: TOX1 and TOX3. These two indicators report on "Shellfish tissue concentrations relative to FDA standards" and "Trends in shellfish tissue contaminant concentrations", respectively. Both of these indicators depend on data from the Gulfwatch Program. In particular, TOX3 requires annual data at benchmark sites to assess trends. In 2010 and 2011, PREP supported the collection and analysis of tissue samples from benchmark mussel sites in Hampton-Seabrook Harbor and Dover Point.

Methods

Blue mussel samples for the Gulfwatch Program were collected from six locations on September 14, 2010 and five locations on September 19, 2011. The station visits and field data have been documented in an interim report (Appendix A and B).

All field sampling was conducted as outlined in Sowles et al. (1997). Collection times were set to avoid collecting during or shortly after periods when stormwater runoff and wave resuspension of bottom sediment could result in enhanced uptake and accumulation of sediment in the mussel gut. At each site, mussels were collected from three discrete areas within a segment of the shoreline that was representative of local water quality. Using a ruler to measure length, a replicate sample of 60 mussels of 50-60 mm shell length was collected from each area. The mussels were cleaned of all sediment, epibiota, and other accretions in clean seawater from the collection site, placed in clean containers, and then transported to the lab in coolers with ice packs. Prior to shucking, mussels were thoroughly rewashed to minimize tissue contamination from any remaining surface debris, and residual seawater was drained from the shells.

A composite sample of mussels from the station was created by combining 12-14 mussels from each of the three replicate samples. Therefore, for each station, there were three replicate samples and one composite sample for a total of four samples.

In the laboratory, individual mussel lengths, widths and heights (as defined by Seed, 1968) were determined to the nearest 0.1 mm using calipers. Using plastic or stainless steel wedges, mussels were shucked directly into appropriately prepared Mason jars for metal and organic analysis, respectively (for details see Sowles et al., 1997). Each sample (20 mussels/sample; 4 samples/station) was capped, labeled and stored at -15 degrees Celsius.

The sets of samples to be analyzed for inorganic contaminants were delivered to the Battelle Marine Sciences Laboratory in Sequim, Washington. The samples prepared for organic contaminant analysis were delivered to the Environment Canada, ECB Laboratory in Moncton, New Brunswick. Table 1 contains a summary of the trace metal (inorganic) and organic compounds measured in the shellfish tissue. The replicate samples at seven of the stations (NHDP, NHFP, NHHS, NHRH, NHPI, NHLH, and NHSS) were not analyzed by the laboratory. These samples were archived following the new protocols of the Gulfwatch Program. Only the composite samples from these seven stations were analyzed by the laboratory. MECC was the only station for which the replicate samples were analyzed. The MECC replicates were only analyzed for metals.

The data were quality assured by the laboratory following the procedures in Sowles et al. (1997). In addition, DES conducted five quality assurance tests on the data:

- 1. Relative percent differences (RPD) were calculated between routine samples and lab duplicates. An acceptance criteria of RPD <25% was used to flag results for additional review.
- 2. Relative standard deviation (RSD) was calculated for each set of three replicate samples from the mussel stations. The RSD is the standard deviation divided by the mean value. An acceptance criterion of RSD <25% was used to flag results for additional review.
- 3. The laboratory results for composite samples were compared to the average value from three replicate samples at station MECC. An acceptance criterion of RPD <0.25% was used to flag results for additional review.
- 4. Summary statistics (mean and maximum) of the concentrations for each of the organic parameters measured in 2010 were compared to the same statistics for the 1993-2009 dataset. The RPD between the mean value for 2010 and the mean value for 1993-2009 was calculated. The ratio of the maximum value for 2010 and the maximum value for 1993-2009 was calculated.

Acceptance criteria of RPD <50% or a ratio of the maximum values <1.5 were used to flag results for additional review.

- 5. Summary statistics (mean and maximum) of the concentrations for each parameter measured in 2011 were compared to the same statistics for the 1993-2010 dataset. The RPD between the mean value for 2011 and the mean value for 1993-2010 was calculated. The ratio of the maximum value for 2011 and the maximum value for 1993-2010 was calculated. Acceptance criteria of RPD <50% or a ratio of the maximum values <1.5 were used to flag results for additional review.
- 6. Trend plots for each parameter at each station were generated to identify any outliers or unusual trends.

For all quality assurance tests, censored results were included in the analyses. The results were assigned a value of the reporting detection level. NH Gulfwatch procedures for aggregating congeners, testing for normality, and calculating descriptive statistics were followed (Chase et al., 2001).

Table 1: Target analytes for tissue analysis

METAL	FLUORANTHENE	TOTAL PAHS	PCB
ALUMINUM	FLUORENE	PESTICIDE	101;90
CADMIUM	INDENO(123CD)PYRENE	A_BHC (ALPHA LINDANE)	105;
CHROMIUM	NAPHTHALENE	A-ENDOSULFAN	118;
COPPER	PERYLENE	ALDRIN	126;
IRON	PHENANTHRENE	B-ENDOSULFAN	128;
LEAD	PYRENE	CIS-CHLORDANE	138;
MERCURY	C1-CHRYSENE	DIELDRIN	153;132
NICKEL	C1-DIBENZOTHIOPHENE	ENDRIN	169;
SILVER	C1-FLUORANTHENE	G-CHLORDANE	170; 190
ZINC	C1-FLUORENE	HEPTACHLOR	18;15
PHYSICAL	C1-NAPHTHALENE	HEPTACHLOR EPOXIDE	180;
LIPID CONTENT	C1-PHENANTHRENE	HEXACHLOROBENZENE	187;
PERCENT SOLIDS	C2-CHRYSENE	LINDANE (G-HCH)	195; 208
PAH	C2-DIBENZOTHIOPHENE	METHOXYCHLOR	206;
ACENAPHTHENE	C2-FLUORANTHENE	MIREX	209;
ACENAPHTHYLENE	C2-FLUORENE	O,P'-DDD	28;
ANTHRACENE	C2-NAPHTHALENE	O,P'-DDE	29;
BENZO(A)ANTHRACENE	C2-PHENANTHRENE	O,P'-DDT	44;
BENZO(A)PYRENE	C-3 NAPHTHALENE	P,P'-DDD	50;
BENZO(B)FLUORANTHENE	C3-CHRYSENE	P,P'-DDE	52;
BENZO(E)PYRENE	C3-DIBENZOTHIOPHENE	P,P'-DDT	66;95
BENZO(GHI)PERYLENE	C3-FLUORENE	TOTAL DDT	77;
BENZO(K)FLUORANTHENE	C3-PHENANTHRENE	TRANSNONACHLOR	8;5
BIPHENYL	C4-CHRYSENE	PERMETHRIN	87;
CHRYSENE	C4-FLUORENE	CYPERMETHRIN	SUM PCBS
DIBENZO(AH)ANTHRACENE	C4-NAPHTHALENE	DELTAMETHRIN	
DIBENZOTHIOPHENE	C4-PHENANTHRENE		

Results

Quality Assurance Test #1

There were no laboratory duplicate analyses performed for metals or organic compounds.

Quality Assurance Test #2

The only station with data for replicates was MECC for inorganics. The variation within field replicates at station MECC was evaluated using RSD statistics. At stations MECC, three field replicates were collected. Relative standard deviations for each parameter were calculated using the results from these three replicates. Out of 11, there were 5 (45%) combinations of parameter and station that did not meet the RSD <25% acceptance criterion. All of these combinations were considered acceptable because the RSD was less than 50% and/or the results were near or below the method detection level.

Quality Assurance Test #3

A composite sample of the three replicates at MECC was also analyzed for metals by the laboratory. The concentration in the composite sample should be equal to the average concentration from the three replicates. To test this assumption, the RPD between the average of the three replicates and the composite concentration was calculated. Out of 11 combinations of parameter and station, there was 1 (9.1%) which did not meet the acceptance criterion of RPD <25%. This combination was considered acceptable because the RPD was less than 50% and/or the results were close to or below the method detection limit.

Quality Assurance Test #4

The mean and maximum values for each parameter in the 2010 (organic compounds only) and 2011 dataset were compared to the same statistics for the 1993-2009 or 1993-2010 databases, respectively. If the RPD between the means was greater than 50% or the maximum value in 2010/2011 was more than 50% greater than the maximum value from 1993-2009 or 1993-2010 the parameter was flagged. The flagged results are listed in the table below.

2010 – Organics data

Parameter	Parameter	199	93-2009 I	Results		2010 Res	sults	RPD
Type	r at afficier	N	Mean	Max	N	Mean	Max	KFD
PAH	BENZO(A)ANTHRACENE	198	19.21	72.3	4	9.81	12.7	64.84%
PAH	BENZO(A)PYRENE	197	12.80	49.3	4	7.07	8.6	57.70%
PAH	BENZO(B)FLUORANTHENE	212	29.74	115.2	4	15.69	21.4	61.89%
PAH	BENZO(E)PYRENE	261	29.04	105.5	4	17.41	24.0	50.10%
PAH	BENZO(K)FLUORANTHENE	232	21.76	91.5	5	11.77	17.8	59.63%
PAH	C1-CHRYSENE	37	31.15	173.33	4	13.62	17.7	78.30%
PAH	C1-PHENANTHRENE	40	32.37	250.6	1	13.14	13.1	84.52%
PAH	C2-PHENANTHRENE	43	74.08	797.2	5	12.04	19.1	144.08%
PAH	CHRYSENE	270	28.49	143.1	5	13.90	21.9	68.88%

Parameter	Parameter	199	93-2009 I	Results		2010 Res	sults	RPD
Type	r at ameter	N	Mean	Max	N	Mean	Max	KFD
PAH	PYRENE	297	45.64	240.4	6	21.22	36	73.04%
PAH	TOTAL PAHS	301	245.80	1127.8	6	117.18	229.2	70.87%
PCB	101;90	224	5.08	10.4	2	2.42	2.5	70.87%
PCB	118;	255	5.17	13.6	2	2.24	2.2	79.04%
PCB	138;	292	7.92	21.7	6	3.87	5.1	68.74%
PCB	153 ; 132	293	9.24	24	6	4.13	5.5	76.38%
PCB	187;	235	3.90	13.6	2	2.083	2.1	61.01%
PCB	SUM PCBS	300	31.40	93.8	6	10.25	17.4	101.56%
PESTICIDE	P,P'-DDD	209	5.58	39.3	1	2.18	2.2	87.50%
PESTICIDE	P,P'-DDE	299	6.05	19.8	6	2.99	3.7	67.67%
PESTICIDE	TOTAL DDT	301	11.40	76.4	6	3.35	5.8	109.10%

2011 - Dataset

Parameter	Parameter	199	3-2010 R	esults	2	RPD		
Type	rarameter	N	Mean	Max	N	Mean	Max	KFD
PAH	C2-PHENANTHRENE	48	67.62	797.2	5	13.63	18.8	132.89%
PAH	PHENANTHRENE	256	14.06	86.8	3	6.75	7.1	70.27%
PCB	SUM PCBS	306	30.98	93.8	5	16.42	32.9	61.46%
PESTICIDE	P,P'-DDD	210	5.57	39.3	4	2.70	3.4	69.52%
PESTICIDE	TOTAL DDT	307	11.24	76.4	5	6.02	10.6	60.49%

The mean and maximum concentrations for all of the flagged PAHs, PCBs and pesticides were lower than in previous years. Similarly, all of the flagged mussel tissue concentrations had concentrations that were greater than the minimum concentrations within the entire dataset. Therefore, although the RPD between the mean values exceeded the data quality objective, the results were within the range of concentrations previously observed for shellfish in New Hampshire tidal waters.

Quality Assurance Test #5

The results for each parameter at each station were plotted against year starting in 1993. The 2010 (organics) and 2011 results were visually compared to the 1993-2009 and 1993-2010 trends to identify outliers or unusual results. There was one issue identified during the analysis:

1. The concentration of mercury at station NHHS was over two times greater than the concentration seen in past samples. Similarly, the concentration of mercury as station NHSS was almost two times lower than concentration seen in past years. Further review of the data showed that similar trends were evident for all of the other metals, but most noticeably with nickel and aluminum. Examination of the wet weights for the samples processed by DES and the wet weights of the samples logged in for analysis at Battelle showed further evidence that at some point the site codes were transposed.

	DES wet weight (g)	Battelle wet weight (g)
NHHS	108.47	82.67
NHSS	84.37	103.19

Discussions with the Gulfwatch Program Manager confirmed DES's assumption that the metal samples at stations NHHS and NHSS were transposed. Therefore, the results for all metal samples reported by Battelle as NHHS were changed to NHSS. Likewise, all metal results reported by Battelle as being collected at NHSS were changed to NHHS. There was no evidence that the results for organic parameters were transposed between the two sites.

Quality Assurance Conclusions

The quality assurances tests flagged 13 PAHs, 7 PCHs and 5 pesticides as suspect because the RPD between the means of the 2010 or 2011 data and the full dataset were greater than 50%; or the maximum values in 2010 or 2011 were more than 50% greater than the maximum value from the full datase. Adequate explanations were provided for these anomalous results. Therefore, all of the data from the 2010 (organics) and 2011 Gulfwatch sampling in New Hampshire were considered valid. The quality assurance tests also highlighted that the metals results for stations NHHS and NHSS had been transposed. This error was corrected.

Quality Assured Data

The laboratory results for the samples are provided in Appendix C and D. The data from 2010 (organics) and 2011 have been incorporated into the DES Gulfwatch database.

Conclusions and Recommendations

Conclusions about the condition of the estuaries based on these data will be drawn in the next PREP Environmental Indicators Report.

References

- Chase, M., S. Jones, P. Hennigar, J Sowles, G. Harding, K. Freeman, P. Wells, C Krahforst, R. Crawford, J. Pederson, and D. Taylor. 2001. *Gulfwatch: Monitoring Spatial and Temporal Patterns of Trace Metal and Organic Contaminants in the Gulf of Maine* (1991-1997) with the Blue Mussel, Mytilis edulis L.
- Seed, R., 1968. Factors influencing shell shape in the mussel Mytilus edulis. J. Mar. Biol. Ass. U.K. 48: 561-584/
- Sowles, J., R. Crawford, P. Hennigar, G. Harding, S. Jones, M.E. Chase, W. Robinson, J. Pederson, K. Coombs, D. Taylor, and K. Freeman, 1997. *Gulfwatch project standard procedures: field and laboratory Gulfwatch implementation period 1993-2001*. Gulf of Maine Council on the Marine Environment, State Planning Office, Augusta, ME.
- Wood, M.W., and P.R.Trowbridge. 2011. Shellfish Tissue Monitoring in Piscataqua Region Estuaries 2010. A final report to the Piscataqua Region Estuaries Partnership, Durham, NH. September 1, 2011.

Appendix A: Sampling Summary Report for 2010

MEMORANDUM

TO: Dr. Stephen Jones, UNH

FROM: Matthew A. Wood, DES

RE: 2010 Gulfwatch Samples

DATE: September 22, 2010

The purpose of this memorandum is to document the sample collection activities for Gulfwatch 2010.

On September 14, 2010, DES managed the collection of mussel samples from 6 sites. These sites are summarized in the following table. In the table, the coordinates for the replicates are listed in the order of replicate number, where applicable. Maps showing the location of each site are provided in Appendix A.

Date /		Latitude	Longitude	Water	Water	
Time	Station	(Decimal	(Decimal	Temperature	Salinity	Personnel
Time		degrees)	degrees)	(deg C)	(ppt)	
9/14/10	MECC – Clarks Cove,	43.07748	-70.72401	4.5.0		P. Trowbridge
1000	Kittery, ME	43.07750	-70.72372	16.0	30.3	R. Rouillard
	, , , , , , , , , , , , , , , , , , ,	43.07745	-70.72341			
0/14/10	NHHS – Hampton/	42.89734	-70.81647			T. Walsh
9/14/10 1130	Seabrook Harbor,	42.89730	-70.81641	17.1	306	J. Brochi P. Foss
1130	Hampton, NH	42.89725	-70.81623			S. Richardson
						M. Wood
		43.12011	-70.82722			K. Edwardson
9/14/10	NHDP – Dover Point,	43.11966	-70.82695	17.1	30.0	K. Hagenbuch
1220	Dover, NH	43.11961	-70.82712	17.11	20.0	P. Trowbridge
						R. Rouillard
		42.99959	-70.74750			T. Walsh
9/14/10	NHRH – Rye Harbor,	42.99959	-70.74738	17.2	30.8	J. Brochi
1000	Rye, NH	42.99958	-70.74738	17.2	30.6	P. Foss
		42.77730	-70.74727			S. Richardson
		43.07493	-70.74898			M. Wood
9/14/10	NHPI – Pierce Island,	43.07487	-70.74895	15.4	30.5	K. Edwardson
0925	Portsmouth, NH	43.07442	-70.74834			K. Hagenbuch
						J. Spinney
9/14/10	NHLH – Little Harbor,	43.05821	-70.71588	167	20.2	M. Wood
1038	New Castle, NH	43.05822	-70.71610	16.7	30.3	K. Edwardson
*		43.05821	-70.71626			K. Hagenbuch

Sample collection and processing was conducted following NH Gulfwatch SOPs (Appendix B). Samples were processed and frozen at the UNH Jackson Estuarine Laboratory within 36 hours of collection.

Physical data on the mussels were transferred from hard copy datasheets to Excel spreadsheets. Data entry was checked twice for transcription errors following DES protocols. The physical data for the samples is provided in Appendix C. The original datasheets will be kept on file at DES.

If you have any questions about this report, please contact me at (603) 271-8868 or Matthew.Wood@des.nh.gov

Sampling Summary Report for 2010: Appendix A

Maps of Sampling Sites

Gulfwatch Station Information

Sampling Summary Report for 2010: Appendix B

NH Gulfwatch SOPs

Standard Operating Procedures for Gulfwatch

Revised: 9/25/2009

Mussel Field Collection SOP

- 1. Navigate to station
- 2. In the general location of the station, identify 3 replicate mussel bed sites within a 50 m section of shoreline (low intertidal zone).
- 3. Complete field data sheet including measuring the latitude and longitude of each replicate site with a GPS unit.
- 4. Measure water temperature and salinity with YSI-30 meter and record values on field data sheet
- 5. Select the plastic baskets which are labeled with the site name and replicate number (e.g., "NHDP-1" = station NHDP, replicate #1).
- 6. Collect at least 60 mussels from each replicate site (must be 50-60 mm in length). Use the ruler to measure the mussels. Place the mussels from each replicate site in the correct plastic basket. When a basket is full, it will contain ~60 mussels.
- 7. Count out exactly 60 mussels from the basket onto a clean surface (spread out a plastic garbage bag), verifying that each mussel is not full of mud by trying to separate the two shells.
- 8. Return any extra mussels to the intertidal zone at the site
- 9. Collect wash water in a large basin.
- 10. Use a brush and the wash water to clean the outside shell of the 60 mussels collected, placing each mussel back into the correct basket after it is cleaned. Do not pour all of the mussels into the cleaning basin. Dunk and clean each mussel separately.
- 11. Place the baskets of clean mussels upright in the cooler on ice.
- 12. Verify that field sheet is complete and that the baskets are correctly labeled.
- 13. Transport cooler to laboratory.

Mussel Measurement SOP

- 1. Bring the coolers into the laboratory.
- 2. Set up 3 measuring stations, each with a caliper, the lab data sheets for one station, the mussels from one station.
- 3. Assign two people to each measuring station.
- 4. Each team will place 40 mussels from each basket into a tray in rows of 10. The two rows on the left side of the tray will be for metals analysis. The two rows on the right side of the tray will be for organics analysis. Do this for each of the three replicates (The mussels from basket #1 go into tray #1, etc.). Then take 12 mussels from replicate #1, 14 mussels from replicate #2, and 14 mussels from replicate #3 and put them in the "COMP" tray. Randomize the mussels so that some mussels from each replicate are in the metals and organics rows. There should be ~5 left over mussels in the baskets. Leave the extra mussels in the baskets and return the baskets to the cooler.
- 5. Each team will measure the length, height and width of the mussels in the tray and record the information on the lab data sheet. Be sure to record the measurements of the mussels for metals and organics analysis on the correct sheets (there are separate sheets for metals and organics analysis). The mussels are in the same order in the tray as on the sheet. The top left mussel is number 1. The bottom left is 10. The top right is number 11. The bottom right is 20. The height and width (and later weight) measurements are done for mussels number 11 through 20. Record the length, height and width to the nearest tenth of a millimeter. Do not report values for cells that are filled in with gray.
- 6. Store trays of mussels in the walk-in refrigerator.

Mussel Shucking SOP - Organics

- 1. Set up 3 shucking stations for organics analysis. Each station will have two metal knives, a beaker of DI water, a tray of mussels and the corresponding jar (from the jars for organics analysis). One of the scales should be placed on a separate table so that the full jars can be weighed easily.
- 2. Assign two people to each shucking station and two other people to act as floaters and to help with weighing jars, sealing jars and storing jars.
- 3. Clean all of the metal knives in solvents. Put out 300 ml of methanol, toluene, and hexane in 500 ml beakers under the fume hood. Swish each metal knife in the 3 solutions (in order) three times. Clean the knives in this way before each new tray of mussels.
- 4. Open and scrape the meat from the mussels into the jar using the following procedure.
 - a. Swish the knife tip in DI water.
 - b. Select one of the mussels marked for organics analysis.
 - c. Turn the mussel upside down so that the byssus is facing up.
 - d. Tear off the byssus.
 - e. Insert the tip of knife between the shells where the byssus was formerly and twist the knife to open the shell slightly.
 - f. Shake the mussel over the waste bin for 10-20 seconds to remove water from the shell.
 - g. Run the knife blade around the mussel between the two shells to cut the adductor muscle and then separate the two shells.
 - h. Place the two shells on the table, meat side up.
 - i. Scrape the meat out of one of the shells into the jar.
 - j. Discard the empty shell into the waste bin.
 - k. Scrape the meat from the second shell into the jar.
 - 1. Discard the empty shell.
 - m. Swish the knife in DI water to clean it.
 - n. If there are more mussels left on the tray for organics analysis, repeat steps b-m.
- 5. When all 20 mussels have been shucked, weigh the jar and record the value on the lab data sheet, cover the top with a piece of aluminum foil, screw on the lid, and place the jar in the freezer. Then, clean the knives in the solvents under the hood using the same procedure from Step 3. Get a new tray of mussels and repeat.

Mussel Shucking SOP - Metals

- 1. Set up 2 shucking stations for metals analysis. Each station will have a scale, a waste bucket, DI water, one acid-washed ceramic knife (or one metal knife) and three acid-washed plastic knives.
- 2. Assign four people to each station.
- 3. Clean all of the knives in nitric acid solution. Put out 300 ml of 4 N nitric acid in a 500 ml beaker under the fume hood. Swish each knife in the solution. Clean the knives in this way before each new tray of mussels.
- 4. Open and scrape the meat from the mussels #11 through #20 into the jar using the following procedure. Mussel #11 will be the mussel at the top of the right hand row for metals analysis. Mussel #20 will be the mussel at the bottom of the right hand row for metals analysis. Each person in the group does a different task. The person with the ceramic knife does steps c-i. Two people with plastic knives do steps j-m. The person with the scale and lab sheets does steps a and o.
 - a. Tare the scale, then place the correct jar on the scale.
 - b. Swish the knives in DI water.
 - c. Select mussel #11 marked for metals analysis.
 - d. Turn the mussel upside down so that the byssus is facing up.
 - e. Tear off the byssus.
 - f. Insert the tip of knife between the shells where the byssus was formerly and twist the knife to open the shell slightly.
 - g. Shake the mussel over the waste bin for 10-20 seconds to remove some water from the shell.
 - h. Run the knife blade around the mussel between the two shells to cut the adductor muscle and then separate the two shells. If using a metal knife for step f, use a plastic knife for this step.
 - i. Place the two shells on the table, meat side up.
 - j. Scrape the meat out of one of the shells into the jar.
 - k. Discard the empty shell into the waste bin.
 - 1. Scrape the meat from the second shell into the jar.
 - m. Discard the empty shell.
 - n. Swish the knives in DI water to clean them.
 - o. Record the total weight of the jar and the mussel meat on the lab data sheet in the location for mussel #11.
 - p. Repeat steps for mussels #12 through #20. When complete, leave the jar on the scale and go to Step 5.
- 5. Open and scrape the meat from mussels #1 through #10 into the jar using the same procedure as for Step 4 except: (1) Weight does not need to be recorded after each mussel (step o), only at the end; (2) the person who recorded the weights should use a plastic knife to help with steps j-m.
- 6. When all 20 mussels from the tray have been shucked, weigh the jar (without the cap) and record the value on the lab data sheet, screw on the lid, and place the jar in the freezer. Then, clean the knives in the nitric acid solution under the hood using the same procedure from Step 3. Get a new tray of mussels and repeat.

Sampling Summary Report for 2010: Appendix C

Physical Data for Mussels

Site	MECC 2010 (I MUSSELS)	INDIGEN	OUS			METALS		*calculated field	*Weight of jar and meat	d mussel
MBCC-1			Length		Length		Width			Jar weight
MECC-1	Site	#		#				_		-
MECC-1	MECC-1	1		11		, ,				
MFCC-1 3 54.0 13 53.0 27.2 20.9 15.561 372.61 MFCC-1 4 51.4 14 54.2 29.5 22.2 20.515 42.215 MECC-1 5 53.8 15 55.8 29.1 24.6 24.946 46.646 MECC-1 6 34.9 16 60.0 29.3 24.5 31.493 53.193 MECC-1 7 56.1 17 57.3 31.5 21.6 37.470 59.170 MECC-1 8 54.8 18 54.5 28.6 22.0 42.355 64.055 MECC-1 9 56.9 19 56.4 28.2 24.4 47.898 69.598 MECC-1 10 56.6 20 53.3 29.0 23.9 53.034 74.734 MECC-2 1 51.8 11 55.4 27.8 23.0 5.029 26.689 21.660 MECC-2 2 52.0 12 52.5 27.1 21.9 91.23 30.783 MECC-2 3 51.2 13 56.3 29.1 22.8 14.922 36.582 MECC-2 4 52.0 14 57.1 29.1 22.1 19.022 40.682 MECC-2 5 57.8 15 56.6 30.3 20.0 23.061 44.721 MECC-2 6 54.8 16 54.3 26.4 22.9 28.388 50.048 MECC-2 7 57.2 17 59.6 22.3 24.1 33.340 55.000 MECC-2 9 55.9 19 52.7 29.7 19.6 43.054 64.714 MECC-2 1 53.2 11 54.7 MECC-3 1 53.2 11 54.7 MECC-3 7 57.2 17 56.2 MECC-3 7 55.0 17 56.2 MECC-3 9 54.8 15 54.2 MECC-3 9 54.8 15 55.5 MECC-40MP 2 58.6 12 57.4 MECC-50MP 7 55.0 17 53.2 MECC-COMP 9 54.5 19 50.8 MECC-COMP 1 57.7 20 58.0 MECC-COMP 1 57.7 20 58.0										
MECC-1										
MFCC-1 5 53.8 15 55.8 29.1 24.6 24.946 46.646 MECC-1 6 54.9 16 60.0 29.3 24.5 31.493 53.193 MECC-1 7 56.1 17 57.3 31.5 21.6 37.470 59.170 MECC-1 8 54.8 18 54.5 28.6 22.0 42.355 64.055 MECC-1 10 56.6 20 53.3 29.0 23.9 53.034 74.734 1-20 total 1-20 total 1-20 MECC-2 1 51.8 11 55.4 27.8 23.0 5.029 26.689 21.660 MECC-2 2 25.0 12 52.5 27.1 21.9 91.23 30.783 MECC-2 3 51.2 13 56.3 29.1 22.8 14.922 36.582 MECC-2 5 57.8 15 56.6 30.3 20.0 23.061 44.721 MECC-2 5 57.8 15 56.6 30.3 20.0 23.061 44.721 MECC-2 6 54.8 16 54.3 26.4 22.9 28.388 50.048 MECC-2 7 57.2 17 59.6 22.3 24.1 33.340 55.000 MECC-2 9 56.9 19 52.7 29.7 19.6 43.054 64.714 MECC-2 10 57.0 20 54.0 27.8 23.8 43.934 71.054 MECC-3 3 52.2 13 58.6 MECC-3 4 53.4 14 51.7 MECC-3 5 53.4 15 54.2 MECC-3 5 53.4 15 54.2 MECC-3 7 57.0 20 54.0 27.8 23.8 43.934 71.054 MECC-3 7 57.0 20 54.0 27.8 23.8 43.934 71.054 MECC-3 7 56.5 17 56.2 MECC-3 8 51.1 18 58.0 MECC-3 9 54.8 19 54.5 MECC-3 7 55.0 7 56.2 MECC-3 8 51.1 18 58.0 MECC-3 9 54.8 19 54.5 MECC-3 10 57.0 20 51.0 MECC-3 7 55.0 MECC-3 8 51.1 18 58.0 MECC-2 9 53.5 17 56.2 MECC-2 9 53.5 17 56.2 MECC-2 9 53.5 18 58.8 MECC-2 9 53.5 18 58.8 MECC-2 9 54.8 19 54.5 MECC-2 9 54.0 17 59.6 MECC-2 9 54.8 19 54.5 MECC-2 9 54.0 57.4 MECC-2 9 54.5										
MECC-1 6										
MECC-1										
MECC-1										
MECC-1 9										
MECC-1										
NECC-2										
MECC-2										
MECC-2								98.324	120.024	
MECC-2	MECC-2		51.8	11	55.4	27.8	23.0	5.029	26.689	21.660
MECC-2		2								
MECC-2										
MECC-2 5 57.8 15 56.6 30.3 20.0 23.061 44.721 MECC-2 6 54.8 16 54.3 26.4 22.9 28.388 50.048 MECC-2 7 57.2 17 59.6 22.3 24.1 33.340 55.000 MECC-2 8 50.6 18 58.1 31.3 22.6 37.740 59.400 MECC-2 10 57.0 20 54.0 27.8 23.8 49.394 71.054 MECC-3 1 53.2 11 54.7 93.874 115.534 MECC-3 1 53.2 11 54.7 93.874 115.534 MECC-3 1 53.2 11 54.7 93.874 115.534 MECC-3 1 53.2 11 54.2 93.874 115.534 MECC-3 5 53.4 15 54.2 14 14 51.7 156										
MECC-2										
MECC-2 8 50.6 18 58.1 31.3 22.6 37.740 59.400 MECC-2 9 56.9 19 52.7 29.7 19.6 43.054 64.714 MECC-3 10 57.0 20 54.0 27.8 23.8 49.394 71.054 Incompanies 115.534 115.534 115.534 115.534 115.534 MECC-3 1 53.2 11 54.7 115.534 1										
MECC-2 9 56.9 19 52.7 29.7 19.6 43.054 64.714 MECC-2 10 57.0 20 54.0 27.8 23.8 49.394 71.054 MECC-3 1 53.2 11 54.7 93.874 115.534 MECC-3 2 56.9 12 59.0		7		17						
MECC-2 10 57.0 20 54.0 27.8 23.8 49.394 71.054 1-20 total MECC-3 1 53.2 11 54.7 MECC-3 2 56.9 12 59.0 MECC-3 3 52.2 13 58.6 MECC-3 4 53.4 14 51.7 MECC-3 5 53.4 15 54.2 MECC-3 6 51.4 16 51.0 MECC-3 8 51.1 18 58.0 MECC-3 9 54.8 19 54.5 MECC-3 10 57.0 20 51.0 MECC-3 10 57.0 20 51.0 MECC-3 10 57.0 20 51.0 MECC-3 10 57.0 20 57.4 MECC-3 10 57.3 13 58.5 MECC-COMP 3 57.3 13 58.5	MECC-2	8	50.6	18	58.1	31.3	22.6	37.740	59.400	
T-20 Total T-20	MECC-2	9	56.9	19	52.7	29.7	19.6	43.054	64.714	
MECC-3	MECC-2	10	57.0	20	54.0	27.8	23.8	49.394	71.054	
MECC-3		1-20								
MECC-3 2 56.9 12 59.0 MECC-3 3 52.2 13 58.6 MECC-3 4 53.4 14 51.7 MECC-3 5 53.4 15 54.2 MECC-3 6 51.4 16 51.0 MECC-3 7 56.5 17 56.2 MECC-3 8 51.1 18 58.0 MECC-3 9 54.8 19 54.5 MECC-3 10 57.0 20 51.0 MECC-COMP 1 58.3 11 58.3 MECC-COMP 2 58.6 12 57.4 MECC-COMP 3 57.3 13 58.5 MECC-COMP 4 53.9 14 57.7 MECC-COMP 5 53.5 15 58.8 MECC-COMP 7 55.0 17 53.2 MECC-COMP 8 55.1 18 57.4		total						93.874	115.534	
MECC-3 3 52.2 13 58.6 MECC-3 4 53.4 14 51.7 MECC-3 5 53.4 15 54.2 MECC-3 6 51.4 16 51.0 MECC-3 7 56.5 17 56.2 MECC-3 8 51.1 18 58.0 MECC-3 9 54.8 19 54.5 MECC-3 10 57.0 20 51.0 Interval of total MECC-COMP 1 58.3 11 58.3 MECC-COMP 2 58.6 12 57.4 MECC-COMP 3 57.3 13 58.5 MECC-COMP 4 53.9 14 57.7 MECC-COMP 5 53.5 15 58.8 MECC-COMP 6 54.1 16 53.2 MECC-COMP 7 55.0 17 53.2 MECC-COMP 9	MECC-3	1	53.2	11	54.7					21.640
MECC-3 4 53.4 14 51.7 MECC-3 5 53.4 15 54.2 MECC-3 6 51.4 16 51.0 MECC-3 7 56.5 17 56.2 MECC-3 8 51.1 18 58.0 MECC-3 9 54.8 19 54.5 MECC-3 10 57.0 20 51.0 I-20 total I01-658 I23.298 MECC-COMP 1 58.3 11 58.3 MECC-COMP 2 58.6 12 57.4 MECC-COMP 3 57.3 13 58.5 MECC-COMP 4 53.9 14 57.7 MECC-COMP 5 53.5 15 58.8 MECC-COMP 7 55.0 17 53.2 MECC-COMP 8 55.1 18 57.4 MECC-COMP 9 54.5 19 50.8	MECC-3	2	56.9	12	59.0				'	
MECC-3 5 53.4 15 54.2 MECC-3 6 51.4 16 51.0 MECC-3 7 56.5 17 56.2 MECC-3 8 51.1 18 58.0 MECC-3 9 54.8 19 54.5 MECC-3 10 57.0 20 51.0 I-20 total I-20 total I01.658 123.298 MECC-COMP 1 58.3 11 58.3 INTITION OF THE PROPRIES OF THE	MECC-3	3	52.2	13	58.6					
MECC-3 6 51.4 16 51.0 MECC-3 7 56.5 17 56.2 MECC-3 8 51.1 18 58.0 MECC-3 9 54.8 19 54.5 MECC-3 10 57.0 20 51.0 MECC-COMP 1-20 total MECC-COMP 2 58.6 12 57.4 MECC-COMP 3 57.3 13 58.5 MECC-COMP 4 53.9 14 57.7 MECC-COMP 5 53.5 15 58.8 MECC-COMP 6 54.1 16 53.2 MECC-COMP 7 55.0 17 53.2 MECC-COMP 8 55.1 18 57.4 MECC-COMP 9 54.5 19 50.8 MECC-COMP 9 54.5 19 50.8 MECC-COMP 10 57.7 20 58.0 MECC-COMP 1-20 MECC-COMP 10 57.7 20 58.0 MECC-COMP 1-20 MECC-COM	MECC-3	4	53.4	14	51.7					
MECC-3 7 56.5 17 56.2 MECC-3 8 51.1 18 58.0 MECC-3 9 54.8 19 54.5 MECC-3 10 57.0 20 51.0 MECC-COMP 1 58.3 11 58.3 MECC-COMP 2 58.6 12 57.4 MECC-COMP 3 57.3 13 58.5 MECC-COMP 4 53.9 14 57.7 MECC-COMP 5 53.5 15 58.8 MECC-COMP 6 54.1 16 53.2 MECC-COMP 8 55.1 18 57.4 MECC-COMP 9 54.5 19 50.8 MECC-COMP 10 57.7 20 58.0	MECC-3	5	53.4	15	54.2					
MECC-3 8 51.1 18 58.0 MECC-3 9 54.8 19 54.5 MECC-3 10 57.0 20 51.0 I-20 total MECC-COMP 1 58.3 11 58.3 MECC-COMP 2 58.6 12 57.4 MECC-COMP 3 57.3 13 58.5 MECC-COMP 4 53.9 14 57.7 MECC-COMP 5 53.5 15 58.8 MECC-COMP 6 54.1 16 53.2 MECC-COMP 7 55.0 17 53.2 MECC-COMP 8 55.1 18 57.4 MECC-COMP 9 54.5 19 50.8 MECC-COMP 10 57.7 20 58.0	MECC-3	6	51.4	16	51.0					
MECC-3 9 54.8 19 54.5 MECC-3 10 57.0 20 51.0 1-20 total 101.658 123.298 MECC-COMP 1 58.3 11 58.3 21.670 MECC-COMP 2 58.6 12 57.4 123.298 21.670 MECC-COMP 3 57.3 13 58.5 13 58.5 14 57.7 MECC-COMP 5 53.5 15 58.8 15 4 MECC-COMP 6 54.1 16 53.2 53.2 MECC-COMP 7 55.0 17 53.2 17 53.2 MECC-COMP 8 55.1 18 57.4 MECC-COMP 9 54.5 19 50.8 50.8 MECC-COMP 10 57.7 20 58.0 58.0 MECC-COMP 10 57.7 20 58.0	MECC-3	7	56.5	17	56.2					
MECC-3 10 57.0 20 51.0 1-20 total 101.658 123.298 MECC-COMP 1 58.3 11 58.3 11 58.3 MECC-COMP 2 58.6 12 57.4 MECC-COMP 3 57.3 13 58.5 MECC-COMP 4 53.9 14 57.7 MECC-COMP 5 53.5 15 58.8 MECC-COMP 6 54.1 16 53.2 MECC-COMP 8 55.1 18 57.4 MECC-COMP 9 54.5 19 50.8 MECC-COMP 10 57.7 20 58.0	MECC-3	8	51.1	18	58.0					
Total Tota										
MECC-COMP 1 58.3 11 58.3 11 58.3 MECC-COMP 2 58.6 12 57.4 MECC-COMP 3 57.3 13 58.5 MECC-COMP 4 53.9 14 57.7 MECC-COMP 5 53.5 15 58.8 MECC-COMP 6 54.1 16 53.2 MECC-COMP 7 55.0 17 53.2 MECC-COMP 8 55.1 18 57.4 MECC-COMP 9 54.5 19 50.8 MECC-COMP 10 57.7 20 58.0 MECC-COMP 10 57.7 3	MECC-3	10	57.0	20	51.0					
MECC-COMP 1 58.3 11 58.3 MECC-COMP 2 58.6 12 57.4 MECC-COMP 3 57.3 13 58.5 MECC-COMP 4 53.9 14 57.7 MECC-COMP 5 53.5 15 58.8 MECC-COMP 6 54.1 16 53.2 MECC-COMP 7 55.0 17 53.2 MECC-COMP 8 55.1 18 57.4 MECC-COMP 9 54.5 19 50.8 MECC-COMP 10 57.7 20 58.0		1-20								
MECC-COMP 2 58.6 12 57.4 MECC-COMP 3 57.3 13 58.5 MECC-COMP 4 53.9 14 57.7 MECC-COMP 5 53.5 15 58.8 MECC-COMP 6 54.1 16 53.2 MECC-COMP 7 55.0 17 53.2 MECC-COMP 8 55.1 18 57.4 MECC-COMP 9 54.5 19 50.8 MECC-COMP 10 57.7 20 58.0		total						101.658	123.298	
MECC-COMP 3 57.3 13 58.5 MECC-COMP 4 53.9 14 57.7 MECC-COMP 5 53.5 15 58.8 MECC-COMP 6 54.1 16 53.2 MECC-COMP 7 55.0 17 53.2 MECC-COMP 8 55.1 18 57.4 MECC-COMP 9 54.5 19 50.8 MECC-COMP 10 57.7 20 58.0	MECC-COMP	1	58.3	11	58.3					21.670
MECC-COMP 4 53.9 14 57.7 MECC-COMP 5 53.5 15 58.8 MECC-COMP 6 54.1 16 53.2 MECC-COMP 7 55.0 17 53.2 MECC-COMP 8 55.1 18 57.4 MECC-COMP 9 54.5 19 50.8 MECC-COMP 10 57.7 20 58.0	MECC-COMP	2	58.6	12						
MECC-COMP 5 53.5 15 58.8 MECC-COMP 6 54.1 16 53.2 MECC-COMP 7 55.0 17 53.2 MECC-COMP 8 55.1 18 57.4 MECC-COMP 9 54.5 19 50.8 MECC-COMP 10 57.7 20 58.0	MECC-COMP	3	57.3	13	58.5					
MECC-COMP 6 54.1 16 53.2 MECC-COMP 7 55.0 17 53.2 MECC-COMP 8 55.1 18 57.4 MECC-COMP 9 54.5 19 50.8 MECC-COMP 10 57.7 20 58.0	MECC-COMP	4	53.9	14	57.7					
MECC-COMP 7 55.0 17 53.2 MECC-COMP 8 55.1 18 57.4 MECC-COMP 9 54.5 19 50.8 MECC-COMP 10 57.7 20 58.0 1-20	MECC-COMP	5	53.5	15	58.8					
MECC-COMP 8 55.1 18 57.4 MECC-COMP 9 54.5 19 50.8 MECC-COMP 10 57.7 20 58.0 1-20	MECC-COMP	6	54.1	16	53.2					
MECC-COMP 9 54.5 19 50.8 MECC-COMP 10 57.7 20 58.0 1-20	MECC-COMP	7	55.0	17	53.2					
MECC-COMP 10 57.7 20 58.0 1-20	MECC-COMP	8	55.1	18	57.4					
1-20	MECC-COMP	9	54.5	19	50.8					
	MECC-COMP	10	57.7	20	58.0					
total 106.653 128.323		1-20								
		total						106.653	128.323	

MECC 2010 (I MUSSELS)	NDIGEN	OUS			ORGANICS	3	*calculated field	*Weight of jar and meat	d mussel
Site	#	Length (mm)		Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Cumulative wet weight (g)*	Jar weight (g)
MECC-1	1	59.8	11	54.8	(11111)	(11111)	(8)	weight (g)	130.020
MECC-1	2	52.6	12	54.0	1				
MECC-1	3	58.8	13	59.2	1				
MECC-1	4	56.0	14	53.3	1				
MECC-1	5	52.5	15	53.7					
MECC-1	6	54.1	16	57.7					
MECC-1	7	53.6	17	57.2					
MECC-1	8	54.1	18	57.5					
MECC-1	9	58.8	19	55.6					
MECC-1	10	58.0	20	59.3					
	1-20 total						111.720	241.740	
MECC-2	1	54.2	11	55.7			111.720	2.11.7.10	129.580
MECC-2	2	51.5	12	58.5					127.500
MECC-2	3	50.6	13	50.8	1				
MECC-2	4	55.8	14	56.4	1				
MECC-2	5	55.0	15	52.9	1				
MECC-2	6	53.1	16	57.3					
MECC-2	7	52.9	17	50.3					
MECC-2	8	50.9	18	56.1					
MECC-2	9	56.8	19	51.6	1				
MECC-2	10	53.9	20	53.4	1				
Į.	1-20				•				
	total						96.819	226.399	
MECC-3	1	51.0	11	55.5					131.100
MECC-3	2	58.9	12	53.5					
MECC-3	3	58.8	13	55.6					
MECC-3	4	53.6	14	54.2					
MECC-3	5	57.3	15	56.4					
MECC-3	6	57.2	16	54.9					
MECC-3	7	57.2	17	55.9					
MECC-3	8	57.8	18	55.7					
MECC-3	9	58.5	19	56.7					
MECC-3	10	52.0	20	57.5	J				
	1-20 total						125.600	256.700	
MECC-COMP	1	53.8	11	56.6					129.050
MECC-COMP	2	55.6	12	55.7					
MECC-COMP	3	51.0	13	58.6					
MECC-COMP	4	53.7	14	51.0					
MECC-COMP	5	52.6	15	57.5					
MECC-COMP	6	52.8	16	55.6					
MECC-COMP	7	51.3	17	56.4					
MECC-COMP	8	55.7	18	51.7					
MECC-COMP	9	52.8	19	58.5					
MECC-COMP	10	58.8	20	52.2					
	1-20						402.05	222.05	
	total						103.001	232.051	

NHDP 2010 (I MUSSELS)	NDIGEN				METALS		*calculated field	*Weight of jar and meat	
Site	#	Length (mm)	#	Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Cumulative wet weight (g)*	Jar weight (g)
NHDP-1	1	52.2	11	52.9	24.5	18.5	4.380	26.070	21.690
NHDP-1	2	51.1	12	57.2	28.0	20.4	9.100	30.790	
NHDP-1	3	54.7	13	56.3	30.2	22.4	14.290	35.980	
NHDP-1	4	51.7	14	53.0	26.5	21.4	19.540	41.230	
NHDP-1	5	51.5	15	52.6	26.2	22.9	24.030	45.720	
NHDP-1	6	55.5	16	57.7	26.9	23.9	29.310	51.000	
NHDP-1	7	57.5	17	54.1	30.1	17.6	33.370	55.060	
NHDP-1	8	50.1	18	53.1	26.7	19.9			
NHDP-1	9	55.3	19	54.9	27.3	20.3	41.670	63.360	
NHDP-1	10	56.9	20	54.5	25.1	23.5	45.810	67.500	
	1-20						01.110	112 000	
NHIDD 2	total	<i></i>	111		26.0	22.1	91.110	112.800	21.572
NHDP-2	1	54.2	11	57.4	26.9	22.4	4.040	25.690	21.650
NHDP-2	2	52.2	12	59.3	28.0	24.6	10.440	32.090	
NHDP-2	3	53.5	13	52.3	26.0	20.3	14.870	36.520	
NHDP-2	4	51.8	14	52.9	24.7	21.7	18.880	40.530	
NHDP-2	5	56.8	15	58.4	30.9	26.6	25.350	47.000	
NHDP-2	6	54.6	16	51.2	25.6	23.6	29.680	51.330	
NHDP-2	7	55.9	17	57.4	26.8	22.6	34.550	56.200	
NHDP-2	8	54.5	18	54.0	25.4	22.1	38.550	60.200	
NHDP-2	9	52.3	19	54.5	27.1	21.3	43.630	65.280	
NHDP-2	10	55.3	20	55.7	25.5	21.2	47.240	68.890	
	1-20 total						96.800	118.450	
NHDP-3	1	52.7	11	55.4					21.660
NHDP-3	2	54.5	12	51.5				-1	
NHDP-3	3	54.3	13	54.5					
NHDP-3	4	53.9	14	55.2					
NHDP-3	5	58.2	15	55.4	1				
NHDP-3	6	54.1	16	53.6					
NHDP-3	7	57.9	17	50.6					
NHDP-3	8	58.6	18	51.6					
NHDP-3	9	57.1	19	55.0					
NHDP-3	10	50.3	20	50.7					
	1-20								
	total						94.480	116.140	
NHDP-COMP	1	57.2	11	55.1					21.690
NHDP-COMP	2	50.8	12	58.5					
NHDP-COMP	3	50.0	13	55.6					
NHDP-COMP	4	55.3	14	56.6					
NHDP-COMP	5	54.5	15	54.1					
NHDP-COMP	6	51.7	16	54.1					
NHDP-COMP	7	57.3	17	53.7					
NHDP-COMP	8	52.8	18	53.3					
NHDP-COMP	9	54.9	19	55.6					
NHDP-COMP	10	55.3	20	55.2					
	1-20								
	total						91.200	112.890	

NHDP 2010 (I MUSSELS)	NDIGEN(OUS			ORGANICS		*calculated field	*Weight of jar and meat	d mussel
Site	#	Length (mm)		Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Cumulative wet weight (g)*	Jar weight (g)
NHDP-1	1	54.7	11	56.7					128.700
NHDP-1	2	54.1	12	53.8				_	
NHDP-1	3	57.2	13	50.8					_
NHDP-1	4	54.2	14	55.4					_
NHDP-1	5	51.2	15	50.5					
NHDP-1	6	52.1	16	56.1					
NHDP-1	7	53.2	17	55.4					
NHDP-1	8	54.9	18	55.2					
NHDP-1	9	52.9	19	55.2					_
NHDP-1	10	51.4	20	54.5					_
	1-20								
	total						88.870	217.570	
NHDP-2	1	52.4	11	52.6					129.860
NHDP-2	2	54.9	12	53.4					
NHDP-2	3	52.9	13	59.0					
NHDP-2	4	56.0	14	57.7					
NHDP-2	5	56.7	15	52.5					
NHDP-2	6	57.0	16	60.0					
NHDP-2	7	56.0	17	55.9					
NHDP-2	8	52.4	18	53.0					
NHDP-2	9	54.4	19	55.6					
NHDP-2	10	56.0	20	52.9					
	1-20								
	total						96.196	226.056	
NHDP-3	1	50.4	11	54.5					128.980
NHDP-3	2	52.9	12	52.7					
NHDP-3	3	54.2	13	56.4					
NHDP-3	4	52.8	14	58.8					
NHDP-3	5	57.0	15	51.9					
NHDP-3	6	52.1	16	52.5					
NHDP-3	7	51.5	17	54.9					
NHDP-3	8	54.5	18	56.1					
NHDP-3	9	54.6	19	53.3					
NHDP-3	10	55.9	20	56.8					
	1-20								
	total						91.649	220.629	
NHDP-COMP	1	57.8	11	55.2					132.010
NHDP-COMP	2	55.1	12	52.2					
NHDP-COMP	3	58.4	13	53.6					
NHDP-COMP	4	55.9	14	54.5					
NHDP-COMP	5	52.2	15	52.5					
NHDP-COMP	6	53.9	16	58.8					
NHDP-COMP	7	58.8	17	59.6					
NHDP-COMP	8	54.7	18	56.1					
NHDP-COMP	9	55.5	19	54.7					
NHDP-COMP	10	52.1	20	54.6					
	1-20								
	total						83.344	215.354	

NHHS 2010 (I MUSSELS)	NDIGEN	OUS			METALS		*calculated field	*Weight of jar and meat	
Site	#	Length (mm)	#	Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Cumulative wet weight (g)*	Jar weight (g)
NHHS-1	1	48.8	11	51.0	22.9	26.2	6.030	27.700	21.670
NHHS-1	2	50.1	12	54.9	25.8	26.7	12.430	34.100	
NHHS-1	3	50.4	13	51.0	24.4	25.2	19.720	41.390	
NHHS-1	4	50.3	14	46.4	24.3	25.0	24.820	46.490	
NHHS-1	5	50.1	15	49.6	22.9	24.6	30.460	52.130	
NHHS-1	6	47.5	16	47.7	24.5	25.3	35.460	57.130	
NHHS-1	7	49.3	17	49.0	23.2	23.1	40.390	62.060	
NHHS-1	8	48.5	18	48.0	26.9	23.6	46.380	68.050	
NHHS-1	9	53.4	19	52.5	28.0	25.9	52.960	74.630	
NHHS-1	10	50.1	20	49.2	29.8	25.1	57.360	79.030	
	1-20							120.040	
	total						109.170	130.840	• • • • • • • • • • • • • • • • • • • •
NHHS-2	1	52.5	11	52.3	27.7	28.5	6.720	28.400	21.680
NHHS-2	2	55.3	12	48.5	23.3	27.7	11.480	33.160	
NHHS-2	3	50.7	13	50.4	26.7	27.3	16.940	38.620	
NHHS-2	4	51.2	14	56.4	29.1	29.7	22.940	44.620	
NHHS-2	5	48.5	15	48.1	27.6	24.7	27.500	49.180	
NHHS-2	6	49.2	16	48.3	29.6	22.7	32.450	54.130	
NHHS-2	7	51.9	17	52.4	27.6	24.8	40.260	61.940	
NHHS-2	8	54.0	18	50.0	27.2	25.9	46.110	67.790	
NHHS-2	9	51.3	19	50.8	29.9	24.4	49.850	71.530	
NHHS-2	10	54.4	20	53.9	26.9	26.9	55.900	77.580	
	1-20 total						110.660	132.340	
NHHS-3	1	54.8	11	53.0					21.680
NHHS-3	2	52.7	12	52.0	_			1	
NHHS-3	3	50.1	13	52.2	=				
NHHS-3	4	51.5	14	50.5	=				
NHHS-3	5	51.5	15	56.8	-				
NHHS-3	6	52.9	16	49.8	=				
NHHS-3	7	56.2	17	53.4	=				
NHHS-3	8	53.0	18	50.7					
NHHS-3	9	52.4	19	49.9					
NHHS-3	10	51.5	20	55.3					
	1-20						445 100	126.252	
	total						115.180	136.860	
NHHS-COMP	1	51.7	11	50.5					21.670
NHHS-COMP	2	51.6	12	48.0					
NHHS-COMP	3	50.3	13	56.2					
NHHS-COMP	4	53.0	14	53.0					
NHHS-COMP	5	51.9	15	50.7					
NHHS-COMP	6	49.7	16	53.0					
NHHS-COMP	7	51.4	17	53.7					
NHHS-COMP	8	51.5	18	51.5					
NHHS-COMP	9	52.0	19	52.4					
NHHS-COMP	10	50.6	20	52.2					
	1-20								
	total						117.800	139.470	

NHHS 2010 (I MUSSELS)	NDIGEN	OUS			ORGANIC	CS	*calculated field	*Weight of jar and meat	d mussel
Site	#	Length (mm)		Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Cumulative wet weight (g)*	Jar weight (g)
NHHS-1	1	55.1	11	48.3	,	,	(8)	(8)	128.260
NHHS-1	2	52.8	12	48.9				1	
NHHS-1	3	52.5	13	49.1					
NHHS-1	4	50.8	14	50.7					
NHHS-1	5	56.6	15	49.6					
NHHS-1	6	53.6	16	57.3					
NHHS-1	7	50.3	17	47.6					
NHHS-1	8	48.9	18	48.8					
NHHS-1	9	48.3	19	53.6					
NHHS-1	10	49.6	20	49.2					
	1-20				J				
	total						108.648	236.908	
NHHS-2	1	51.9	11	59.6					129.170
NHHS-2	2	50.8	12	55.6					
NHHS-2	3	50.2	13	52.0					
NHHS-2	4	52.5	14	50.3					
NHHS-2	5	51.2	15	50.2					
NHHS-2	6	52.9	16	53.0					
NHHS-2	7	48.3	17	57.5					
NHHS-2	8	49.7	18	54.1					
NHHS-2	9	50.4	19	52.5					
NHHS-2	10	53.0	20	51.0					
	1-20						106072	226.1.12	
	total	10.5			ı		106.972	236.142	150010
NHHS-3	1	49.2	11	53.9	1				129.940
NHHS-3	2	48.1	12	50.3	1				
NHHS-3	3	49.3	13	52.3	-				
NHHS-3	4	50.0	14	51.1	-				
NHHS-3	5	50.1	15	50.2	-				
NHHS-3	6	54.3	16	51.8	-				
NHHS-3	7	51.0	17	55.2					
NHHS-3	8	49.7	18	51.3					
NHHS-3	9	51.1	19	52.3					
NHHS-3	10	52.7	20	53.5	J				
	1-20 total						121.450	251.390	
NHHS-COMP	1	49.9	11	51.6					131.960
NHHS-COMP	2	53.2	12	50.2					
NHHS-COMP	3	53.6	13	51.6					
NHHS-COMP	4	51.9	14	53.0					
NHHS-COMP	5	51.9	15	52.4					
NHHS-COMP	6	49.0	16	54.6					
NHHS-COMP	7	52.2	17	49.9					
NHHS-COMP	8	50.4	18	52.5					
NHHS-COMP	9	53.3	19	49.9					
NHHS-COMP	10	51.9	20	47.4					
	1-20								
	total						111.394	243.354	

NHRH 2010 (I MUSSELS)	INDIGEN	OUS			METALS		*calculated field	*Weight of jar and meat	d mussel
		Length		Length	Height	Width	Wet weight	Cumulative wet	Jar weight
Site	#	(mm)	#	(mm)	(mm)	(mm)	(g)	weight (g)*	(g)
NHRH-1	1	51.0	11	54.9	31.3	24.1	5.502	27.182	21.680
NHRH-1	2	56.7	12	52.0	27.9	29.0	10.154	31.834	
NHRH-1	3	52.1	13	56.2	31.7	22.8	16.003	37.683	
NHRH-1	4	51.5	14	54.9	31.1	22.5	21.765	43.445	
NHRH-1	5	54.0	15	56.3	30.7	20.3	27.708	49.388	
NHRH-1	6	51.0	16	57.5	33.2	23.6	32.666	54.346	
NHRH-1	7	50.4	17	58.3	26.1	25.0	37.930	59.610	
NHRH-1	8	55.7	18	55.5	30.1	22.2	43.632	65.312	
NHRH-1	9	51.9	19	58.0	31.0	22.0	48.408	70.088	
NHRH-1	10	56.7	20	51.5	39.0	28.8	51.497	73.177	
	1-20								
	total						91.363	113.043	
NHRH-2	1	54.4	11	54.3	28.0	21.7	3.321	24.981	21.660
NHRH-2	2	56.7	12	54.2	29.2	22.7	7.932	29.592	
NHRH-2	3	57.6	13	57.3	32.6	21.2	12.113	33.773	
NHRH-2	4	59.3	14	54.0	27.8	24.9	18.360	40.020	
NHRH-2	5	53.6	15	55.7	29.1	21.9	24.124	45.784	
NHRH-2	6	57.9	16	56.9	30.5	21.6	28.996	50.656	
NHRH-2	7	55.3	17	56.5	28.9	24.3	33.830	55.490	
NHRH-2	8	59.4	18	53.6	28.4	18.8	37.223	58.883	
NHRH-2	9	54.3	19	55.6	28.3	22.6	41.611	63.271	
NHRH-2	10	58.0	20	55.4	32.4	22.1	47.716	69.376	
	1-20								
	total						102.165	123.825	
NHRH-3	1	55.6	11	56.6					21.690
NHRH-3	2	57.5	12	57.2					
NHRH-3	3	57.0	13	52.3					
NHRH-3	4	55.9	14	55.7					
NHRH-3	5	57.7	15	55.5					
NHRH-3	6	59.5	16	57.6					
NHRH-3	7	55.3	17	52.6					
NHRH-3	8	53.4	18	59.0					
NHRH-3	9	56.4	19	56.0					
NHRH-3	10	57.5	20	56.3					
	1-20 total						95.735	117.425	
NHRH-COMP	1	52.1	11	55.2			75.133	117.723	21.710
NHRH-COMP	2	55.8	12	53.1					21.710
NHRH-COMP	3	56.1	13	54.5					
NHRH-COMP	4	56.1	14	53.8					
NHRH-COMP	5	57.3	15	54.7					
NHRH-COMP	6	58.0	16	60.0					
NHRH-COMP	7	51.4	17	56.8					
NHRH-COMP	8	58.2	18	53.1					
NHRH-COMP	9	53.0	19	55.8					
NHRH-COMP	10	54.0	20	50.9					
	1-20	20			,				
	total						89.588	111.298	
l									

NHRH 2010 (I MUSSELS)	NDIGEN	OUS			ORGANIC	CS	*calculated field	*Weight of jar and meat	d mussel
Site	#	Length		Length	Height	Width	Wet weight	Cumulative wet	Jar weight
	π	(mm)		(mm)	(mm)	(mm)	(g)	weight (g)*	(g)
NHRH-1	1	55.4	11	50.0					129.700
NHRH-1	2	56.0	12	51.0					
NHRH-1	3	58.2	13	56.2					
NHRH-1	4	55.7	14	56.0					
NHRH-1	5	56.0	15	55.4					
NHRH-1	6	55.5	16	50.9					
NHRH-1	7	53.5	17	60.0					
NHRH-1	8	51.8	18	50.6					
NHRH-1	9	51.0	19	54.2					
NHRH-1	10	54.9	20	52.2					
	1-20								
	total						90.040	219.740	
NHRH-2	1	58.4	11	59.1					130.270
NHRH-2	2	58.7	12	59.1					
NHRH-2	3	54.1	13	56.4					
NHRH-2	4	55.8	14	58.7					
NHRH-2	5	56.8	15	55.5					
NHRH-2	6	58.8	16	53.1					
NHRH-2	7	55.9	17	58.4					
NHRH-2	8	59.9	18	55.9					
NHRH-2	9	56.7	19	58.9					
NHRH-2	10	60.0	20	58.0					
	1-20								
	total						115.370	245.640	
NHRH-3	1	56.8	11	56.9					130.470
NHRH-3	2	57.7	12	51.6					
NHRH-3	3	58.4	13	55.9					
NHRH-3	4	59.7	14	52.6					
NHRH-3	5	51.7	15	59.4					
NHRH-3	6	59.1	16	56.4					
NHRH-3	7	53.1	17	54.4					
NHRH-3	8	55.1	18	58.9					
NHRH-3	9	51.4	19	51.4					
NHRH-3	10	60.0	20	57.5					
	1-20								
	total						98.406	228.876	
NHRH-COMP	1	53.3	11	56.6					131.160
NHRH-COMP	2	57.9	12	54.4					
NHRH-COMP	3	57.7	13	59.2					
NHRH-COMP	4	57.1	14	53.1					
NHRH-COMP	5	60.0	15	53.8					
NHRH-COMP	6	52.3	16	52.9					
NHRH-COMP	7	55.9	17	59.1					
NHRH-COMP	8	58.4	18	55.2					
NHRH-COMP	9	57.1	19	52.7					
NHRH-COMP	10	54.4	20	54.9					
	1-20								
	total						85.650	216.810	

NHLH 2010 (I MUSSELS)	NDIGEN	OUS			METALS		*calculated field	*Weight of jar and meat	d mussel
<u> </u>	,,	Length		Length	Height	Width	Wet weight	Cumulative wet	Jar weight
Site	#	(mm)	#	(mm)	(mm)	(mm)	(g)	weight (g)*	(g)
NHLH-1	1	51.7	11	52.6	23.4	28.1	5.294	26.974	21.680
NHLH-1	2	56.3	12	53.9	25.1	27.7	10.542	32.222	
NHLH-1	3	57.7	13	56.3	23.5	30.9	15.879	37.559	
NHLH-1	4	55.1	14	57.3	26.0	32.1	23.475	45.155	
NHLH-1	5	58.1	15	50.8	22.8	25.3	26.747	48.427	
NHLH-1	6	53.9	16	56.1	23.5	27.3	31.132	52.812	
NHLH-1	7	52.8	17	52.3	22.6	29.7	35.695	57.375	
NHLH-1	8	50.6	18	56.4	22.8	30.4	42.179	63.859	
NHLH-1	9	52.8	19	52.3	24.1	27.7	46.269	67.949	
NHLH-1	10	56.1	20	58.7	22.8	27.5	51.778	73.458	
	1-20								
	total						100.795	122.475	
NHLH-2	1	51.1	11	52.2	22.8	26.3	6.876	28.536	21.660
NHLH-2	2	58.5	12	51.0	25.1	29.0	12.096	33.756	
NHLH-2	3	51.1	13	51.3	22.8	25.6	16.555	38.215	
NHLH-2	4	59.4	14	54.2	21.5	28.5	21.161	42.821	
NHLH-2	5	51.8	15	54.7	24.0	28.7	25.574	47.234	
NHLH-2	6	51.8	16	56.4	23.2	28.0	30.300	51.960	
NHLH-2	7	52.0	17	51.7	24.9	27.0	34.588	56.248	
NHLH-2	8	57.8	18	57.9	26.4	22.2	40.388	62.048	
NHLH-2	9	53.9	19	55.3	24.5	28.6	44.860	66.520	
NHLH-2	10	56.7	20	51.4	21.0	26.4	49.349	71.009	
	1-20						98.752	120.412	
NHLH-3	total 1	52.8	11	53.8			90.732	120.412	21.680
NHLH-3	2	56.5	12	56.0					21.000
NHLH-3	3	54.5	13	53.5					
NHLH-3	4	54.5	14	58.7					
NHLH-3	5	50.7	15	58.2					
NHLH-3	6	59.4	16	55.3					
NHLH-3	7	52.0	17	53.0					
NHLH-3	8	52.0	18	56.6					
NHLH-3	9	52.8	19	52.2					
NHLH-3	10	57.8	20	59.6					
	1-20				ļ				
	total						97.675	119.355	
NHLH-COMP	1	55.7	11	59.0			•		21.680
NHLH-COMP	2	58.1	12	55.0					
NHLH-COMP	3	58.6	13	58.6					
NHLH-COMP	4	52.8	14	53.2					
NHLH-COMP	5	54.0	15	58.6					
NHLH-COMP	6	55.5	16	50.9					
NHLH-COMP	7	52.6	17	52.5					
NHLH-COMP	8	54.4	18	52.7					
NHLH-COMP	9	53.4	19	52.3					
NHLH-COMP	10	53.8	20	54.8					
	1-20								
	total						82.429	104.109	

NHLH 2010 (I MUSSELS)	NDIGEN	OUS			ORGANIC	CS	*calculated field	*Weight of jar and meat	l mussel
Site	#	Length (mm)		Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Cumulative wet weight (g)*	Jar weight (g)
NHLH-1	1	51.1	11	50.1		, ,			128.810
NHLH-1	2	51.8	12	53.3				·	
NHLH-1	3	58.2	13	54.2					
NHLH-1	4	57.3	14	58.1					
NHLH-1	5	55.7	15	56.5					
NHLH-1	6	54.6	16	51.6					
NHLH-1	7	53.0	17	55.7					
NHLH-1	8	52.4	18	57.4					
NHLH-1	9	57.9	19	51.8					
NHLH-1	10	56.3	20	57.5					
	1-20						0.4.700	212.510	
NIII II O	total	51.0	111	56.2			84.700	213.510	100.760
NHLH-2	1	51.9	11	56.3	-				128.760
NHLH-2	2	58.4	12	51.2					
NHLH-2	3	59.0	13	53.4	-				
NHLH-2	4	51.6	14	53.4	4				
NHLH-2	5	51.7	15	56.2					
NHLH-2	6	50.5	16	54.3					
NHLH-2	7	58.2	17	55.7					
NHLH-2	8	55.2	18	53.9					
NHLH-2	9	51.3 52.9	19 20	53.9 50.1					
NHLH-2	1-20	32.9	20	30.1	J				
	total						107.222	235.982	
NHLH-3	1	53.4	11	54.9			107.222	233.962	129.080
NHLH-3	2	58.8	12	58.6					127.000
NHLH-3	3	59.2	13	56.5					
NHLH-3	4	52.5	14	59.4	_				
NHLH-3	5	60.0	15	51.1					
NHLH-3	6	57.8	16	58.1					
NHLH-3	7	52.6	17	53.7					
NHLH-3	8	56.7	18	59.3	1				
NHLH-3	9	55.7	19	56.6					
NHLH-3	10	56.0	20	57.6					
	1-20								
	total						95.614	224.694	
NHLH-COMP	1	58.3	11	54.5					129.500
NHLH-COMP	2	58.9	12	55.0					
NHLH-COMP	3	51.8	13	52.5					
NHLH-COMP	4	51.1	14	57.9					
NHLH-COMP	5	53.0	15	55.7					
NHLH-COMP	6	57.4	16	55.0					
NHLH-COMP	7	56.2	17	53.7					
NHLH-COMP	8	54.3	18	53.0					
NHLH-COMP	9	55.6	19	54.0					
NHLH-COMP	10	51.8	20	54.6					
	1-20								
	total						97.820	227.320	

NHPI 2010 (IN MUSSELS)	NDIGENO	OUS			METALS		*calculated field	*Weight of jar and meat	d mussel
,		Length	l l	Length	Height	Width	Wet weight	Cumulative wet	Jar weight
Site	#	(mm)	#	(mm)	(mm)	(mm)	(g)	weight (g)*	(g)
NHPI-1	1	53.2	11	54.2	19.8	28.9	4.391	26.071	21.680
NHPI-1	2	52.8	12	54.7	20.6	28.2	9.749	31.429	
NHPI-1	3	55.7	13	56.7	24.2	28.5	16.684	38.364	
NHPI-1	4	54.6	14	55.7	23.6	26.5	21.845	43.525	
NHPI-1	5	52.0	15	56.4	23.6	29.8	28.030	49.710	
NHPI-1	6	58.5	16	53.8	20.5	29.1	32.313	53.993	
NHPI-1	7	57.6	17	57.0	24.2	30.5	38.401	60.081	
NHPI-1	8	57.7	18	53.9	22.1	29.6	44.316	65.996	
NHPI-1	9	54.5	19	55.1	22.5	31.1	50.094	71.774	
NHPI-1	10	57.7	20	55.2	22.1	29.6	54.885	76.565	
	1-20								
	total						110.140	131.820	
NHPI-2	1	59.8	11	51.0	25.3	29.8	7.260	28.950	21.690
NHPI-2	2	53.8	12	56.1	23.5	28.6	12.878	34.568	
NHPI-2	3	56.0	13	53.5	24.6	27.2	17.353	39.043	
NHPI-2	4	56.0	14	59.4	22.7	28.8	23.381	45.071	
NHPI-2	5	58.4	15	51.8	22.2	29.4	27.366	49.056	
NHPI-2	6	56.5	16	52.3	23.5	28.4	30.821	52.511	
NHPI-2	7	51.6	17	58.6	23.7	33.4	36.621	58.311	
NHPI-2	8	50.7	18	59.1	23.7	28.4	42.041	63.731	
NHPI-2	9	55.5	19	51.8	22.0	27.5	45.771	67.461	
NHPI-2	10	57.2	20	55.8	26.0	28.3	50.863	72.553	
	1-20								
	total						108.245	129.935	
NHPI-3	1	52.1	11	53.8					21.670
NHPI-3	2	55.0	12	53.9					
NHPI-3	3	55.6	13	52.0					
NHPI-3	4	57.4	14	55.7					
NHPI-3	5	56.6	15	54.7					
NHPI-3	6	56.4	16	52.0					
NHPI-3	7	55.4	17	52.8					
NHPI-3	8	56.4	18	52.2	4				
NHPI-3	9	56.2	19	56.2					
NHPI-3	10	51.8	20	57.4	J				
	1-20 total						96.664	118.334	
NHPI-COMP	1	53.4	11	55.7					21.670
NHPI-COMP	2	58.1	12	55.6	1				
NHPI-COMP	3	56.6	13	56.5	1				
NHPI-COMP	4	55.0	14	55.3					
NHPI-COMP	5	59.4	15	55.5					
NHPI-COMP	6	53.5	16	55.3					
NHPI-COMP	7	57.5	17	58.2					
NHPI-COMP	8	56.7	18	58.5					
NHPI-COMP	9	58.0	19	56.1					
NHPI-COMP	10	57.4	20	56.3					
- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	1-20								
	total						112.965	134.635	
							-		

NHPI 2010 (IN MUSSELS)	NDIGENO	OUS			ORGANIC	CS	*calculated field	*Weight of jar and meat	d mussel
	ш	Length		Length	Height	Width	Wet weight	Cumulative wet	Jar weight
Site	#	(mm)		(mm)	(mm)	(mm)	(g)	weight (g)*	(g)
NHPI-1	1	52.5	11	57.0					132.460
NHPI-1	2	54.6	12	57.4					
NHPI-1	3	54.9	13	55.3					
NHPI-1	4	52.4	14	53.8					
NHPI-1	5	59.0	15	58.1					
NHPI-1	6	56.2	16	56.9					
NHPI-1	7	55.5	17	57.7					
NHPI-1	8	54.1	18	55.1					
NHPI-1	9	55.0	19	56.0					
NHPI-1	10	54.1	20	55.8					
	1-20								
	total						113.012	245.472	
NHPI-2	1	53.7	11	56.8					129.210
NHPI-2	2	58.2	12	59.4					
NHPI-2	3	52.3	13	59.0					
NHPI-2	4	56.7	14	57.0					
NHPI-2	5	58.3	15	51.6					
NHPI-2	6	56.5	16	58.8					
NHPI-2	7	58.3	17	53.4					
NHPI-2	8	59.4	18	54.5					
NHPI-2	9	54.9	19	56.6					
NHPI-2	10	54.2	20	56.7					
	1-20								
	total		, ,				106.289	235.499	
NHPI-3	1	55.6	11	52.4					128.650
NHPI-3	2	56.7	12	52.4					
NHPI-3	3	50.7	13	52.6					
NHPI-3	4	54.0	14	54.9					
NHPI-3	5	56.7	15	51.1					
NHPI-3	6	55.7	16	52.2					
NHPI-3	7	56.0	17	50.3					
NHPI-3	8	53.6	18	57.3					
NHPI-3	9	53.6	19	51.2					
NHPI-3	10	56.5	20	56.7				1	
	1-20						92.270	212.020	
	total	<i>56.</i> 0	111	51.2			83.370	212.020	101 200
NHPI-COMP	1	56.8	11	51.2					131.390
NHPI-COMP	2	54.0	12	52.7					
NHPI-COMP	3	54.6	13	51.8					
NHPI-COMP	4	56.7	14	55.9					
NHPI-COMP	5	54.3	15	59.9					
NHPI-COMP	6	52.3	16	58.6					
NHPI-COMP	7	57.1	17	52.3					
NHPI-COMP	8	56.1	18	58.8					
NHPI-COMP	9	56.6	19	56.3					
NHPI-COMP	10	57.5	20	57.1	J			1	
	1-20						111.660	242.050	
	total						111.660	243.050	

NH Gulfwatch 2010 Sample Jar Data Summary

1(11 0 411) 4001 20	10 Sumpie gui	Data Sammary	TARE W	VEIGHT	TOTAL W	EIGHT	TISSUE V	VEIGHT	LEN	LENGTH	
Site	Site #	Jar label	ORGANICS	METALS	ORGANICS	METALS	ORGANICS	METALS	MIN	MAX	
Indigenous Mussels											
Clark Cove	MECC-1	MECC-1N-100914	130.020	21.700	241.740	120.024	111.720	98.324	51.400	60.000	
on Seavey I.	MECC-2	MECC-2N-100914	129.580	21.660	226.399	115.534	96.819	93.874	50.300	59.600	
in Portsmouth	MECC-3	MECC-3N-100914	131.100	21.640	256.700	123.298	125.600	101.658	51.000	59.000	
Harbor, Maine	MECC- COMP	MECC-COMP-100914	129.050	21.670	232.051	128.323	103.001	106.653	50.800	58.800	
TT .	NIIII 1	NUMBER 131 100014	120.260	21.670	226,000	120.040	100 (40	100 170	46.400	57.300	
Hampton-	NHHS-1	NHHS-1N-100914	128.260	21.670	236.908	130.840	108.648	109.170	46.400		
Seabrook Harbor	NHHS-2	NHHS-2N-100914	129.170	21.680	236.142	132.340	106.972	110.660	48.100	59.600	
Hampton,	NHHS-3	NHHS-3N-100914	129.940	21.680	251.390	136.860	121.450	115.180	48.100	56.800	
New Hampshire	NHHS-COMP	NHHS-COMP-100914	131.960	21.670	243.354	139.470	111.394	117.800	47.400	56.200	
Dover Point	NHDP-1	NHDP-1N-100914	128.700	21.690	217.570	112.800	88.870	91.110	50.100	57.700	
	NHDP-2	NHDP-2N-100914	129.860	21.650	226.056	118.450	96.196	96.800	51.200	60.000	
Dover	NHDP-3	NHDP-3N-100914	128.980	21.660	220.629	116.140	91.649	94.480	50.300	58.800	
New Hampshire	NHDP-COMP	NHDP-COMP-100914	132.010	21.690	215.354	112.890	83.344	91.200	50.000	59.600	
Rye Harbor	NHRH-1	NHRH-1N-100914	129.700	21.680	219.740	113.043	90.040	91.363	50.000	60.000	
·	NHRH-2	NHRH-2N-100914	130.270	21.660	245.640	123.825	115.370	102.165	53.100	60.000	
Rye,	NHRH-3	NHRH-3N-100914	130.470	21.690	228.876	117.425	98.406	95.735	51.400	60.000	
New Hampshire	NHRH- COMP	NHRH-COMP-100914	131.160	21.710	216.810	111.298	85.650	89.588	50.900	60.000	
				-1.500			0.1.500				
Little Harbor	NHLH-1	NHLH-1N-100914	128.810	21.680	213.510	122.475	84.700	100.795	50.100	58.700	
	NHLH-2	NHLH-2N-100914	128.760	21.660	235.982	120.412	107.222	98.752	50.100	59.400	
New Castle,	NHLH-3	NHLH-3N-100914	129.080	21.680	224.694	119.355	95.614	97.675	50.700	60.000	
New Hampshire	NHLH-COMP	NHLH-COMP-100914	129.500	21.680	227.320	104.109	97.820	82.429	50.900	59.000	
Pierce Island	NHPI-1	NHPI-1N-100914	132.460	21.680	245.472	131.820	113.012	110.140	52.000	59.000	
	NHPI-2	NHPI-2N-100914	129.210	21.690	235.499	129.935	106.289	108.245	50.700	59.800	
Portsmouth,	NHPI-3	NHPI-3N-100914	0.000	21.670	212.020	118.334	212.020	96.664	50.300	57.400	
New Hampshire	NHPI-COMP	NHPI-COMP-100914	131.390	21.670	243.050	134.635	111.660	112.965	51.200	59.900	
				_			_				
Summary Statistics			Mean	Mean	Mean	Mean	Mean	Mean	Min	Max	
Mussels			124.560	21.675	231.371	122.235	106.811	100.559	46.400	60.000	

Appendix B: Sampling Summary Report for 2011

MEMORANDUM

TO: Dr. Stephen Jones, UNH
FROM: Matthew A. Wood, DES
RE: 2011 Gulfwatch Samples
DATE: September 23, 2011

The purpose of this memorandum is to document the sample collection activities for Gulfwatch 2011.

On September 19, 2011, DES managed the collection of mussel samples from five sites. These sites are summarized in the following table. In the table, the coordinates for the replicates are listed in the order of replicate number, where applicable. Maps showing the location of each site are provided in Appendix A.

Date / Time	Station	Latitude (Decimal degrees)	Longitude (Decimal degrees)	Water Temperature (deg C)	Water Salinity (ppt)	Personnel
9/19/11 11:02	MECC – Clarks Cove, Kittery, ME	43.07745 43.07745 43.07742	-70.72411 -70.72411 -70.72328	16.6	29.3	P. Trowbridge O. David
9/19/11 10:06	NHHS - Hampton/ Seabrook Harbor, Hampton, NH	42.89727 42.89720 42.89732	-70.81638 -70.81631 -70.81644	15.9	27.1	J. Marcoux K. Duclos S. Pease R. Rush
9/19/11 11:13	NHDP – Dover Point, Dover, NH	43.11977 43.11972 43.11960	-70.82736 -70.82720 -70.82717	18.6	22.7	M. Wood K. Edwardson R. Livingston A. Gould
9/19/11 12:30	NHFP – Fox Point, Newington, NH	43.12056 43.12056 43.12046	-70.85998 -70.86012 -70.86012	19.8	23.3	J. Marcoux K. Duclos S. Pease R. Rush M. Wood K. Edwardson R. Livingston A. Gould
9/19/11 9:38	NHSS – Schiller Station, Portsmouth, NH	43.10141 43.10167 43.10205	-70.79038 -70.79065 -70.79122	17.1	27.0	M. Wood K. Edwardson R. Livingston A. Gould

Sample collection and processing was conducted following NH Gulfwatch SOPs (Appendix B). Samples were processed and frozen at the UNH Jackson Estuarine Laboratory within 36 hours of collection.

Physical data on the mussels were transferred from hard copy datasheets to Excel spreadsheets. Data entry was checked twice for transcription errors following DES protocols. The physical data for the samples is provided in Appendix C. The field data for the samples are provided in Appendix D. The original datasheets will be kept on file at DES. It should be noted that it was difficult to collect the three replicates of 60 mussels at all stations with the exception of NHDP – Dover Point.

If you have any questions about this report, please contact me at (603) 271-8868 or Matthew. Wood@des.nh.gov

Sampling Summary Report for 2011: Appendix A

Maps of Sampling Sites

GULFWATCH STATION INFORMATION

GULFWATCH STATION INFORMATION

Gulfwatch Station Information

Gulfwatch Station Information

GULFWATCH STATION INFORMATION

Sampling Summary Report for 2011: Appendix B

NH Gulfwatch SOPs

Standard Operating Procedures for Gulfwatch

Revised: 9/2/2011

Prep Work SOP

- 1. Print and fill out field sheets
- 2. Print lab sheets (2 sets)
- 3. Print maps of stations and SOPs
- 4. Label bait bags/baskets.
- 5. Label trays. The will be one tray for each replicate. Mussels for metals analysis will be on the left and mussels for organics on the right.
- 6. Label jars (4 oz. jars for mussels, 12 oz. jars for clams or oysters).

The labels will have three lines:

- Line one should include "NH Gulfwatch" and the year.
- Line two shoule include the species being collected.
- Line three should be in **Bold** and include the station ID, "-", the replicate number followed by the letter N, "-", and the collection date in YYMMDD format. For example, NHDP replicate 1 collected on 9/02/11, the label would be "NHDP-1N-110902". For the composite sample, the replicate number should be replaced with "COMP". The destination of the sample (e.g., "Metals Lab", "Organics Archive", etc.) should follow the sample ID in parentheses. There will be one set of jars for organics analysis, which will be covered by aluminum foil, and another set of jars for metals analysis, which will be covered by plastic wrap. Place the jars back into the box in order. Use a mail merge to generate the labels as shown below.

```
«first_row»
«second_row»
«third_row»
```

- 7. Weigh jars for organics analysis. Jars for metals analysis will be weighed during the shucking process. Use a scale to weigh the jars without lids. Record the value in the "Jar Weight" column of the appropriate lab data sheet. Note there are separate data sheets for metals and organics for each replicate. Make sure the weights of the jars for organics are recorded on the lab data sheets for organics.
- 8. Put field materials into coolers and distribute to team leaders. Use checklist.
- 9. Make sure that JEL soaks the knives in advance of the shucking.
- 10. Make sure JEL cleans the jars.
- 11. Ask JEL to clean out 2 shelves of space in the walk-in cooler.
- 12. Check calibration of YSI-30 meters with 10,000 µS/cm standard.
- 13. Contact Portsmouth Naval Shipyard 2 weeks in advance. Select a field crew with valid US passports. Verify that the vehicle has registration and insurance information. Arrange for the Installation Restoration Manager to meet the crew at the gate. Have the IRM's number on the field paperwork.

Mussel Field Collection SOP

- 14. Navigate to station
- 15. In the general location of the station, identify 3 replicate mussel bed sites within a 50 m section of shoreline (low intertidal zone).
- 16. Complete field data sheet including measuring the latitude and longitude of each replicate site with a GPS unit.
- 17. Measure water temperature and salinity with YSI-30 meter and record values on field data sheet
- 18. Select the bait bags or plastic baskets which are pre-labeled with the site name and replicate number (e.g., "NHDP-1" = station NHDP, replicate #1).
- 19. Collect at least 60 mussels from each replicate site (must be 50-60 mm in length). Use the gauge or ruler to measure the mussels. Place the mussels from each replicate site in the correct bait bags or plastic basket.
- 20. Count out exactly 60 mussels from the bait bag or basket onto a clean surface (spread out a plastic garbage bag if needed), verifying that each mussel is not full of mud by trying to separate the two shells.
- 21. Return any extra mussels to the intertidal zone at the site
- 22. Collect wash water in a large basin.
- 23. Use a toothbrush and the wash water to clean the outside shell of attachments (seaweed or barnacles) for all 60 mussels collected, placing each mussel back into the correct bait bag or basket after it is cleaned. Do not pour all of the mussels into the cleaning basin. Dunk and clean each mussel separately.
- 24. Place the bait bags or baskets of clean mussels upright in the cooler on ice.
- 25. Verify that field sheet is complete and that the bait bags or baskets are correctly labeled.
- 26. Transport cooler to laboratory.

Clam / Oyster collection SOP

- 1. Navigate to station
- 2. In the general location of the station, identify 2 replicate sites 10 to 50 m apart.
- 3. Complete field data sheet including measuring the latitude and longitude of each replicate site with a GPS unit.
- 4. Measure water temperature and salinity and record it on field data sheet
- 5. Select the plastic baskets which are labeled with the site name and replicate number (e.g., NHDP-1, station NHDP, replicate #1).
- 6. Collect at least 50 shellfish from each replicate site (must be 50-100 mm in length for clams, 50-125 mm in length for oysters). Use the gauge or ruler to measure the shellfish. Place the shellfish from each replicate site in the correct bait bag or plastic basket.
- 7. Count out exactly 50 shellfish from the bait bag or basket onto a clean surface (spread out a plastic garbage bag if needed), verifying that each clam/oyster is not full of mud by trying to separate the two shells.
- 8. Collect wash water in a large basin.
- 9. Use a toothbrush and the wash water to clean the outside shell of the 50 clams/oysters collected, placing each clam/oyster back into the correct bait bag or basket after it is cleaned. Do not pour all of the clams/oysters into the cleaning basin. Dunk and clean each clam/oyster separately.
- 10. Place the bait bags or baskets of clean clams/oysters upright in the cooler on ice.

- 11. Verify that field sheet is complete and that the baskets are correctly labeled.
- 12. Transport cooler to laboratory.

Mussel Measurement SOP

- 7. Bring the coolers into the laboratory.
- 8. Set up 3 measuring stations, each with a caliper, the lab data sheets for one station, the mussels from one station.
- 9. Assign two to three people to each measuring station.
- 10. Each team will place 40 mussels from each bait bag or basket into a tray in rows of 10. The two rows on the left side of the tray will be for metals analysis. The two rows on the right side of the tray will be for organics analysis. Do this for each of the three replicates (The mussels from bait bag or basket #1 go into tray #1, etc.). Then take 12 mussels from replicate #1, 14 mussels from replicate #2, and 14 mussels from replicate #3 and put them in the "COMP" tray. Randomize the mussels so that some mussels from each replicate are in the metals and organics rows. There should be ~5 left over mussels in the bait bag or baskets. Leave the extra mussels in the bait bag or baskets and return the bait bags or baskets to the cooler.
- 11. Each team will measure the length, height and width of the mussels in the tray and record the information on the lab data sheet. Be sure to record the measurements of the mussels for metals and organics analysis on the correct sheets (there are separate sheets for metals and organics analysis). The mussels are in the same order in the tray as on the sheet. The top left mussel is number 1. The bottom left is 10. The top right is number 11. The bottom right is 20. The height and width (and later weight) measurements are done for mussels number 11 through 20. Record the length, height and width to the nearest tenth of a millimeter. Do not report values for cells that are filled in with gray.
- 12. Store trays of mussels in the walk-in refrigerator.

Mussel Shucking SOP - Organics

- 6. Set up 3 shucking stations for organics analysis. Each station will have two metal knives, a beaker of DI water, a tray of mussels and the corresponding jar (from the jars for organics analysis). One of the scales should be placed on a separate table so that the full jars can be weighed easily.
- 7. Assign two people to each shucking station and two other people to act as floaters and to help with weighing jars, sealing jars and storing jars.
- 8. Clean all of the metal knives in solvents. Put out 300 ml of **methanol**, **toluene**, and **hexane** in 500 ml beakers under the fume hood. Swish each metal knife in the 3 solutions (in order) three times. Clean the knives in this way before each new tray of mussels.
- 9. Open and scrape the meat from the mussels into the jar using the following procedure.
 - a. Swish the knife tip in DI water.
 - b. Select one of the mussels marked for organics analysis.
 - c. Turn the mussel upside down so that the byssus is facing up.
 - d. Tear off the byssus.
 - e. Insert the tip of knife between the shells where the byssus was formerly and twist the knife to open the shell slightly.

- f. Shake the mussel over the waste bin for 10-20 seconds to remove water from the shell.
- g. Run the knife blade around the mussel between the two shells to cut the adductor muscle and then separate the two shells.
- h. Place the two shells on the table, meat side up.
- i. Scrape the meat out of one of the shells into the jar.
- j. Discard the empty shell into the waste bin.
- k. Scrape the meat from the second shell into the jar.
- 1. Discard the empty shell.
- m. Swish the knife in DI water to clean it.
- n. If there are more mussels left on the tray for organics analysis, repeat steps b-m.
- 10. When all 20 mussels have been shucked, weigh the jar and record the value on the lab data sheet, cover the top with a piece of **aluminum foil**, screw on the lid, and place the jar in the freezer. Then, clean the knives in the solvents under the hood using the same procedure from Step 3. Get a new tray of mussels and repeat.

Mussel Shucking SOP - Metals

- 7. Set up 2 shucking stations for metals analysis. Each station will have a scale, a waste bucket, DI water, one acid-washed ceramic knife (or one metal knife) and three acid-washed plastic knives.
- 8. Assign four people to each station.
- 9. Clean all of the knives in **nitric acid** solution. Put out 300 ml of 4 N nitric acid in a 500 ml beaker under the fume hood. Swish each knife in the solution. Clean the knives in this way before each new tray of mussels.
- 10. Open and scrape the meat from the mussels #11 through #20 into the jar using the following procedure. Mussel #11 will be the mussel at the top of the right hand row for metals analysis. Mussel #20 will be the mussel at the bottom of the right hand row for metals analysis. Each person in the group does a different task. The person with the ceramic knife does steps c-i. Two people with plastic knives do steps j-m. The person with the scale and lab sheets does steps a and o.
 - a. Tare the scale, then place the correct jar on the scale.
 - b. Swish the knives in DI water.
 - c. Select mussel #11 marked for metals analysis.
 - d. Turn the mussel upside down so that the byssus is facing up.
 - e. Tear off the byssus.
 - f. Insert the tip of knife between the shells where the byssus was formerly and twist the knife to open the shell slightly.
 - g. Shake the mussel over the waste bin for 10-20 seconds to remove some water from the shell.
 - h. Run the knife blade around the mussel between the two shells to cut the adductor muscle and then separate the two shells. If using a metal knife for step f, use a plastic knife for this step.
 - i. Place the two shells on the table, meat side up.
 - j. Scrape the meat out of one of the shells into the jar.
 - k. Discard the empty shell into the waste bin.

- 1. Scrape the meat from the second shell into the jar.
- m. Discard the empty shell.
- n. Swish the knives in DI water to clean them.
- o. Record the total weight of the jar and the mussel meat on the lab data sheet in the location for mussel #11.
- p. Repeat steps for mussels #12 through #20. When complete, leave the jar on the scale and go to Step 5.
- 11. Open and scrape the meat from mussels #1 through #10 into the jar using the same procedure as for Step 4 except: (1) Weight does not need to be recorded after each mussel (step o), only at the end; (2) the person who recorded the weights should use a plastic knife to help with steps j-m.
- 12. When all 20 mussels from the tray have been shucked, weigh the jar (without the cap) and record the value on the lab data sheet, cover the top with a piece of **saran wrap**, screw on the lid, and place the jar in the freezer. Then, clean the knives in the nitric acid solution under the hood using the same procedure from Step 3. Get a new tray of mussels and repeat.

Cleanup SOP

- 1. Wash all knives in hot water and soap.
- 2. Wash all DI containers.
- 3. Wash all tubs.
- 4. Put shells in pile behind JEL.
- 5. Consolidate live mussels and release by the JEL dock.
- 6. Put baskets back into trash bag for storage at JEL.
- 7. Collect bait bags for storage at DES..
- 8. Return bottles, rulers and other equipment to JEL.
- 9. Wipe down scales and counters.

Sampling Summary Report for 2011: Appendix ${\bf C}$

Physical Data for Mussels

MECC 2011 (IN	DIGEN	OUS MUSSELS)			METALS	Г	*calculated field	*Weight of jar a	nd mussel
Site	#	Length (mm)	#	Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Cumulative wet weight (g)*	Jar weight (g)
MECC-1	1	52.9	11	54.5	29.0	22.1	3.480	140.700	137.220
MECC-1	2	53.7	12	58.6	30.0	22.8	3.620	144.320	137.220
MECC-1	3	53.2	13	52.7	27.5	22.7	3.740	148.060	
MECC-1	4	52.4	14	53.2	26.9	22.5	4.090	152.150	
MECC-1	5	59.9	15	54.8	29.6	24.5	3.190	155.340	
MECC-1	6	57.7	16	50.5	26.4	23.8	3.550	158.890	
MECC-1	7	58.4	17	52.7	28.3	23.1	3.380	162.270	_
MECC-1	8	54.2	18	55.0	31.2	23.8	3.120	165.390	_
MECC-1	9	55.2	19	56.5	31.2	22.6	3.860	169.250	
MECC-1	10	59.5	20	55.7	28.4	20.6	3.790	173.040	_
1-20 total							74.550	211.770	
MECC-2	1	57.2	11	52.1	26.1	21.4	4.070	141.690	137.620
MECC-2	2	53.4	12	57.6	30.2	22.9	4.120	145.810	
MECC-2	3	53.5	13	53.1	27.3	22.9	4.740	150.550	1
MECC-2	4	55.9	14	52.1	26.6	20.9	3.050	153.600	1
MECC-2	5	54.0	15	54.5	30.2	24.3	4.900	158.500	1
MECC-2	6	56.5	16	52.0	29.2	21.7	3.040	161.540	1
MECC-2	7	53.4	17	51.0	26.3	20.1	3.430	164.970	
MECC-2	8	58.2	18	53.0	28.1	21.5	3.710	168.680	
MECC-2	9	56.7	19	52.1	30.0	21.0	2.850	171.530	
MECC-2	10	52.7	20	51.2	26.2	21.1	3.910	175.440	
1-20 total							78.880	216.500	
MECC-3	1	53.7	11	58.9					137.160
MECC-3	2	53.2	12	53.0					
MECC-3	3	56.5	13	52.0					
MECC-3	4	54.0	14	57.0					
MECC-3	5	56.7	15	59.8					
MECC-3	6	56.8	16	51.0					
MECC-3	7	57.5	17	56.1					
MECC-3	8	55.0	18	54.8					
MECC-3	9	58.1	19	53.7					
MECC-3	10	58.3	20	51.8	J				7
1-20 total	•						110.031	247.191	
MECC-COMP	1	58.1	11	59.5					137.360
MECC-COMP	2	57.8	12	51.6					
MECC-COMP	3	55.4	13	57.8					
MECC-COMP	4	52.3	14	54.5					
MECC-COMP	5	57.5	15	51.2					
MECC-COMP	6	53.1	16	52.7					
MECC-COMP	7	54.8	17	55.9					
MECC-COMP	8	52.6	18	56.1					
MECC-COMP	9	56.2	19	59.2					
MECC-COMP	10	56.5	20	53.1			00.252	227.222	1
1-20 total							99.860	237.220	

MECC 2011 (IN	DIGENO	US MUSSE	LS)		ORGANI		*calculated field	*Weight of jar and	d mussel meat
Site	#	Length (mm)		Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Cumulative wet weight (g)*	Jar weight (g)
MECC-1	1	52.6	11	52.5					199.391
MECC-1	2	51.0	12	54.4					
MECC-1	3	54.8	13	56.1					
MECC-1	4	56.8	14	59.0					
MECC-1	5	53.4	15	54.4					
MECC-1	6	58.4	16	52.0					
MECC-1	7	55.4	17	53.5					
MECC-1	8	56.7	18	59.4					
MECC-1	9	58.7	19	51.0					
MECC-1	10	53.2	20	56.5					
1-20 total							105.478	304.869	
MECC-2	1	57.1	11	51.8					200.664
MECC-2	2	55.4	12	54.6					
MECC-2	3	56.4	13	57.2					
MECC-2	4	53.6	14	53.6					
MECC-2	5	51.5	15	56.1					
MECC-2	6	52.0	16	54.1					
MECC-2	7	54.4	17	51.1					
MECC-2	8	55.9	18	52.6					
MECC-2	9	57.1	19	58.0					
MECC-2	10	54.6	20	51.0					,
1-20 total							99.209	299.873	
MECC-3	1	52.7	11	53.6					200.141
MECC-3	2	51.6	12	57.4					
MECC-3	3	58.1	13	57.2					
MECC-3	4	52.4	14	52.6					
MECC-3	5	54.2	15	57.9					
MECC-3	6	57.6	16	58.1					
MECC-3	7	54.1	17	58.8					
MECC-3	8	53.7	18	53.9					
MECC-3	9	57.5	19	55.5					
MECC-3	10	58.8	20	51.0					
1-20 total	l						122.623	322.764	
MECC-COMP	1	59.8	11	59.9					197.706
MECC-COMP	2	57.5	12	58.6					
MECC-COMP	3	57.9	13	58.5					
MECC-COMP	4	52.0	14	57.1					
MECC-COMP	5	58.6	15	53.3					
MECC-COMP	6	56.2	16	56.6					
MECC-COMP	7	52.1	17	51.1					
MECC-COMP	8	54.3	18	51.8					
MECC-COMP	9	53.4	19	54.7					
MECC-COMP	10	53.7	20	52.8	J				1
1-20 total							101.205	298.911	

		*calculated
D 2011 (INDICENOUS MUSSEIS)	METALS	field

NHDP 2011 (INDIGENOUS MUSSELS)					METALS			*Weight of jar and	d mussel meat
Site	#	Length	#	Length	Height	Width	Wet weight (g)	Cumulative wet	Jar weight
	π	(mm)	#	(mm)	(mm)	(mm)		weight (g)*	(g)
NHDP-1	1	56.1	11	56.7	27.2	26.6	4.940	142.240	137.300
NHDP-1	2	52.4	12	54.3	27.0	21.7	4.330	146.570	
NHDP-1	3	54.0	13	57.7	29.0	21.8	3.730	150.300	
NHDP-1	4	53.1	14	56.6	29.0	22.4	4.310	154.610	
NHDP-1	5	53.2	15	50.1	25.8	20.1	3.300	157.910	
NHDP-1	6	55.0	16	51.1	24.1	20.8	2.670	160.580	
NHDP-1	7	55.4	17	57.7	26.3	24.1	3.590	164.170	
NHDP-1	8	54.8	18	58.5	25.5	24.3	4.800	168.970	
NHDP-1	9	54.9	19	50.9	23.6	18.9	2.130	171.100	
NHDP-1	10	56.3	20	50.7	27.5	19.9	3.260	174.360	
1-20 tota	1						79.200	216.500	
NHDP-2	1	50.7	11	54.8	28.5	20.6	4.180	141.860	137.680
NHDP-2	2	55.1	12	57.8	31.8	22.1	5.920	147.780	
NHDP-2	3	52.8	13	50.6	25.4	20.7	2.700	150.480	
NHDP-2	4	54.5	14	56.0	28.4	23.4	3.560	154.040	
NHDP-2	5	56.5	15	52.9	25.7	20.3	3.390	157.430	
NHDP-2	6	55.2	16	57.0	30.9	22.2	3.720	161.150	
NHDP-2	7	55.5	17	55.2	23.6	25.1	4.640	165.790	
NHDP-2	8	58.2	18	57.3	29.7	21.3	3.910	169.700	
NHDP-2	9	52.2	19	54.2	30.0	20.0	2.730	172.430	
NHDP-2	10	57.0	20	56.3	27.4	21.5	3.840	176.270	
1-20 total							79.500	217.180	
NHDP-3	1	51.8	11	53.6					137.350
NHDP-3	2	55.2	12	52.9					
NHDP-3	3	58.0	13	51.0					
NHDP-3	4	57.2	14	55.1					
NHDP-3	5	55.4	15	53.8					
NHDP-3	6	52.0	16	52.4					
NHDP-3	7	55.5	17	53.5					
NHDP-3	8	56.8	18	56.5					
NHDP-3	9	57.1	19	57.3					
NHDP-3	10	51.8	20	53.9					
1-20 tota	1						93.460	230.810	
NHDP-COMP	1	51.4	11	54.8					137.260
NHDP-COMP	2	56.4	12	51.4					
NHDP-COMP	3	56.0	13	52.4					
NHDP-COMP	4	51.6	14	56.4					
NHDP-COMP	5	55.1	15	53.2					
NHDP-COMP	6	56.6	16	52.0					
NHDP-COMP	7	50.4	17	56.3					
NHDP-COMP	8	56.9	18	53.1					
NHDP-COMP	9	50.5	19	55.0					
NHDP-COMP	10	51.0	20	54.3					
1-20 total							84.061	221.321	
								· · · · · · · · · · · · · · · · · · ·	

NHDP 2011 (INDIGENOUS *calculated **ORGANICS** MUSSELS) field *Weight of jar and mussel meat Length Length Height Width Cumulative wet Jar weight # Wet weight (g) Site (mm) weight (g)* (mm) (mm) (mm) (g) NHDP-1 53.5 11 51.4 200,443 1 NHDP-1 2 51.7 12 56.3 NHDP-1 3 13 54.0 50.1 NHDP-1 4 58.1 14 53.5 5 51.0 15 53.0 NHDP-1 NHDP-1 6 54.3 16 55.1 7 17 NHDP-1 51.6 51.5 8 54.3 18 53.9 NHDP-1 9 NHDP-1 55.5 19 55.2 10 20 53.7 NHDP-1 51.4 75.572 1-20 total 276.015 56.2 NHDP-2 11 54.5 197.646 NHDP-2 2 50.5 12 54.4 13 57.3 NHDP-2 3 51.0 NHDP-2 4 55.0 14 54.4 5 57.4 15 52.8 NHDP-2 NHDP-2 6 57.1 16 50.1 NHDP-2 7 57.0 17 53.5 NHDP-2 8 53.7 18 55.5 NHDP-2 9 51.6 19 50.2 NHDP-2 10 55.7 20 54.9 1-20 total 83.899 281.545 NHDP-3 1 54.0 11 52.8 199.160 NHDP-3 2 55.6 12 53.9 3 NHDP-3 53.7 13 52.8 NHDP-3 4 14 51.9 55.5 5 NHDP-3 57.3 15 55.4 NHDP-3 6 57.6 16 55.4 NHDP-3 7 56.0 17 57.1 NHDP-3 8 53.9 18 51.3 NHDP-3 9 50.9 19 53.0 10 20 NHDP-3 54.1 50.8 1-20 total 69.455 268.615 NHDP-COMP 201.600 55.7 11 57.8 NHDP-COMP 2 12 55.0 55.1 NHDP-COMP 3 52.2 13 53.0 NHDP-COMP 4 50.0 14 57.0 NHDP-COMP 5 57.6 15 58.4 NHDP-COMP 54.3 16 56.3 6 NHDP-COMP 7 53.0 17 51.3 8 56.3 18 NHDP-COMP 53.1 NHDP-COMP 9 51.1 19 59.1

78.850

280.450

NHDP-COMP

1-20 total

10

20

54.5

51.6

NHHS 2011 (INI	DIGENO	US MUSSE	LS)		METALS		*calculated field	*Weight of jar and	l mussel meat
Site	#	Length (mm)	#	Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Cumulative wet weight (g)*	Jar weight (g)
NHHS-1	1	57.7	11	56.8	35.5	28.6	5.948	143.130	137.182
NHHS-1	2	51.9	12	52.3	25.5	28.9	4.440	147.570	
NHHS-1	3	53.6	13	53.3	27.4	25.2	4.840	152.410	
NHHS-1	4	52.2	14	56.7	27.7	30.9	7.330	159.740	
NHHS-1	5	55.6	15	56.9	28.5	26.9	5.400	165.140	
NHHS-1	6	51.0	16	57.9	26.6	28.7	5.730	170.870	
NHHS-1	7	54.6	17	50.9	25.8	27.8	5.000	175.870	
NHHS-1	8	53.4	18	55.1	29.0	27.2	3.670	179.540	
NHHS-1	9	54.6	19	52.7	28.3	27.6	5.040	184.580	
NHHS-1	10	55.4	20	52.5	27.3	28.0	4.860	189.440	
1-20 tota							108.558	245.740	
NHHS-2	1	55.0	11	52.1	27.1	27.8	4.855	142.050	137.195
NHHS-2	2	59.5	12	54.9	27.1	27.2	5.260	147.310	
NHHS-2	3	51.4	13	52.0	25.0	26.0	4.250	151.560	
NHHS-2	4	55.8	14	55.3	28.0	26.2	5.580	157.140	
NHHS-2	5	54.1	15	51.8	26.5	25.5	3.700	160.840	
NHHS-2	6	51.9	16	50.6	23.1	25.0	3.500	164.340	
NHHS-2	7	50.8	17	50.6	25.9	28.3	4.720	169.060	
NHHS-2	8	55.8	18	54.4	26.5	23.7	5.680	174.740	
NHHS-2	9	51.4	19	57.9	25.5	29.6	4.830	179.570	
NHHS-2	10	51.2	20	53.1	24.1	28.1	3.860	183.430	
1-20 total	1		1				103.945	241.140	
NHHS-3	1	53.6	11	50.6					136.330
NHHS-3	2	53.7	12	53.2	1			,	
NHHS-3	3	54.3	13	51.7	1				
NHHS-3	4	55.6	14	53.6	1				
NHHS-3	5	51.7	15	52.6	1				
NHHS-3	6	52.6	16	53.5	1				
NHHS-3	7	50.6	17	53.5					
NHHS-3	8	53.5	18	50.0					
NHHS-3	9	53.0	19	54.9					
NHHS-3	10	51.7	20	50.9					
1-20 total	1				_		122.750	259.080	
NHHS-COMP	1	51.6	11	50.2					137.226
NHHS-COMP	2	58.2	12	53.0					
NHHS-COMP	3	54.9	13	56.2					
NHHS-COMP	4	56.6	14	51.4					
NHHS-COMP	5	55.4	15	50.0					
NHHS-COMP	6	52.5	16	57.4					
NHHS-COMP	7	55.1	17	51.9					
NHHS-COMP	8	53.5	18	50.6					
NHHS-COMP	9	52.9	19	51.7					
NHHS-COMP	10	52.1	20	50.1					
1-20 tota							108.465	245.691	

DIGENO	US MUSSE	LS)		ORGANI	CS	*calculated field	*Weight of jar and	l mussel meat
#	Length (mm)		Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Cumulative wet weight (g)*	Jar weight (g)
1	52.2	11	57.7					197.750
2	50.0	12		7				
3	54.2	13						
4	54.6	14						
5	56.2	15	51.0					
6	53.4	16	50.2					
7	51.3	17	53.8					
8	51.5	18	53.4					
9	54.7	19	52.6					
10	51.6	20	56.7					
1				_		120.720	318.470	
1	51.2	11	50.4					200.249
2	53.3	12	51.4					
3	51.5	13	56.0					
	52.6	14						
		15		7				
6		16		7				
7		17						
8		18		1				
9				1				
10	58.2	20	50.4	7				
1				_		109.511	309.760	
1	51.0	11	53.9					198.560
2				1			_	
				1				
				1				
				1				
6		16		1				
7	50.2	17	51.9					
8	50.7	18	54.8					
9	51.9	19	53.4					
10	53.6	20	50.2					
1						128.930	327.490	
1	50.9	11	53.4					205.360
	50.3							
		16						
		_						
		_						
1				_		113.359	318.719	
	# 1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 7 8 9 10 1 1 1 2 3 4 5 6 7 8 9 10 1 1 1 2 3 4 5 6 7 8 9 10 1 1 1 1 2 3 4 5 6 7 8 9 10 1 1 1 1 2 3 4 5 6 7 8 9 10 1 1 1 1 2 3 4 5 6 7 8 9 10 1 1 1 1 2 3 4 5 6 7 8 9 10 1 1 1 1 2 3 4 5 6 7 8 9 10 1 1 1 1 2 3 4 5 6 7 8 9 10 1 1 1 1 2 3 4 5 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	# Length (mm) 1 52.2 2 50.0 3 54.2 4 54.6 5 56.2 6 53.4 7 51.3 8 51.5 9 54.7 10 51.6 1 51.2 2 53.3 3 51.5 4 52.6 5 54.0 6 53.3 7 55.5 8 57.1 9 52.7 10 58.2 1 51.0 2 53.4 3 52.4 4 50.7 5 53.3 6 55.7 7 50.2 8 50.7 9 51.9 10 53.6 1 50.9 2 50.3 3 54.3 4 55.0 5 53.2 6 50.7 7 53.0 8 50.7 9 51.6 10 53.7	# (mm) 1	# Length (mm) Length (mm) 1 52.2 11 57.7 2 50.0 12 53.0 3 54.2 13 53.2 4 54.6 14 52.3 5 56.2 15 51.0 6 53.4 16 50.2 7 51.3 17 53.8 8 51.5 18 53.4 9 54.7 19 52.6 10 51.6 20 56.7 1 51.2 11 50.4 2 53.3 12 51.4 3 51.5 13 56.0 4 52.6 14 51.3 5 54.0 15 55.3 6 53.3 16 52.0 7 55.5 17 53.1 8 57.1 18 52.3 9 52.7 19 50.0 10 58.2 20 50.4 1 51.9 50.0 10 58.2 20 50.4 1 50.2 5 53.3 15 50.8 6 55.7 16 53.5 7 50.2 17 51.9 8 50.7 18 54.8 9 51.9 19 53.4 10 53.6 20 50.2 1 50.0 10 53.6 20 50.2 1 50.0 10 53.6 20 50.2 1 50.0 10 53.6 20 50.2 1 50.0 10 53.7 20 52.3 52.8 50.7 18 54.8 50.7 16 50.4 7 53.0 17 56.1 8 50.7 16 50.4 7 53.0 17 56.1 8 50.7 18 52.6 9 51.6 19 60.0 10 53.7 20 52.3 52.3 52.3 52.3 53.7 20 52.3 52.3 52.3 52.3 53.7 20 52.3	# Length (mm) Length (mm) Height (mm) 1	# Length (mm) Length (mm) Height (mm) 1	H	# Length (mm) Length (mm) Height (mm) Width (mm) Wet weight (g) Cumulative wet weight (g)

*calculated **METALS** NHFP 2011 (INDIGENOUS MUSSELS) field *Weight of jar and mussel meat Width Length Length Height Cumulative wet Jar weight # Site Wet weight (g) (mm) (mm) (mm) (mm) weight (g)* (g) NHFP-1 3.840 137.640 1 51.5 11 52.9 27.1 22.7 141.480 NHFP-1 2 50.8 12 54.5 26.3 25.4 7.370 148.850 NHFP-1 3 50.2 13 5.800 154.650 52.1 27.2 24.6 NHFP-1 4 55.3 14 52.1 24.9 22.7 4.840 159.490 NHFP-1 5 53.7 15 54.7 27.1 25.9 5.790 165.280 6 3.800 NHFP-1 55.9 16 50.2 24.2 22.5 169.080 NHFP-1 7 17 52.2 27.8 4.280 173.360 53.1 22.1 NHFP-1 56.2 18 52.8 26.4 23.6 4.070 177.430

111111	U	30.2	10	32.0	20.7	23.0	4.070	177.730	
NHFP-1	9	54.7	19	56.9	27.8	24.9	5.340	182.770	
NHFP-1	10	54.3	20	50.5	23.8	27.5	4.440	187.210	
1-20 tota	1						99.300	236.940	
NHFP-2	1	56.9	11	57.0	27.0	22.5	6.320	159.190	137.640
NHFP-2	2	52.8	12	59.5	26.1	27.5	5.600	164.790	
NHFP-2	3	50.7	13	58.7	26.2	26.1	6.900	171.690	
NHFP-2	4	50.9	14	52.2	28.0	26.9	5.900	177.590	
NHFP-2	5	53.2	15	52.7	23.9	23.2	4.260	181.850	
NHFP-2	6	53.0	16	55.6	27.1	23.4	5.480	187.330	
NHFP-2	7	52.0	17	53.2	26.0	22.2	3.060	190.390	
NHFP-2	8	53.4	18	50.9	25.8	24.5	5.220	195.610	
NHFP-2	9	54.8	19	53.3	24.4	21.6	3.820	199.430	
NHFP-2	10	53.8	20	52.1	25.2	23.8	3.850	203.280	
1-20 tota	.1						99.530	237.170	
NHFP-3	1	53.4	11	59.0					137.525
NHFP-3	2	54.4	12	55.3					
NHFP-3	3	58.8	13	55.4					
NHFP-3	4	56.0	14	55.5					
NHFP-3	5	51.5	15	59.1					
NHFP-3	6	55.5	16	56.6					
NHFP-3	7	55.0	17	53.5					
NHFP-3	8	54.2	18	58.2					
NHFP-3	9	54.0	19	50.4					
NHFP-3	10	55.9	20	55.7					
1-20 total							107.918	245.443	
NHFP-COMP	1	54.7	11	59.9					137.347
NHFP-COMP	2	52.5	12	54.0					
NHFP-COMP	3	57.9	13	54.4					
NHFP-COMP	4	51.8	14	58.2					
NHFP-COMP	5	54.3	15	56.8					
NHFP-COMP	6	58.9	16	50.2					
NHFP-COMP	7	59.0	17	51.8					
NHFP-COMP	8	57.6	18	50.1					
NHFP-COMP	9	50.8	19	50.1					
NHFP-COMP	10	55.2	20	55.6					
1-20 tota	.1						110.900	248.247	

NHFP 2011 (IN	DIGENO	US MUSSE	LS)		ORGANI	CS	*calculated field	*Weight of jar and	l mussel meat
Site	#	Length (mm)		Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Cumulative wet weight (g)*	Jar weight (g)
NHFP-1	1	51.5	11	56.5					200.020
NHFP-1	2	50.0	12	56.0	1				
NHFP-1	3	51.5	13	51.0	1				
NHFP-1	4	53.5	14	50.9	1				
NHFP-1	5	58.4	15	54.1					
NHFP-1	6	51.8	16	51.9					
NHFP-1	7	54.6	17	57.2					
NHFP-1	8	58.1	18	54.3					
NHFP-1	9	56.9	19	53.8					
NHFP-1	10	52.9	20	54.0					
1-20 tota	1				_		103.700	303.720	
NHFP-2	1	53.5	11	53.8					200.390
NHFP-2	2	57.7	12	55.2					
NHFP-2	3	53.2	13	55.6					
NHFP-2	4	54.8	14	53.4					
NHFP-2	5	56.4	15	51.0					
NHFP-2	6	53.6	16	51.2					
NHFP-2	7	56.4	17	53.3					
NHFP-2	8	58.1	18	59.9	1				
NHFP-2	9	52.4	19	56.1					
NHFP-2	10	53.9	20	53.0					
1-20 tota	1				_		99.950	300.340	
NHFP-3	1	51.1	11	55.0					179.560
NHFP-3	2	56.6	12	54.9					
NHFP-3	3	55.6	13	53.3					
NHFP-3	4	51.9	14	59.9					
NHFP-3	5	52.6	15	52.9					
NHFP-3	6	53.0	16	55.0					
NHFP-3	7	53.6	17	52.8					
NHFP-3	8	55.0	18	57.1					
NHFP-3	9	56.5	19	54.6					
NHFP-3	10	58.0	20	56.5					
1-20 total							136.170	315.730	
NHFP-COMP	1	57.1	11	52.4					204.250
NHFP-COMP	2	59.1	12	50.3					
NHFP-COMP	3	53.8	13	51.7					
NHFP-COMP	4	57.0	14	51.0					
NHFP-COMP	5	52.2	15	50.3					
NHFP-COMP	6	52.1	16	51.4					
NHFP-COMP	7	56.4	17	51.7					
NHFP-COMP	8	55.3	18	55.0					
NHFP-COMP	9	53.7	19	54.5					
NHFP-COMP	10	51.0	20	58.5					
1-20 tota	.1						105.560	309.810	

NHSS 2011 (INI	DIGENO	US MUSSE	LS)		METALS		*calculated field	*Weight of jar an	d mussel meat
, i		Length	T	Length	Height	Width		Cumulative wet	
Site	#	(mm)	#	(mm)	(mm)	(mm)	Wet weight (g)	weight (g)*	Jar weight (g)
NHSS-1	1	52.0	11	58.7	30.4	20.9	5.140	142.650	137.510
NHSS-1	2	58.6	12	54.5	28.3	21.5	3.850	146.500	
NHSS-1	3	56.7	13	52.8	57.2	52.6	4.300	150.800	
NHSS-1	4	51.3	14	57.9	28.6	25.2	5.300	156.100	
NHSS-1	5	52.6	15	58.7	30.7	22.7	4.630	160.730	
NHSS-1	6	54.9	16	58.6	32.7	22.8	4.510	165.240	
NHSS-1	7	50.0	17	52.0	25.0	26.9	5.090	170.330	
NHSS-1	8	56.0	18	56.7	30.0	26.9	5.220	175.550	
NHSS-1	9	51.6	19	53.5	29.0	19.9	3.670	179.220	
NHSS-1	10	56.9	20	56.3	27.5	21.9	2.550	181.770	
1-20 tota	1						91.590	229.100	
NHSS-2	1	53.7	11	53.9	28.8	21.6	4.390	141.730	137.340
NHSS-2	2	55.3	12	53.0	30.4	20.9	4.540	146.270	
NHSS-2	3	56.0	13	54.5	28.6	21.7	4.700	150.970	
NHSS-2	4	59.1	14	52.7	27.1	21.5	2.810	153.780	
NHSS-2	5	55.8	15	55.0	29.0	21.5	4.470	158.250	
NHSS-2	6	54.5	16	53.3	29.6	22.8	3.400	161.650	
NHSS-2	7	53.4	17	55.7	29.9	21.7	3.930	165.580	
NHSS-2	8	57.6	18	58.1	29.8	23.1	4.290	169.870	
NHSS-2	9	53.6	19	51.7	26.6	22.3	2.930	172.800	
NHSS-2	10	52.6	20	57.3	29.9	22.1	4.520	177.320	
1-20 tota	1						82.640	219.980	
NHSS-3	1	59.9	11	51.5					137.430
NHSS-3	2	57.0	12	51.5					
NHSS-3	3	56.8	13	56.8					
NHSS-3	4	55.7	14	59.2					
NHSS-3	5	59.6	15	60.0					
NHSS-3	6	57.7	16	53.9					
NHSS-3	7	53.0	17	55.3					
NHSS-3	8	57.9	18	59.7					
NHSS-3	9	56.6	19	57.2					
NHSS-3	10	56.1	20	54.8					
1-20 tota	1						100.502	237.932	
NHSS-COMP	1	50.2	11	51.7					137.140
NHSS-COMP	2	56.5	12	57.8					
NHSS-COMP	3	52.9	13	58.2					
NHSS-COMP	4	55.9	14	52.2					
NHSS-COMP	5	53.3	15	59.8					
NHSS-COMP	6	51.8	16	55.5					
NHSS-COMP	7	52.7	17	51.8					
NHSS-COMP	8	51.0	18	55.8					
NHSS-COMP	9	57.2	19	53.2					
NHSS-COMP	10	51.0	20	59.3					
1-20 tota	1						84.369	221.509	

NHSS 2011 (INI	DIGENO	US MUSSE	LS)		ORGANI	CS	*calculated field	*Weight of jar and	d mussel meat
Site	#	Length (mm)		Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Cumulative wet weight (g)*	Jar weight (g)
NHSS-1	1	51.0	11	55.4					137.600
NHSS-1	2	54.6	12	51.3				'	
NHSS-1	3	50.3	13	57.5					
NHSS-1	4	53.9	14	54.4					
NHSS-1	5	53.1	15	52.0					
NHSS-1	6	55.4	16	54.2					
NHSS-1	7	57.1	17	57.6					
NHSS-1	8	56.6	18	55.1					
NHSS-1	9	50.3	19	56.5					
NHSS-1	10	57.2	20	56.3					
1-20 tota	ıl				_		108.040	245.640	
NHSS-2	1	57.9	11	53.6					137.160
NHSS-2	2	51.7	12	50.0					
NHSS-2	3	52.6	13	51.3					
NHSS-2	4	52.5	14	51.9					
NHSS-2	5	55.3	15	52.6					
NHSS-2	6	50.5	16	53.7					
NHSS-2	7	56.4	17	50.3					
NHSS-2	8	54.2	18	56.8					
NHSS-2	9	54.3	19	51.9	1				
NHSS-2	10	50.1	20	58.9					
1-20 tota	ıl				_		85.200	222.360	
NHSS-3	1	55.7	11	57.9					137.480
NHSS-3	2	54.3	12	54.4				'	
NHSS-3	3	58.3	13	56.5					
NHSS-3	4	56.0	14	56.7					
NHSS-3	5	53.6	15	55.2					
NHSS-3	6	56.7	16	59.1					
NHSS-3	7	59.3	17	57.7					
NHSS-3	8	59.6	18	59.1					
NHSS-3	9	54.2	19	58.5					
NHSS-3	10	52.4	20	57.9					
1	-20 total						106.710	244.190	
NHSS-COMP	1	58.7	11	51.2					137.350
NHSS-COMP	2	50.9	12	51.9					
NHSS-COMP	3	55.8	13	54.1					
NHSS-COMP	4	56.6	14	58.8					
NHSS-COMP	5	53.9	15	56.4					
NHSS-COMP	6	52.9	16	58.2					
NHSS-COMP	7	52.4	17	57.1					
NHSS-COMP	8	54.3	18	55.3					
NHSS-COMP	9	57.5	19	58.5					
NHSS-COMP	10	55.8	20	56.1					
1-20 tota	ıl						102.720	240.070	

NH Gulfwatch 2011 Sample Jar Data Summary

Will Guil Water 2011	Sumple Gul 2 u	>	TARE W	EIGHT	TOTAL W	VEIGHT	TISSUE V	VEIGHT	LEN	GTH
Site	Site #	Jar label	ORGANICS	METALS	ORGANICS	METALS	ORGANICS	METALS	MIN	MAX
Indigenous Mussels										
Clark Cove	MECC-1	MECC-1N-110919	199.391	137.220	304.869	211.770	105.478	74.550	50.500	59.900
on Seavey I.	MECC-2	MECC-2N-110919	200.664	137.620	299.873	216.500	99.209	78.880	51.000	58.200
in Portsmouth	MECC-3	MECC-3N-110919	200.141	137.160	322.764	247.191	122.623	110.031	51.000	59.800
Harbor, Maine	MECC- COMP	MECC-COMP- 110919	197.706	137.360	298.911	237.220	101.205	99.860	51.100	59.900
Hampton-	NHHS-1	NHHS-1N-110919	197.750	137.182	318.470	245.740	120.720	108.558	50.000	57.900
Seabrook Harbor	NHHS-2	NHHS-2N-110919	200.249	137.195	309.760	241.140	109.511	103.945	50.000	59.500
Hampton,	NHHS-3	NHHS-3N-110919	198.560	136.330	327.490	259.080	128.930	122.750	50.000	55.700
New Hampshire	NHHS- COMP	NHHS-COMP- 110919	205.360	137.226	318.719	245.691	113.359	108.465	50.000	60.000
•										
Dover Point	NHDP-1	NHDP-1N-110919	200.443	137.300	276.015	216.500	75.572	79.200	50.100	58.500
	NHDP-2	NHDP-2N-110919	197.646	137.680	281.545	217.180	83.899	79.500	50.100	58.200
Dover	NHDP-3	NHDP-3N-110919	199.160	137.350	268.615	230.810	69.455	93.460	50.800	58.000
New Hampshire	NHDP- COMP	NHDP-COMP- 110919	201.600	137.260	280.450	221.321	78.850	84.061	50.000	59.100
Fox Point	NHFP-1	NHFP-1N-110919	200.020	137.640	303.720	236.940	103.700	99.300	50.000	58.400
	NHFP-2	NHFP-2N-110919	200.390	137.640	300.340	237.170	99.950	99.530	50.700	59.900
Newington,	NHFP-3	NHFP-3N-110919	179.560	137.525	315.730	245.443	136.170	107.918	50.400	59.900
	NHFP-	NHFP-COMP-								
New Hampshire	COMP	110919	204.250	137.347	309.810	248.247	105.560	110.900	50.100	59.900
Schiller Station	NHSS-1	NHSS-1N-110919	137.600	137.510	245.640	229.100	108.040	91.590	50.000	58.700
	NHSS-2	NHSS-2N-110919	137.160	137.340	222.360	219.980	85.200	82.640	50.000	59.100
Portsmouth,	NHSS-3	NHSS-3N-110919	137.480	137.430	244.190	237.932	106.710	100.502	51.500	60.000
New Hampshire	NHSS- COMP	NHSS-COMP- 110919	137.350	137.140	240.070	221.509	102.720	84.369	50.200	59.800
Summary Statistics			Mean	Mean	Mean	Mean	Mean	Mean	Min	Max
Mussels			186.624	137.323	289.467	233.323	102.843	96.000	50.000	60.000

Appendix C: NH Gulfwatch Data for 2010 - Organics

StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
MECC	1N	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	12.78	%
MECC	2N	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	14.38	%
MECC	3N	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	13.33	%
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHENE	<8	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHYLENE	<11	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ANTHRACENE	<10	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)ANTHRACENE	8.46	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)PYRENE	7.03	UG/KG-dw
MECC MECC	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	BENZO(B)FLUORANTHENE BENZO(E)PYRENE	13.59 15.26	UG/KG-dw UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(E)FTRENE BENZO(GHI)PERYLENE	<15.20	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(K)FLUORANTHENE	11.85	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BIPHENYL	<10	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-CHRYSENE	11.76	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-DIBENZOTHIOPHENE	<10	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLOURANTHENE	11.67	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLOURANTHENE	<9	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLUORENE	<7	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-NAPHTHALENE	12.24	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-PHENANTHRENE	<12	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-CHRYSENE	<6	UG/KG-dw
MECC MECC	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	C2-DIBENZOTHIOPHENE C2-FLUORENE	<10 <7	UG/KG-dw UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-NAPHTHALENE	<8	UG/KG-dw UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-PHENANTHRENE	11.49	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C-3 NAPHTHALENE	<7	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-CHRYSENE	<6	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-DIBENZOTHIOPHENE	<10	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-FLUORENE	<7	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-PHENANTHRENE	<6	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-CHRYSENE	<6	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-FLUORENE	<10	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-NAPHTHALENE	<7	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-PHENANTHRENE	<6	UG/KG-dw
MECC MECC	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	CHRYSENE DIBENZO(AH)ANTHRACENE	14.07 <11	UG/KG-dw UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZOTHIOPHENE	<10	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORANTHENE	22.49	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORENE	<7	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	INDENO(123CD)PYRENE	8.06	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	NAPHTHALENE	12.64	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PERYLENE	9.25	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PHENANTHRENE	<6	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PYRENE	22.22	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	TOTAL PAHS	157.15	UG/KG-dw
MECC MECC	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB PCB	101;90 105;	<2.2	UG/KG-dw UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB PCB	118;	<1.4	UG/KG-dw UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	126;	<1.9	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	128;	<1.9	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	138;	4.74	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	153 ; 132	5.25	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	169;	<1.7	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	170 ; 190	<1.8	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	18;15	<2.7	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	180;	<1.7	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	187;	2.10	UG/KG-dw
MECC MECC	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB PCB	195; 208 206;	<1.8	UG/KG-dw UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB	209;	<1.7 <1.7	UG/KG-dw UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	28;	<2.3	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	29;	<2.2	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	44;	<2.3	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	50;	<2.4	UG/KG-dw

StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	52;	<2	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	66;95	<2.2	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	77;	<2.3	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	8;5	<2.8	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	87;	<1.9	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	SUM PCBS	12.10	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A_BHC	<2	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A-ENDOSULFAN	<1.5	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ALDRIN	<1.5	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	B-ENDOSULFAN	<3.4	UG/KG-dw
MECC MECC	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE PESTICIDE	CVPERMETHRIN	<1.2 <5	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	CYPERMETHRIN DELTAMETHRIN	<5	UG/KG-dw UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	DIELDRIN	<1.4	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ENDRIN	<2.2	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	G-CHLORDANE	<1.5	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	G-HCH(LINDANE)	<1.5	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	НСВ	<2.4	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOR	<2	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOREPOXIDE	<1.8	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	METOXYCHLOR	9.03	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	MIREX	<1.5	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDD	<4	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDE	<1	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDT	<2.8	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDD	<2	UG/KG-dw
MECC MECC	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE PESTICIDE	P,P'-DDE P,P'-DDT	2.83 <2.5	UG/KG-dw UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	PERMETHRIN	<5	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	T-NONACHLOR	<1.4	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	TOTAL DDT	2.83	UG/KG-dw
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	LIPID CONTENT	4.38	%
MECC	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	14.36	%
NHDP	1N	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	11.40	%
NHDP	2N	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	12.09	%
NHDP	3N	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	11.67	%
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHENE	<8	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHYLENE	<11	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ANTHRACENE	<10	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)ANTHRACENE	11.54	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)PYRENE	7.98	UG/KG-dw
NHDP	COMP COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(B)FLUORANTHENE	20.15	UG/KG-dw UG/KG-dw
NHDP NHDP	COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	BENZO(E)PYRENE BENZO(GHI)PERYLENE	<15	UG/KG-dw UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(K)FLUORANTHENE	17.77	UG/KG-dw UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BIPHENYL	<10	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-CHRYSENE	17.74	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLOURANTHENE	19.58	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLOURANTHENE	<9	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLUORENE	<7	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-NAPHTHALENE	<8	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-PHENANTHRENE	<12	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-CHRYSENE	<6	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-FLUORENE	<7	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-NAPHTHALENE	<8	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-PHENANTHRENE	10.79	UG/KG-dw
NHDP NHDP	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C-3 NAPHTHALENE	<7	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	C3-CHRYSENE C3-DIBENZOTHIOPHENE	<6 <10	UG/KG-dw UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-FLUORENE	<7	UG/KG-dw UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-PHENANTHRENE	<6	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-CHRYSENE	<6	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-FLUORENE	<10	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-NAPHTHALENE	<7	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-PHENANTHRENE	<6	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	CHRYSENE	18.26	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZO(AH)ANTHRACENE	<11	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZOTHIOPHENE	<10	UG/KG-dw

						Gulfwatch Report, 2	011. K	vision 1
StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORANTHENE	30.65	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORENE	<7	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	INDENO(123CD)PYRENE	10.65	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	NAPHTHALENE PERM ENE	<10	UG/KG-dw
NHDP NHDP	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PERYLENE	11.54	UG/KG-dw UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	PHENANTHRENE PYRENE	36.00	UG/KG-dw UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	TOTAL PAHS	186.27	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	101 ; 90	2.52	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	105;	<1.4	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	118;	2.24	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	126;	<1.9	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	128;	<1.9	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	138;	5.13	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	153 ; 132	5.47	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	169;	<1.7	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	170 ; 190	<1.8	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	18;15	<2.7	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	180 ;	<1.7	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	187;	2.05	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	195 ; 208	<1.8	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	206;	<1.7	UG/KG-dw
NHDP NHDP	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB PCB	209;	<1.7 <2.3	UG/KG-dw UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB	29;	<2.3	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	44;	<2.3	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	50;	<2.4	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	52;	<2	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	66;95	<2.2	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	77;	<2.3	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	8;5	<2.8	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	87;	<1.9	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	SUM PCBS	17.40	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A_BHC	<2	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A-ENDOSULFAN	<1.5	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ALDRIN	<1.5	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	B-ENDOSULFAN	<3.4	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	CIS-CHLORDANE	<1.2	UG/KG-dw
NHDP NHDP	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE PESTICIDE	CYPERMETHRIN DELTAMETHRIN	<5 <5	UG/KG-dw UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	DIELDRIN	<1.4	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ENDRIN	<2.2	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	G-CHLORDANE	<1.5	UG/KG-dw
NHDP	COMP	09/14/10		ROUTINE SAMPLE	PESTICIDE	G-HCH(LINDANE)	<1.5	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	НСВ	<2.4	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOR	<2	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOREPOXIDE	<1.8	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	METOXYCHLOR	6.71	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	MIREX	<1.5	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDD	<4	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDE	<1	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDT	<2.8	UG/KG-dw
NHDP NHDP	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE PESTICIDE	P,P'-DDD P,P'-DDE	2.18 3.65	UG/KG-dw UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE	P,P'-DDE P,P'-DDT	<2.5	UG/KG-dw UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE	PERMETHRIN	<2.3 <5	UG/KG-dw UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	T-NONACHLOR	<1.4	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	TOTAL DDT	5.84	UG/KG-dw
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	LIPID CONTENT	4.13	%
NHDP	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	11.96	%
NHHS	1N	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	15.19	%
NHHS	2N	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	14.55	%
NHHS	3N	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	13.63	%
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHENE	<8	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHYLENE	<11	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ANTHRACENE	<10	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)ANTHRACENE	6.57	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)PYRENE	<4	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(B)FLUORANTHENE	<6	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(E)PYRENE	<7	UG/KG-dw

G: II ID	G N	G. B.	37. 11	G .	n	Gulfwatch Report, 2		
StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter PENZO(CHINDED VI ENE	Result	ResultUnits
NHHS NHHS	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	BENZO(GHI)PERYLENE BENZO(K)FLUORANTHENE	<15 <4	UG/KG-dw UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BIPHENYL	<10	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-CHRYSENE	<6	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLOURANTHENE	<9	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLOURANTHENE	<9	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLUORENE	<7	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-NAPHTHALENE	10.83	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-PHENANTHRENE	<12	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-CHRYSENE	<6	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-FLUORENE	<7	UG/KG-dw
NHHS NHHS	COMP	09/14/10 09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH PAH	C2-NAPHTHALENE	<8 <6	UG/KG-dw
NHHS	COMP COMP	09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH	C2-PHENANTHRENE C-3 NAPHTHALENE	<7	UG/KG-dw UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-CHRYSENE	<6	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-FLUORENE	<7	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-PHENANTHRENE	<6	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-CHRYSENE	<6	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-FLUORENE	<10	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-NAPHTHALENE	<7	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-PHENANTHRENE	<6	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	CHRYSENE	<6	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZO(AH)ANTHRACENE	<11	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZOTHIOPHENE	<10	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORANTHENE	<14	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORENE INDENO(122CD) DVDENE	<7	UG/KG-dw
NHHS NHHS	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	INDENO(123CD)PYRENE NAPHTHALENE	<7 <10	UG/KG-dw UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PERYLENE	<5	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PHENANTHRENE	<6	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PYRENE	10.42	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	TOTAL PAHS	27.82	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	101;90	<2.2	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	105;	<1.4	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	118;	<2	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	126;	<1.9	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	128;	<1.9	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	138;	2.32	UG/KG-dw
NHHS NHHS	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB PCB	153 ; 132 169 ;	2.54 <1.7	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE	PCB	170; 190	<1.7	UG/KG-dw UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	18;15	<2.7	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	180;	<1.7	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	187;	<1.9	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	195; 208	<1.8	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	206;	<1.7	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	209;	<1.7	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	28;	<2.3	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	29;	<2.2	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	44;	<2.3	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	50;	<2.4	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	52;	<2	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	66;95	<2.2	UG/KG-dw
NHHS NHHS	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB PCB	77; 8;5	<2.3 <2.8	UG/KG-dw UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB	87;	<1.9	UG/KG-dw UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	SUM PCBS	4.85	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A_BHC	<2	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A-ENDOSULFAN	<1.5	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ALDRIN	<1.5	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	B-ENDOSULFAN	<3.4	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	CIS-CHLORDANE	<1.2	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	CYPERMETHRIN	<5	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	DELTAMETHRIN	<5	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	DIELDRIN	<1.4	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ENDRIN	<2.2	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	G-CHLORDANE	<1.5	UG/KG-dw

StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	G-HCH(LINDANE)	<1.5	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	НСВ	<2.4	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOR	<2	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOREPOXIDE	<1.8	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	METOXYCHLOR	4.58	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	MIREX	<1.5	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDD	<4	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDE	<1	UG/KG-dw UG/KG-dw
NHHS NHHS	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE PESTICIDE	O,P'-DDT P,P'-DDD	<2.8 <2	UG/KG-dw UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDE	2.71	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDT	<2.5	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	PERMETHRIN	<5	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	T-NONACHLOR	<1.4	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	TOTAL DDT	2.71	UG/KG-dw
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	LIPID CONTENT	5.87	%
NHHS	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	13.40	%
NHHS	COMP	09/14/10	MUSSEL TISSUE	LAB DUPLICATE	PHYSICAL	PERCENT SOLIDS	13.40	%
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHENE	<8	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHYLENE	<11	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ANTHRACENE	<10	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)ANTHRACENE	<6	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)PYRENE	4.66	UG/KG-dw
NHLH NHLH	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	BENZO(B)FLUORANTHENE BENZO(E)PYRENE	7.59 8.68	UG/KG-dw UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH	BENZO(E)PYRENE BENZO(GHI)PERYLENE	<15	UG/KG-dw UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(K)FLUORANTHENE	7.26	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BIPHENYL	<10	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-CHRYSENE	7.31	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLOURANTHENE	<9	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLOURANTHENE	<9	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLUORENE	<7	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-NAPHTHALENE	<8	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-PHENANTHRENE	<12	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-CHRYSENE	<6	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-FLUORENE	<7	UG/KG-dw
NHLH	COMP COMP	09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE	PAH PAH	C2-NAPHTHALENE	<8	UG/KG-dw
NHLH NHLH	COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH	C2-PHENANTHRENE C-3 NAPHTHALENE	7.98	UG/KG-dw UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-CHRYSENE	<6	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-FLUORENE	<7	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-PHENANTHRENE	<6	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-CHRYSENE	<6	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-FLUORENE	<10	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-NAPHTHALENE	<7	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-PHENANTHRENE	<6	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	CHRYSENE	8.56	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZO(AH)ANTHRACENE	<11	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZOTHIOPHENE	<10	UG/KG-dw
NHLH NHLH	COMP	09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORANTHENE FLUORENE	15.67	UG/KG-dw UG/KG-dw
NHLH	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	INDENO(123CD)PYRENE	<7 <7	UG/KG-dw UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH	NAPHTHALENE	<10	UG/KG-dw UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PERYLENE	<5	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PHENANTHRENE	<6	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PYRENE	13.22	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	TOTAL PAHS	65.63	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	101;90	<2.2	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	105;	<1.4	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	118;	<2	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	126;	<1.9	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	128;	<1.9	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	138;	3.31	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	153; 132	3.22	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	169;	<1.7	UG/KG-dw
NHLH NHL H	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	170; 190	<1.8	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	18; 15	<2.7	UG/KG-dw

StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	180;	<1.7	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	187;	<1.9	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	195 ; 208	<1.8	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	206;	<1.7	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	209;	<1.7	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	28;	<2.3	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	29;	<2.2	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	44;	<2.3	UG/KG-dw
NHLH NHLH	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB PCB	50; 52;	<2.4 <2	UG/KG-dw UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	66;95	<2.2	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	77;	<2.3	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	8;5	<2.8	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	87;	<1.9	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	SUM PCBS	6.53	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A_BHC	<2	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A-ENDOSULFAN	<1.5	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ALDRIN	<1.5	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	B-ENDOSULFAN	<3.4	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	CIS-CHLORDANE	1.98	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	CYPERMETHRIN	<5	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	DELTAMETHRIN	<5	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	DIELDRIN	<1.4	UG/KG-dw
NHLH NHLH	COMP COMP	09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE PESTICIDE	ENDRIN G-CHLORDANE	<2.2	UG/KG-dw UG/KG-dw
NHLH	COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE	G-HCH(LINDANE)	<1.5 <1.5	UG/KG-dw UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HCB	<2.4	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOR	<2	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOREPOXIDE	<1.8	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	METOXYCHLOR	<3.1	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	MIREX	<1.5	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDD	<4	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDE	<1	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDT	<2.8	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDD	<2	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDE	2.43	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDT	<2.5	UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	PERMETHRIN	<5	UG/KG-dw
NHLH NHLH	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE PESTICIDE	T-NONACHLOR TOTAL DDT	<1.4 2.43	UG/KG-dw UG/KG-dw
NHLH	COMP	09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PHYSICAL	LIPID CONTENT	3.80	%
NHLH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	14.39	%
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHENE	<8	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHYLENE	<11	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ANTHRACENE	<10	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)ANTHRACENE	12.66	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)PYRENE	8.63	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(B)FLUORANTHENE	21.41	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(E)PYRENE	23.96	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(GHI)PERYLENE	<15	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(K)FLUORANTHENE	17.21	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BIPHENYL	<10	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-CHRYSENE	17.69	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHPI NHPI	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	C1-FLOURANTHENE C1-FLOURANTHENE	19.02	UG/KG-dw UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLUORENE	<7	UG/KG-dw UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-PLUORENE C1-NAPHTHALENE	11.09	UG/KG-dw UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-PHENANTHRENE	13.14	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-CHRYSENE	<6	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-FLUORENE	<7	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-NAPHTHALENE	<8	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-PHENANTHRENE	19.07	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C-3 NAPHTHALENE	<7	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-CHRYSENE	<6	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-FLUORENE	<7	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-PHENANTHRENE	<6	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-CHRYSENE	<6	UG/KG-dw

						Gulfwatch Report, 2	.011. Itt	vision 1
StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-FLUORENE	<10	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-NAPHTHALENE	<7	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-PHENANTHRENE	<6	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	CHRYSENE	21.85	UG/KG-dw
NHPI NHPI	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	DIBENZO(AH)ANTHRACENE DIBENZOTHIOPHENE	<11 <10	UG/KG-dw UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORANTHENE	35.23	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORENE	<7	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	INDENO(123CD)PYRENE	10.48	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	NAPHTHALENE	<10	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PERYLENE	9.33	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PHENANTHRENE	8.46	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PYRENE	35.71	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	TOTAL PAHS	229.16	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	101;90	2.33	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	105;	<1.4	UG/KG-dw
NHPI	COMP COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	118;	2.24	UG/KG-dw
NHPI NHPI	COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB PCB	126; 128;	<1.9 <1.9	UG/KG-dw UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	138;	4.45	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	153 ; 132	5.08	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	169;	<1.7	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	170 ; 190	<1.8	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	18;15	<2.7	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	180;	<1.7	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	187;	<1.9	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	195 ; 208	<1.8	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	206;	<1.7	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	209;	<1.7	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	28;	<2.3	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	29;	<2.2	UG/KG-dw
NHPI NHPI	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE	PCB	44;	<2.3 <2.4	UG/KG-dw UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB PCB	52;	<2.4	UG/KG-dw UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	66;95	<2.2	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	77;	<2.3	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	8;5	<2.8	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	87;	<1.9	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	SUM PCBS	14.11	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A_BHC	<2	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A-ENDOSULFAN	<1.5	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ALDRIN	<1.5	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	B-ENDOSULFAN	<3.4	UG/KG-dw
NHPI	COMP	09/14/10		ROUTINE SAMPLE	PESTICIDE	CIS-CHLORDANE	<1.2	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	CYPERMETHRIN	<5	UG/KG-dw
NHPI NHPI	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE PESTICIDE	DELTAMETHRIN DIELDRIN	<5 <1.4	UG/KG-dw UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ENDRIN	<2.2	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	G-CHLORDANE	<1.5	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	G-HCH(LINDANE)	<1.5	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	НСВ	<2.4	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOR	<2	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOREPOXIDE	<1.8	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	METOXYCHLOR	<3.1	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	MIREX	<1.5	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDD	<4	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDE	<1	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDT	<2.8	UG/KG-dw
NHPI NHPI	COMP	09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE PESTICIDE	P,P'-DDD P,P'-DDE	<2	UG/KG-dw UG/KG-dw
NHPI	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE	P,P'-DDE P,P'-DDT	3.14 <2.5	UG/KG-dw UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE	PERMETHRIN	<2.3 <5	UG/KG-dw UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	T-NONACHLOR	<1.4	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	TOTAL DDT	3.14	UG/KG-dw
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	LIPID CONTENT	4.14	%
NHPI	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	12.25	%
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHENE	<8	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHYLENE	<11	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ANTHRACENE	<10	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)ANTHRACENE	<6	UG/KG-dw

StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)PYRENE	<4	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(B)FLUORANTHENE	<6	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(E)PYRENE	<7	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(GHI)PERYLENE	<15	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(K)FLUORANTHENE	4.75	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BIPHENYL	<10	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-CHRYSENE	<6	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLOURANTHENE	<9	UG/KG-dw
NHRH NHRH	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	C1-FLOURANTHENE C1-FLUORENE	<9 <7	UG/KG-dw UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-NAPHTHALENE	10.21	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-PHENANTHRENE	<12	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-CHRYSENE	<6	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-FLUORENE	<7	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-NAPHTHALENE	<8	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-PHENANTHRENE	10.87	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C-3 NAPHTHALENE	<7	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-CHRYSENE	<6	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-FLUORENE	<7	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-PHENANTHRENE	<6	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-CHRYSENE	<6	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-FLUORENE	<10	UG/KG-dw
NHRH NHRH	COMP COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	C4-NAPHTHALENE C4-PHENANTHRENE	<7 <6	UG/KG-dw UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	CHRYSENE	6.74	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZO(AH)ANTHRACENE	<11	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZOTHIOPHENE	<10	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORANTHENE	<14	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORENE	<7	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	INDENO(123CD)PYRENE	<7	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	NAPHTHALENE	<10	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PERYLENE	5.62	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PHENANTHRENE	<6	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PYRENE	9.76	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	TOTAL PAHS	37.07	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	101;90	<2.2	UG/KG-dw
NHRH NHRH	COMP COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB PCB	105; 118;	<1.4	UG/KG-dw
NHRH	COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB	126;	<1.9	UG/KG-dw UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	128;	<1.9	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	138;	3.27	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	153 ; 132	3.24	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	169;	<1.7	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	170 ; 190	<1.8	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	18;15	<2.7	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	180;	<1.7	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	187;	<1.9	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	195 ; 208	<1.8	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	206;	<1.7	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	209;	<1.7	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	28;	<2.3	UG/KG-dw
NHRH NHRH	COMP COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB PCB	29; 44;	<2.2	UG/KG-dw UG/KG-dw
	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE			<2.3	
NHRH NHRH	COMP	09/14/10 09/14/10	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB PCB	50; 52;	<2.4 <2	UG/KG-dw UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB	66;95	<2.2	UG/KG-dw UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	77;	<2.3	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	8;5	<2.8	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	87;	<1.9	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	SUM PCBS	6.51	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A_BHC	<2	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A-ENDOSULFAN	<1.5	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ALDRIN	<1.5	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	B-ENDOSULFAN	<3.4	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	CIS-CHLORDANE	1.61	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	CYPERMETHRIN	<5	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	DELTAMETHRIN	<5	UG/KG-dw

Gulfwatch Report, 2011. Revision 1

StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	DIELDRIN	<1.4	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ENDRIN	<2.2	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	G-CHLORDANE	<1.5	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	G-HCH(LINDANE)	<1.5	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	НСВ	<2.4	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOR	<2	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOREPOXIDE	<1.8	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	METOXYCHLOR	<3.1	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	MIREX	<1.5	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDD	<4	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDE	<1	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDT	<2.8	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDD	<2	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDE	3.17	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDT	<2.5	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	PERMETHRIN	<5	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	T-NONACHLOR	<1.4	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	TOTAL DDT	3.17	UG/KG-dw
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	LIPID CONTENT	4.81	%
NHRH	COMP	09/14/10	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	13.35	%

Appendix D: NH Gulfwatch Data for 2011

StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
MECC	1N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ALUMINUM	495.49	MG/KG-dw
MECC	1N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	CADMIUM	2.17	MG/KG-dw
MECC	1N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	CHROMIUM	2.56	MG/KG-dw
MECC	1N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	COPPER	7.98	MG/KG-dw
MECC	1N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	IRON	683.71	MG/KG-dw
MECC	1N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	LEAD	3.74	MG/KG-dw
MECC	1N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	MERCURY	0.33	MG/KG-dw
MECC	1N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	NICKEL	2.00	MG/KG-dw
MECC	1N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	SILVER	0.06	MG/KG-dw
MECC	1N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ZINC	136.04	MG/KG-dw
MECC	1N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	14.70	%
MECC	2N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ALUMINUM	440.64	MG/KG-dw
MECC	2N 2N	09/19/11 09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL METAL	CADMIUM	2.26	MG/KG-dw
MECC MECC	2N	09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	METAL	CHROMIUM COPPER	7.52	MG/KG-dw MG/KG-dw
MECC	2N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	IRON	629.72	MG/KG-dw
MECC	2N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	LEAD	3.66	MG/KG-dw
MECC	2N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	MERCURY	0.29	MG/KG-dw
MECC	2N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	NICKEL	1.53	MG/KG-dw
MECC	2N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	SILVER	0.05	MG/KG-dw
MECC	2N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ZINC	121.75	MG/KG-dw
MECC	2N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	15.00	%
MECC	3N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ALUMINUM	223.03	MG/KG-dw
MECC	3N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	CADMIUM	2.56	MG/KG-dw
MECC	3N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	CHROMIUM	1.46	MG/KG-dw
MECC	3N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	COPPER	6.55	MG/KG-dw
MECC	3N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	IRON	324.68	MG/KG-dw
MECC	3N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	LEAD	2.16	MG/KG-dw
MECC	3N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	MERCURY	0.22	MG/KG-dw
MECC	3N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	NICKEL	1.14	MG/KG-dw
MECC	3N	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	SILVER	0.05	MG/KG-dw
MECC MECC	3N 3N	09/19/11 09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE	METAL PHYSICAL	ZINC PERCENT SOLIDS	101.18 14.50	MG/KG-dw %
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	METAL	ALUMINUM	460.56	MG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	CADMIUM	2.16	MG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	CHROMIUM	2.10	MG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	COPPER	6.70	MG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	IRON	576.82	MG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	LEAD	2.75	MG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	MERCURY	0.29	MG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	NICKEL	1.49	MG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	SILVER	0.04	MG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ZINC	90.22	MG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHENE	<8	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHYLENE	<11	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ANTHRACENE	<10	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)ANTHRACENE	6.92	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)PYRENE	6.08	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(B)FLUORANTHENE	13.28	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(E)PYRENE	13.54	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(GHI)PERYLENE	<15	UG/KG-dw
MECC MECC	COMP COMP	09/19/11 09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE	PAH PAH	BENZO(K)FLUORANTHENE BIPHENYL	10.34	UG/KG-dw UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH	C1-CHRYSENE	10.74	UG/KG-dw UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH	C1-DIBENZOTHIOPHENE	<10.74	UG/KG-dw UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH	C1-FLOURANTHENE	9.16	UG/KG-dw UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLOURANTHENE	<9	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLUORENE	<7	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-NAPHTHALENE	12.77	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-PHENANTHRENE	<12	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-CHRYSENE	<6	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-DIBENZOTHIOPHENE	<10	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-FLUORENE	<7	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-NAPHTHALENE	<8	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-PHENANTHRENE	9.38	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C-3 NAPHTHALENE	<7	UG/KG-dw
	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-CHRYSENE	<6	UG/KG-dw
MECC								
MECC MECC MECC	COMP COMP	09/19/11 09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	C3-DIBENZOTHIOPHENE C3-FLUORENE	<10 <7	UG/KG-dw UG/KG-dw

StationID	SampNo	StartDate	Medium	Cotogowy	ParmType	Gulfwatch Report, 20 Parameter	Result	ResultUnits
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-PHENANTHRENE	<6	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH	C4-CHRYSENE	<6	UG/KG-dw UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-CHRTSENE C4-FLUORENE	<10	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-NAPHTHALENE	<7	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-PHENANTHRENE	<6	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	CHRYSENE	11.74	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZO(AH)ANTHRACENE	<11	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZOTHIOPHENE	<10	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORANTHENE	20.43	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORENE	<7	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	INDENO(123CD)PYRENE	8.67	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	NAPHTHALENE	10.28	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PERYLENE	7.73	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PHENANTHRENE	<6	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PYRENE	20.89	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	TOTAL PAHS	142.67	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	101;90	<2.2	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	105;	<1.4	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	118;	<2	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	126 ;	<1.9	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	128;	<1.9	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	138;	3.85	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	153 ; 132	4.36	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	169;	<1.7	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	170 ; 190	<1.8	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	18;15	<2.7	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	180;	<1.7	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	187;	<1.9	UG/KG-dw
MECC MECC	COMP	09/19/11 09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB PCB	195; 208	<1.8	UG/KG-dw
MECC	COMP COMP	09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB	206; 209;	<1.7	UG/KG-dw UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	28;	<2.3	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	29;	<2.2	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	44;	<2.3	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	50;	<2.4	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	52;	<2	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	66;95	<2.2	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	77 ;	<2.3	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	8;5	<2.8	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	87;	<1.9	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	SUM PCBS	8.21	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A_BHC	<2	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A-ENDOSULFAN	<1.5	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ALDRIN	<1.5	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	B-ENDOSULFAN	<3.4	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	CIS-CHLORDANE	<1.2	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	CYPERMETHRIN	<5	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	DELTAMETHRIN	<5	UG/KG-dw
MECC MECC	COMP COMP	09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE PESTICIDE	DIELDRIN ENDRIN	<1.4	UG/KG-dw UG/KG-dw
MECC	COMP	09/19/11 09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE	G-CHLORDANE	<2.2 <1.5	UG/KG-dw UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE	G-HCH(LINDANE)	<1.5	UG/KG-dw UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HCB	<2.4	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOR	<2	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOREPOXIDE	<1.8	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	METOXYCHLOR	<3.1	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	MIREX	<1.5	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDD	<4	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDE	<1	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDT	<2.8	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDD	<2	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDE	2.54	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDT	<2.5	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	PERMETHRIN	<5	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	T-NONACHLOR	<1.4	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	TOTAL DDT	2.54	UG/KG-dw
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	LIPID CONTENT	5.01	%
MECC	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	13.80	%
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ALUMINUM	220.67	MG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	CADMIUM	1.95	MG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	CHROMIUM	1.79	MG/KG-dw

StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	COPPER	6.21	MG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	IRON	305.97	MG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	LEAD	1.30	MG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	MERCURY	0.29	MG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	NICKEL	1.18	MG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	SILVER	0.03	MG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ZINC	97.27	MG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHENE	<8	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHYLENE	<11	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ANTHRACENE	<10	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)ANTHRACENE	13.35	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)PYRENE	10.40	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(B)FLUORANTHENE	27.39	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(E)PYRENE	26.03	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(GHI)PERYLENE	<15	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(K)FLUORANTHENE	22.51	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BIPHENYL	<10	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-CHRYSENE	22.64	UG/KG-dw
NHDP NHDP	COMP COMP	09/19/11 09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	C1-DIBENZOTHIOPHENE C1-FLOURANTHENE	<10 19.39	UG/KG-dw
		09/19/11	MUSSEL TISSUE MUSSEL TISSUE					UG/KG-dw
NHDP NHDP	COMP COMP	09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	C1-FLOURANTHENE C1-FLUORENE	<9 <7	UG/KG-dw UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH	C1-NAPHTHALENE	12.74	UG/KG-dw UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH	C1-NAPHTHALENE C1-PHENANTHRENE	<12.74	UG/KG-dw UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH	C2-CHRYSENE	<6	UG/KG-dw UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-FLUORENE	<7	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-NAPHTHALENE	<8	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-PHENANTHRENE	15.11	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C-3 NAPHTHALENE	<7	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-CHRYSENE	<6	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-FLUORENE	<7	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-PHENANTHRENE	<6	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-CHRYSENE	<6	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-FLUORENE	<10	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-NAPHTHALENE	<7	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-PHENANTHRENE	<6	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	CHRYSENE	18.73	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZO(AH)ANTHRACENE	<11	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZOTHIOPHENE	<10	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORANTHENE	29.22	UG/KG-dw
NHDP NHDP	COMP	09/19/11 09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE	PAH PAH	FLUORENE INDENO(122CD)BYRENE	<7 12.19	UG/KG-dw
NHDP	COMP COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH	INDENO(123CD)PYRENE NAPHTHALENE	11.90	UG/KG-dw UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PERYLENE	13.14	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PHENANTHRENE	<6	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PYRENE	35.85	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	TOTAL PAHS	233.45	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	101;90	2.83	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	105;	<1.4	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	118;	2.63	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	126;	<1.9	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	128;	<1.9	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	138;	5.41	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	153; 132	6.45	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	169;	<1.7	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	170 ; 190	<1.8	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	18;15	<2.7	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	180;	<1.7	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	187;	2.38	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	195 ; 208	<1.8	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	206;	<1.7	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	209;	<1.7	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	28;	<2.3	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	29;	<2.2	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	44;	<2.3	UG/KG-dw
NHDP NHDP	COMP COMP	09/19/11 09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB	50;	<2.4	UG/KG-dw UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB PCB	66;95	<2.2	UG/KG-dw UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB	77;	<2.3	UG/KG-dw UG/KG-dw
. 1.1.1./1	C () 1711	07/17/11	THOUSELL TROUBLE	TOO THE DAME LE	100	,	~~.J	C C, NO-UW

StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	8;5	<2.8	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	87;	<1.9	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	SUM PCBS	19.70	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A_BHC	<2	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A-ENDOSULFAN	<1.5	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ALDRIN	<1.5	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	B-ENDOSULFAN	<3.4	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE	CIS-CHLORDANE CYPERMETHRIN	<1.2 <5	UG/KG-dw
NHDP NHDP	COMP COMP	09/19/11 09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE PESTICIDE	DELTAMETHRIN	<5	UG/KG-dw UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	DIELDRIN	<1.4	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ENDRIN	<2.2	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	G-CHLORDANE	<1.5	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	G-HCH(LINDANE)	<1.5	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	НСВ	<2.4	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOR	<2	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOREPOXIDE	<1.8	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	METOXYCHLOR	<3.1	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	MIREX	<1.5	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDD	<4	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDE	<1	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDT	<2.8	UG/KG-dw
NHDP NHDP	COMP COMP	09/19/11 09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE PESTICIDE	P,P'-DDD P,P'-DDE	2.26 3.51	UG/KG-dw UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE	P,P'-DDT	<2.5	UG/KG-dw UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE	PERMETHRIN	<5	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	T-NONACHLOR	<1.4	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	TOTAL DDT	5.77	UG/KG-dw
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	LIPID CONTENT	4.45	%
NHDP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	13.70	%
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ALUMINUM	235.29	MG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	CADMIUM	1.95	MG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	CHROMIUM	1.45	MG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	COPPER	5.38	MG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	IRON	314.82	MG/KG-dw
NHFP NHFP	COMP COMP	09/19/11 09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	METAL METAL	LEAD MERCURY	0.99 0.28	MG/KG-dw MG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	NICKEL	0.28	MG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	SILVER	0.03	MG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ZINC	90.51	MG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHENE	<8	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHYLENE	<11	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ANTHRACENE	<10	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)ANTHRACENE	14.84	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)PYRENE	11.19	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(B)FLUORANTHENE	28.34	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(E)PYRENE	31.89	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(GHI)PERYLENE	33.98	UG/KG-dw
NHFP NHFP	COMP COMP	09/19/11 09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	BENZO(K)FLUORANTHENE BIPHENYL	23.17 <10	UG/KG-dw UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH	C1-CHRYSENE	24.26	UG/KG-dw UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLOURANTHENE	24.07	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLOURANTHENE	<9	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLUORENE	<7	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-NAPHTHALENE	10.11	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-PHENANTHRENE	<12	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-CHRYSENE	<6	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-FLUORENE	<7	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-NAPHTHALENE	<8	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-PHENANTHRENE	18.09	UG/KG-dw
NHFP NHFP	COMP COMP	09/19/11 09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	C-3 NAPHTHALENE C3-CHRYSENE	<7 <6	UG/KG-dw UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH	C3-DIBENZOTHIOPHENE	<10	UG/KG-dw UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-FLUORENE	<7	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-PHENANTHRENE	<6	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-CHRYSENE	<6	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-FLUORENE	<10	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-NAPHTHALENE	<7	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-PHENANTHRENE	<6	UG/KG-dw

Grat ID	C N	Ct 1D 1	3.6 19		ъ	Gulfwatch Report, 2		
StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	CHRYSENE DIBENZO(AH)ANTHRACENE	23.73	UG/KG-dw
NHFP NHFP	COMP COMP	09/19/11 09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	DIBENZO(AH)ANTHRACENE DIBENZOTHIOPHENE	<11	UG/KG-dw UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH	FLUORANTHENE	42.06	UG/KG-dw UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORENE	<7	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	INDENO(123CD)PYRENE	11.49	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	NAPHTHALENE	<10	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PERYLENE	20.07	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PHENANTHRENE	6.92	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PYRENE	50.98	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	TOTAL PAHS	308.79	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	101;90	3.17	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	105;	<1.4	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	118;	2.98	UG/KG-dw
NHFP NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB PCB	126; 128;	<1.9 <1.9	UG/KG-dw
NHFP	COMP COMP	09/19/11 09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB	138;	5.79	UG/KG-dw UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	153 ; 132	6.87	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	169;	<1.7	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	170 ; 190	<1.8	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	18;15	<2.7	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	180;	<1.7	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	187;	2.51	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	195 ; 208	<1.8	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	206;	<1.7	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	209;	<1.7	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	28;	<2.3	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	29;	<2.2	UG/KG-dw
NHFP NHFP	COMP COMP	09/19/11 09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB PCB	44; 50;	<2.3 <2.4	UG/KG-dw UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	52;	<2	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	66;95	<2.2	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	77;	<2.3	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	8;5	<2.8	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	87;	<1.9	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	SUM PCBS	21.32	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A_BHC	<2	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A-ENDOSULFAN	<1.5	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ALDRIN	<1.5	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	B-ENDOSULFAN	<3.4	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	CYPERMETURIN	1.39	UG/KG-dw
NHFP NHFP	COMP COMP	09/19/11 09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE PESTICIDE	CYPERMETHRIN DELTAMETHRIN	<5 <5	UG/KG-dw UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	DIELDRIN	<1.4	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ENDRIN	<2.2	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	G-CHLORDANE	<1.5	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	G-HCH(LINDANE)	<1.5	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	НСВ	<2.4	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOR	<2	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOREPOXIDE	<1.8	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	METOXYCHLOR	<3.1	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	MIREX	<1.5	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDD	<4	UG/KG-dw
NHFP NHFP	COMP COMP	09/19/11 09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE	O,P'-DDE O,P'-DDT	<1 <2.8	UG/KG-dw UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PESTICIDE PESTICIDE	P,P'-DDD	3.35	UG/KG-dw UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDE	7.26	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDT	<2.5	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	PERMETHRIN	<5	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	T-NONACHLOR	<1.4	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	TOTAL DDT	10.61	UG/KG-dw
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	LIPID CONTENT	5.60	%
NHFP	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	15.90	%
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ALUMINUM	130.93	MG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	CADMIUM	2.11	MG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	CHROMIUM	0.91	MG/KG-dw
NHHS NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	COPPER	6.61	MG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	IRON	217.46	MG/KG-dw
NHHS	COMP COMP	09/19/11 09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	METAL METAL	LEAD MERCURY	1.96 0.15	MG/KG-dw MG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	METAL	NICKEL	0.15	MG/KG-dw MG/KG-dw
1111117	COMP	07/17/11	MUSSEL HSSUE	KOUTINE SAMPLE	METAL	NICKEL	0.90	WD-DA/DIW

						Gulfwatch Report, 2		
StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	SILVER	0.05	MG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ZINC	100.54	MG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHENE	<8	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHYLENE	<11	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ANTHRACENE DENZO(A) ANTHIB A CENE	<10	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(A)ANTHRACENE	<6	UG/KG-dw
NHHS NHHS	COMP COMP	09/19/11 09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	BENZO(A)PYRENE BENZO(B)FLUORANTHENE	<4 <6	UG/KG-dw UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH	BENZO(E)PYRENE	<7	UG/KG-dw UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(E)FTRENE BENZO(GHI)PERYLENE	<15	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BENZO(K)FLUORANTHENE	<4	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	BIPHENYL	<10	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-CHRYSENE	<6	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLOURANTHENE	<9	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLOURANTHENE	<9	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-FLUORENE	<7	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-NAPHTHALENE	12.47	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C1-PHENANTHRENE	<12	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-CHRYSENE	<6	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-FLUORENE	<7	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-NAPHTHALENE	<8	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-PHENANTHRENE	6.78	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C-3 NAPHTHALENE	<7	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-CHRYSENE	<6	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-DIBENZOTHIOPHENE	<10	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-FLUORENE	<7	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C3-PHENANTHRENE	<6	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-CHRYSENE	<6	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-FLUORENE	<10	UG/KG-dw
NHHS	COMP COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C4-NAPHTHALENE	<7	UG/KG-dw
NHHS NHHS	COMP	09/19/11 09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH PAH	C4-PHENANTHRENE CHRYSENE	<6 <6	UG/KG-dw UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PAH	DIBENZO(AH)ANTHRACENE	<11	UG/KG-dw UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	DIBENZOTHIOPHENE	<10	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORANTHENE	<14	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	FLUORENE	<7	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	INDENO(123CD)PYRENE	<7	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	NAPHTHALENE	<10	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PERYLENE	<5	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PHENANTHRENE	6.24	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PYRENE	<9	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	TOTAL PAHS	18.71	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	101;90	<2.2	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	105;	<1.4	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	118;	<2	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	126;	<1.9	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	128;	<1.9	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	138;	<2	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	153 ; 132	<2.1	UG/KG-dw
NHHS NHHS	COMP COMP	09/19/11 09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB PCB	169 ; 170 ; 190	<1.7	UG/KG-dw UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB PCB	170; 190	<1.8	UG/KG-dw UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB PCB	18; 15	<1.7	UG/KG-dw UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE ROUTINE SAMPLE	PCB	187;	<1.7	UG/KG-dw UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	195 ; 208	<1.8	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	206;	<1.7	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	209;	<1.7	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	28;	<2.3	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	29;	<2.2	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	44;	<2.3	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	50;	<2.4	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	52;	<2	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	66 ; 95	<2.2	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	77 ;	<2.3	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	8;5	<2.8	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	87;	<1.9	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	SUM PCBS	0.00	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A_BHC	<2	UG/KG-dw
NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A-ENDOSULFAN	<1.5	UG/KG-dw

					1		Gulfwatch Report, 2		
NUMBER COMP 09991 MISSELTISSUE NOLTHE SAMPLE PESTICIDE SELDIOBLANS cl. LONG-day NUMBER COMP 09991 MISSELTISSUE NOLTHE SAMPLE PESTICIDE CYPERMETRIN cl. cl. CONG-day NUMBER COMP 09991 MISSELTISSUE NOLTHE SAMPLE PESTICIDE CYPERMETRIN cl. cl. CONG-day NUMBER COMP 09991 MISSELTISSUE NOLTHE SAMPLE PESTICIDE CHERCALLY cl. cl.	StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
NHISE									
NIIIS									
NIBS									
NBHS									
NIBIS COMP 099911 MISSELTISSUE 0017HR SAMPLE PISTICIDE G-FLIORAN 61.5 1.000C.deb 091811 MISSELTISSUE 0017HR SAMPLE PISTICIDE HEPT-CHIOR 62.1 1.000C.deb 09181 MISSELTISSUE 0017HR SAMPLE PISTICIDE MISSELTISSUE 000C.deb 09181 MISSELTISSUE 000THR SAMPLE PISTICIDE PIP-DDE 2.1 000C.deb 09181 MISSELTISSUE 000THR SAMPLE PISTICIDE PIP-DDE 2.1 000C.deb 000C.deb 000C.deb 000C.deb 000C.deb 000C.deb 000C.deb 000C.deb 000C									
NIBIS COMP 091991 MISSELTISSER 00TTHE SAMPLE PESTICIDE G.CHI (DIRONNE) e1.5 UGRIC-de NIBIS COMP 091991 MISSELTISSER 00TTHE SAMPLE PESTICIDE G.CHI (DIRONNE) e1.5 UGRIC-de NIBIS COMP 091991 MISSELTISSER 00TTHE SAMPLE PESTICIDE HEP LEFT LEFT									
NHIST COMP									
NHISS									
NHIS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE RESTICUE HEPTACHLOR <							` '		
NHIS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE RISTICIDE MITPACHIOREPOXIDE 4.13 1.076Code									
MHHS									
NHHS							METOXYCHLOR		
MHIS COMP	NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	MIREX	<1.5	UG/KG-dw
NHHS	NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDD	<4	UG/KG-dw
NHHS COMP 09/19/11 MUSSELTISSUE ROUTINE SAMPLE PSTRICIDE P-DDD 2.13 GGGG-do-MGRG NHHS COMP 09/19/11 MUSSELTISSUE ROUTINE SAMPLE PSTRICIDE P-DDT <2.5	NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDE	<1	
NHIS	NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDT	<2.8	UG/KG-dw
NHIS	NHHS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDD	2.13	UG/KG-dw
NHIS									
NHIS							·		
NHIS									
NHIS COMP									
NHISS									
NISS									
NHSS									
NHSS									
NHSS									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE METAL LEAD 4.72 MORKG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE METAL LEAD 2.40 MGKG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE METAL NICKEL 1.73 MGKG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE METAL SILYBR 0.04 MGKG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE METAL ZINC 128.64 MGKG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH ACENAPHTHENE <1									
NHSS									
NHSS									
NHSS COMP 99/19/11 MUSSEL TISSUE ROUTINE SAMPLE METAL NICKEL 1.73 MG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE METAL ZIDC 128.64 MG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH ACENAPHTHYLENE 48 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH ACENAPHTHYLENE 48 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH ACENAPHTHYLENE 41 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH BENZO(A)PYRENE 15.11 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH BENZO(B)PUGNATHERE 26.60 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH BENZO(B)PUGNATHERE 25.08 UG/KG-dw NHSS </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
NHSS									
NHSS	NHSS								
NHSS	NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	METAL	ZINC	128.64	MG/KG-dw
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH ANTHRACENE <10 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH BENZO(A)ANTHRACENE 15.11 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH BENZO(B)FLUORANTHENE 26.60 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH BENZO(B)PLUORANTHENE 22.08 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH BENZO(B)PYRENE 22.03 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH BENZO(B)PLEVENE 22.08 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-CHRYSENE 24.76 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-CHRYSENE 22.76 UG/KG-dw <t< td=""><td>NHSS</td><td>COMP</td><td>09/19/11</td><td>MUSSEL TISSUE</td><td>ROUTINE SAMPLE</td><td>PAH</td><td>ACENAPHTHENE</td><td><8</td><td>UG/KG-dw</td></t<>	NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHENE	<8	UG/KG-dw
NHSS	NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ACENAPHTHYLENE	<11	UG/KG-dw
NHSS	NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	ANTHRACENE	<10	UG/KG-dw
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH BENZO(B)FLUCRANTHENE 26.60 UG/KG-dw									
NHSS									
NHSS									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH BENZO(K)FLUORANTHENE 20.68 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH BIPHENYL <10									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH BIPHENYL <10 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-CHRYSENE 24.76 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-DIBENZOTHIOPHENE <10									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-CHRYSENE 24.76 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-FLOURANTHENE 4.10 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-FLOURANTHENE 22.97 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-FLOURANTHENE 49 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-FLOURANTHENE 49 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-FLOURANTHENE 42 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-PHENANTHRENE 412 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C2-DIBENZOTHIOPHENE 410 UG/KG-dw <							` '		
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-DIBENZOTHIOPHENE <10 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-FLOURANTHENE 22.97 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-FLOURANTHENE <9									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-FLOURANTHENE 22.97 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-FLOURANTHENE <9									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-FLOURANTHENE <9 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-FLOORENE <7									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-FLUORENE <7 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-NAPHTHALENE 12.64 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-PHENANTHRENE <12									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-NAPHTHALENE 12.64 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-PHENANTHRENE <12									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C1-PHENANTHRENE <12 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C2-CHRYSENE <6									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C2-DIBENZOTHIOPHENE <10 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C2-FLUORENE <7									UG/KG-dw
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C2-FLUORENE <7 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C2-NAPHTHALENE <8	NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	C2-CHRYSENE	<6	UG/KG-dw
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C2-NAPHTHALENE <8 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C2-PHENANTHRENE 18.79 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C-3 NAPHTHALENE <7	NHSS	COMP	09/19/11		ROUTINE SAMPLE	PAH	i	<10	UG/KG-dw
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C2-PHENANTHRENE 18.79 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C-3 NAPHTHALENE <7									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C-3 NAPHTHALENE <7 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C3-CHRYSENE <6									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C3-CHRYSENE <6 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C3-DIBENZOTHIOPHENE <10									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C3-DIBENZOTHIOPHENE <10 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C3-FLUORENE <7							i		
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C3-FLUORENE <7 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C3-PHENANTHRENE <6									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C3-PHENANTHRENE <6 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C4-CHRYSENE <6									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C4-CHRYSENE <6 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C4-FLUORENE <10									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C4-FLUORENE <10 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C4-NAPHTHALENE <7									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C4-NAPHTHALENE <7 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH C4-PHENANTHRENE <6									
NHSSCOMP09/19/11MUSSEL TISSUEROUTINE SAMPLEPAHC4-PHENANTHRENE<6UG/KG-dwNHSSCOMP09/19/11MUSSEL TISSUEROUTINE SAMPLEPAHCHRYSENE22.76UG/KG-dwNHSSCOMP09/19/11MUSSEL TISSUEROUTINE SAMPLEPAHDIBENZO(AH)ANTHRACENE<11									
NHSSCOMP09/19/11MUSSEL TISSUEROUTINE SAMPLEPAHCHRYSENE22.76UG/KG-dwNHSSCOMP09/19/11MUSSEL TISSUEROUTINE SAMPLEPAHDIBENZO(AH)ANTHRACENE<11									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH DIBENZO(AH)ANTHRACENE <11 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH DIBENZOTHIOPHENE <10									
NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH DIBENZOTHIOPHENE <10 UG/KG-dw NHSS COMP 09/19/11 MUSSEL TISSUE ROUTINE SAMPLE PAH FLUORANTHENE 35.86 UG/KG-dw									
NHSS COMP 09/19/11 MUSSELTISSUE ROUTINE SAMPLE PAH FLUORANTHENE 35.86 UG/KG-dw							1 /		

C4.4° ID	G N .	Ct. (D.)	M.P.	Cata	D	Unjwaich Kepon, 2		
StationID	SampNo	StartDate	Medium	Category	ParmType	Parameter	Result	ResultUnits
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	INDENO(123CD)PYRENE	12.89	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	NAPHTHALENE	10.06	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PERYLENE	12.32	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PHENANTHRENE	7.08	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	PYRENE	43.65	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PAH	TOTAL PAHS	286.21	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	101;90	5.15	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	105;	<1.4	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	118;	4.82	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	126;	<1.9	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	128;	<1.9	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	138;	8.59	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	153 ; 132	10.66	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	169;	<1.7	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	170 ; 190	<1.8	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	18;15	<2.7	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	180;	<1.7	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	187;	3.64	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	195 ; 208	<1.8	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	206;	<1.7	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	209;	<1.7	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	28;	<2.3	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	29;	<2.2	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	44 ;	<2.3	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	50;	<2.4	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	52;	<2	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	66;95	<2.2	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	77 ;	<2.3	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	8;5	<2.8	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	87;	<1.9	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PCB	SUM PCBS	32.86	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A_BHC	<2	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	A-ENDOSULFAN	1.60	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ALDRIN	<1.5	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	B-ENDOSULFAN	<3.4	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	CIS-CHLORDANE	<1.2	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	CYPERMETHRIN	<5	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	DELTAMETHRIN	<5	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	DIELDRIN	<1.4	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	ENDRIN	<2.2	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	G-CHLORDANE	<1.5	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	G-HCH(LINDANE)	<1.5	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HCB	<2.4	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOR	<2	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	HEPTACHLOREPOXIDE	<1.8	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	METOXYCHLOR	<3.1	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	MIREX	<1.5	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDD	<4	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDE	<1	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	O,P'-DDT	<2.8	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDD	3.04	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDE	3.84	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	P,P'-DDT	<2.5	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	PERMETHRIN	<5	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	T-NONACHLOR	<1.4	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PESTICIDE	TOTAL DDT	6.89	UG/KG-dw
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	LIPID CONTENT	4.93	%
NHSS	COMP	09/19/11	MUSSEL TISSUE	ROUTINE SAMPLE	PHYSICAL	PERCENT SOLIDS	17.70	%