

University of New Hampshire University of New Hampshire Scholars' Repository

PREP Reports & Publications

Institute for the Study of Earth, Oceans, and Space (EOS)

1-2004

Ambient Rivers and Shellfish Tissue Monitoring in New Hampshire Estuarine Watersheds 2003

Natalie Landry New Hampshire Department of Environmental Services

Phil Trowbridge NH Department of Environmental Services

Follow this and additional works at: https://scholars.unh.edu/prep Part of the <u>Marine Biology Commons</u>

Recommended Citation

Landry, Natalie and Trowbridge, Phil, "Ambient Rivers and Shellfish Tissue Monitoring in New Hampshire Estuarine Watersheds 2003" (2004). *PREP Reports & Publications*. 288. https://scholars.unh.edu/prep/288

This Report is brought to you for free and open access by the Institute for the Study of Earth, Oceans, and Space (EOS) at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in PREP Reports & Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

Ambient Rivers and Shellfish Tissue Monitoring in New Hampshire Estuarine Watersheds 2003

A Final Report to

The New Hampshire Estuaries Project

Submitted by

Natalie Landry Phil Trowbridge New Hampshire Department of Environmental Services 29 Hazen Drive Concord, NH 03301

January 2004

This project was funded in part by a grant from the New Hampshire Estuaries Project as authorized by the U.S. Environmental Protection Agency pursuant to Section 320 of the Clean Water Act.

TABLE OF CONTENTS

TABLE OF CONTENTS1
EXECUTIVE SUMMARY2
LIST OF TABLES2
INTRODUCTION
PROJECT GOALS AND OBJECTIVES
SITE SELECTION AND METHODS4
FIELD AND LABORATORY DATA8
RECOMMENDATIONS10
REFERENCES
APPENDIX A - AMBIENT RIVER SITE MAPS13
APPENDIX B - GULFWATCH SITE MAPS14
APPENDIX C - AMBIENT RIVER DATA FOR COASTAL TRIBUTARIES15
APPENDIX D - GULFWATCH PHYSICAL DATA 200316

EXECUTIVE SUMMARY

The Department of Environmental Services received funding from the New Hampshire Estuaries Project (NHEP) to conduct monitoring activities in 2003. The activities involved water monitoring in tidal tributaries and contaminant analyses of mussel tissue. These monitoring activities were completed with the overall purpose of improving the understanding of water quality trends and the concentrations of toxic contaminants in shellfish tissue. The Department of Environmental Services, in cooperation with the University of New Hampshire Jackson Estuarine Lab and others, completed all tasks as planned. This report includes the sample collection information, field data, and laboratory data, with the exception of contaminant concentration data for shellfish tissue. The data for the mussel tissue contaminants will be available at a later date. Data summaries and interpretations will come at a later time in other New Hampshire Department of Environmental Services and New Hampshire Estuaries publications.

LIST OF TABLES

Table 1	Sampling locations for ambient river monitoring 2003	5
Table 2	Sampling dates for ambient river monitoring 2003	5
Table 3	Gulfwatch mussel sampling sites and funding sources for 2003	6
Table 4	Inorganic and organic contaminants analyzed in shellfish tissues for the New Hampshin	e
Gu	lfwatch Program	7
Table 5	Field duplicate dates and sampling locations	8
Table 6	Field analytical QC sample table.	9
Table 7	Field problems encountered during the 2003 field season.	9

INTRODUCTION

On March 19, 2003, the New Hampshire Governor and the Executive Council approved a memorandum of agreement (MOA) between the Department of Environmental Services (DES) and the Office of State Planning (OSP) to implement aspects of the New Hampshire Estuaries Project *Management Plan* (NHEP, 2000) and *Monitoring Plan* (Trowbridge, 2002). This report covers the following monitoring aspects in the MOA:

- 1. Ambient River Monitoring of Coastal Tributaries
- 2. Gulfwatch Monitoring: Toxic Contaminant Monitoring of Shellfish Tissue

The NHEP accomplishes its monitoring program by promoting cooperation by all agencies and organizations who participate in monitoring activities, in order to maximize the usefulness of current monitoring efforts (Jones and Langan, 2001). The monitoring activities listed above are enhancements of existing monitoring programs. DES is responsible for the ambient rivers monitoring program and works in concert with the University of New Hampshire and the Gulf of Maine Council to monitor toxic contaminants through the Gulfwatch mussel monitoring program. These efforts were recommended in the *Monitoring Plan* as necessary actions to fill data and/or information gaps.

The purpose of this report is to provide a record of completed monitoring activities and the associated raw data. All data collected under these monitoring activities will be provided to the NHEP Coastal Scientist (Phil Trowbridge) for synthesis and interpretation. The NHEP Coastal Scientist will manage the data presented in this Final Report and will make conclusions under separate cover at a later time.

PROJECT GOALS AND OBJECTIVES

The overall goal of the NHEP monitoring program is to develop a better understanding of the status and trends of estuarine environmental quality using scientifically credible information. The *Monitoring Plan* was also developed to evaluate the success of the NHEP *Management Plan* objectives and this was accomplished by converting the *Management Plan* objectives into monitoring questions.

The *Monitoring Plan* questions that pertain, at least in part, to the activities listed above are as follows:

Ambient River Monitoring of Coastal Tributaries

- 1. Have the fecal coliform, enterococci, and *E. coli* levels changed significantly over time?
- 2. Has dry weather bacterial contamination changed significantly over time?

- 3. Has wet weather bacterial contamination changed significantly over time?
- 4. Have levels of dissolved and particulate nitrogen and phosphorus significantly changed over time?
- 5. Have surface tidal or freshwaters shown a significant change in turbidity over time?
- 6. Do any surface tidal or freshwaters show less than 75% saturation of dissolved oxygen? For what period of time?

Gulfwatch Monitoring: Toxic Contaminant Monitoring of Shellfish Tissue

- 1. Are shellfish, lobsters, finfish, and other seafood species from New Hampshire coastal waters fit for human consumption?
- 2. Have the concentrations of toxic contaminants in estuarine biota significantly changed over time?

SITE SELECTION AND METHODS

Ambient River Monitoring of Coastal Tributaries

Initial site selection for ambient tributary monitoring was based six existing DES Ambient River Monitoring Program sites at the Great Bay Estuary tidal dams on the Exeter, Lamprey, Oyster, Bellamy, Cocheco and Salmon Falls Rivers. Two new sites were established on the freshwater portions of two Little Harbor tributaries, Berry's Brook and Sagamore Creek. These two new site locations were added to broaden the spatial coverage of the ambient monitoring to ensure adequate coverage of tributaries that discharge into shellfish growing waters. An additional Great Bay Estuary site was established on the Winnicut River at the tidal dam in March 2002. This new site was added because the Winnicut River is a significant tributary to Great Bay that was not currently monitored for water quality. The relatively rural watershed has experienced recent and continuing development that could impact the quality of the water flowing into Great Bay; in addition, the tidal dam has been identified as a potential site for fish passage restoration.

Field and laboratory methods were conducted in accordance with the DES Ambient River Monitoring Program standard procedures. Samples were collected from the freshwater portion of the rivers at the downstream side of road crossings (except at Berry's Brook where the sampling location is on the upstream side) using a sampling bucket and rope. Field measurements were made for dissolved oxygen, temperature, conductivity, pH, and turbidity. River water was poured into sampling containers for laboratory analysis for TKN, ammonia, nitrate/nitrite, total phosphorus, biological oxygen demand, *E. coli*, and chlorophyll-a. Samples were transported to and analyzed by the DES Laboratory Services Unit and the Limnology Laboratory.

The DES Watershed Assistance Staff, with assistance from New Hampshire Coastal Program staff, collected samples on a pre-scheduled monthly basis from March through December 2003 at nine sampling locations. Due to the expanded quality assurance requirements of the Ambient River Monitoring Program in 2003 and the delivery time limitations of the Laboratory Services

Unit, the sampling was conducted over a two day period beginning in April. The sites and sampling dates are listed below in tables 1 and 2, respectively.

Site Identification	River	Town
05-Ber	Berry's Brook	Rye
05-Sag	Sagamore Creek	Portsmouth
02-Wnc	Winnicut River	Greenland
09-Ext	Exeter River	Exeter
05-Lmp	Lamprey River	Newmarket
05-Oys	Oyster River	Durham
05-Blm	Bellamy River	Dover
07-Cch	Cocheco River	Dover
05-Sfr	Salmon Falls River	Rollinsford

 Table 1 Sampling locations for ambient river monitoring 2003

 Table 2 Sampling dates for ambient river monitoring 2003

Date Sampled	Sampling Locations
March 19	05-Ber, 05-Sag, 02-Wnc, 09-Ext, 05-Lmp, 05-Oys, 05-
	Blm, 07-Cch, 05-Sfr
April 23	05-Ber, 05-Sag, 02-Wnc, 09-Ext, 05-Lmp, 05-Oys
April 24	05-Blm, 07-Cch, 05-Sfr
May 20	05-Ber, 05-Sag, 02-Wnc, 09-Ext, 05-Lmp, 05-Oys, 05-Blm
May 22	07-Cch, 05-Sfr
June 19	05-Ber, 05-Sag
June 20	05-Ber, 05-Sag (E. coli only)
June 30	02-Wnc, 09-Ext, 05-Lmp, 05-Oys, 05-Blm, 07-Cch, 05-Sfr
July 22	09-Ext, 05-Lmp, 05-Oys, 05-Blm, 07-Cch, 05-Sfr
July 24	05-Ber, 05-Sag, 02-Wnc
August 19	09-Ext, 05-Lmp, 05-Oys, 05-Blm, 07-Cch, 05-Sfr
August 20	05-Ber, 05-Sag, 02-Wnc, 05-Lmp (DO&Temp only),
September 16	05-Ber, 05-Sag, 02-Wnc, 09-Ext,
September 29	05-Lmp, 05-Oys, 05-Blm, 07-Cch, 05-Sfr
October 28	05-Ber, 05-Sag, 02-Wnc, 09-Ext, 05-Lmp
October 30	05-Oys, 05-Blm, 07-Cch, 05-Sfr
November 18	05-Ber, 05-Sag, 02-Wnc, 09-Ext, 05-Lmp
November 19	05-Oys, 05-Blm, 07-Cch, 05-Sfr
December 10	05-Ber, 05-Sag, 09-Ext, 05-Lmp
December 16	02-Wnc, 05-Oys, 05-Blm, 07-Cch, 05-Sfr

Gulfwatch Monitoring: Toxic Contaminant Monitoring of Shellfish Tissue

In 1991 the Gulf of Maine Council initiated a toxic contaminant monitoring program using the blue mussel as an indicator species. Each year, two sites in New Hampshire waters were monitored as part of this Gulf of Maine-wide program. In 1998, New Hampshire increased the spatial coverage of sampling locations by collecting mussels at six to eight sites each year. In

2001, New Hampshire again expanded Gulfwatch by collecting oysters and clams in Great Bay and Hampton Harbor, respectively. The purpose of the additional indicators was to collect data from other species that were harvested for human consumption. Samples were collected again in 2002, including oyster, clam and mussel collection at eight sampling locations.

In 2003, the NHEP funded the analytical costs of three mussel sites under the NH Gulfwatch Program (table 3). The sites were located at Hampton/Seabrook Harbor, Dover Point, and South Mill Pond. Two other sites were also monitored with support from the Gulf of Maine Council. These sites were located at Little Harbor and Clark's Cove.

On 10/1/03 and 10/2/03, DES managed the collection of mussel samples from the five sites. New Hampshire Coastal Program and Estuaries Project staff, in addition to community volunteers, assisted DES staff with the sample collection and laboratory preparation. The sites are listed in table 3. Maps for each site are provided in Appendix B. All shellfish were measured, shucked and prepared for transport within 24 hours of collection.

The sets of samples to be analyzed for inorganic contaminants were delivered to the State of Maine Health and Environment Testing Laboratory in Augusta, Maine. The mussels prepared for organic contaminant analysis were delivered to the Environment Canada, ECB Laboratory in Moncton, New Brunswick.

Funding Source	Sampling Location	Site ID	Latitude (decimal degrees)	Longitude (decimal degree)
NHEP	Dover Point	NHDP	43.1196 N	-70.8267 W
NHEP	Hampton Harbor	NHHS	42.8972 N	-70.8164 W
GOMC	Little Harbor	NHLH	43.0581 N	-70.7154 W
NHEP	South Mill Pond	NHSM	43.0729 N	-70.7489 W
GOMC	Clark's Cove	MECC	43.0774 N	-70.7244 W

 Table 3 Gulfwatch mussel sampling sites and funding sources for 2003

Several annual data reports on the results of the Gulf of Maine-wide Gulfwatch program have been published (Chase, et al., 1998; Chase et al., 1997; Chase et al., 1996a; Chase et al., 1996b), as well as a New Hampshire Gulfwatch report for the 1998 results (Jones and Landry, 2000). A review of the results, program and logistics of the first five years of the Gulfwatch Program was published in 1998 (Jones et al., 1998), and an in-depth analysis of scientific findings for the first seven years has been published (Chase et al., 2001). The use of the Gulfwatch approach for a smaller area like coastal New Hampshire has also been analyzed (Jones et al., 2001).

All field sampling was conducted as outlined in Sowles et al. (1997). Collection times were set to avoid collecting during or shortly after periods when stormwater runoff and wave resuspension of bottom sediment could result in enhanced uptake and accumulation of sediment in the mussel gut. At each site, mussels were collected from four discrete areas within a segment of the shoreline that was representative of local water quality. Using a ruler to measure length, 45-

50 mussels of 50-60 mm shell length were collected. The mussels were cleaned of all sediment, epibiota, and other accretions in clean seawater from the collection site, placed in clean containers, and then transported to the lab in coolers with ice packs. Prior to shucking, mussels were thoroughly rewashed to minimize tissue contamination from any remaining surface debris, and residual seawater was drained from the shells.

In the laboratory, individual mussel lengths, widths and heights (as defined by Seed, 1968) were determined to the nearest 0.1 mm using calipers. Using plastic or stainless steel wedges, mussels were shucked directly into appropriately prepared Mason jars for metal and organic analysis, respectively (for details see Sowles et al., 1997). Composite samples (20 mussels/composite; 4 composites/station) were capped, labeled and stored at –15 degrees Celsius.

The analytical procedures used, followed those reported for the previous years (Sowles et al., 1994, 1996; Chase et al., 1996a, b, 1997, 1998). Table 4 contains a summary of trace metal (inorganic) and organic compounds that will be analyzed by the two laboratories.

	L		ć	J							
INORGANIC CONTAMINANTS											
Metals	<u>s</u>										
Ag	AI	Cd	Cr	Cu	Fe	Hg	Ni	Pb	Zn		
ORGA		ONTAMI	NANTS								
<u>Aroma</u>	atic Hyd	drocarb	<u>ons</u>	<u>Chlorinated</u> Pesticides					PCB Congeners PCB 8		
Napht	Naphthalene			Hexa	Hexachlorobenzene (HCB)				8 18		
1-Meth	nylnaph	thalene		gamma-hexachlorocyclohexane					8 28		
	nynapht			Heptachlor					PCB 29		
Bipher	nyl			Heptachlor epoxideAldrinMirex				PCB 44			
2,6-Di	methyln	aphthale	ene	cis-Chlordane					3 50		
Acena	phthyle	ne		trans-Nonachlor					3 52		
Acena	phthene	e		Dieldrin					8 66		
2,3,5-	Trimeth	ylnaphth	alene	Alpha-endosulfan				PCB 77			
Fluore	ne			beta-Endosulfan				PCB 87			
Phena	nthrene	•						PCE	3 101		
Anthracene			DDT and Homologues					3 105			
1-Methylphenanthrene				<u></u>					3 118		
Flouranthene				2,4'-DDE				PCB 126			
Pyrene	е			2,4'-DDD				PCB 128			
•		nracene							PCB 138		
				-							

Table 4 Inorganic and organic contaminants analyzed in shellfish tissues for the NewHampshire Gulfwatch Program

Chrysene	4,4'-DDE	PCB 153
Benzo [b] flouranthene	4,4'-DDD	PCB 169
Benzo [k] flouranthene	4,4'-DDT	PCB 170
Benzo [a]		
pyrene		PCB 180
Benzo [e]		
pyrene		PCB 187
Perylene		PCB 195
Indeno [1,2,3-cd]		
pyrene		PCB 206
Dibenzo [a,h]		
anthracene		PCB 209
Benzo [g,h,l] perylene		

FIELD AND LABORATORY DATA

Ambient River Monitoring of Coastal Tributaries

Ambient river data for 2003 are in Appendix C. The data are organized by sampling site and date. Access to the data will soon be available at the DES website, which can be accessed by selecting the environmental monitoring database at <u>http://www.des.state.nh.us/OneStop/</u>.

Duplicate measures of field parameters were collected once per month at one of the nine sampling locations (see table 5) as required by the Quality Assurance Project Plan (Piszczek, 2002). Data retention for water quality assessment purposes is contingent on compliance with a parameter-specific relative percent difference (RPD) as described in the QAPP and table 6. Several data did not comply with the RPD and this is noted in the data tables (Appendix C). Duplicate sample analyses of laboratory parameters were not measured during the 2003 season based on budgetary limitations.

Table 5 Field duplicate dates and sampling locations

Date	Sampling location
3/19/03	07-Cch
4/24/03	05-Sfr
5/20/03	05-Oys
6/30/03	05-Oys
7/24/03	05-Sag
8/19/03	07-Cch
9/29/03	05-Oys
10/30/03	05-Oys
11/18/03	05-Sag
12/16/03	07-Cch

Water Quality Parameter	QC Check	QC Acceptance Limit
Dissolved Oxygen	Field duplicate;	RPD < 5%
	Measurement replicate	
Temperature	Field duplicate;	RPD < 5%
	Measurement replicate	
pН	Field duplicate;	RPD < 0.2 std units
	measurement replicate	
Specific Conductance	Field duplicate;	RPD < 5%
	measurement replicate	
Turbidity	Field duplicate;	RPD < 5%
	measurement replicate	

Table 6	Field	analytical	QC	sample	table.
---------	-------	------------	----	--------	--------

Certain problems were encountered during the field work that resulted in no changes to the sample collection methods or analytical analyses while other issues did result in changes (table 7). The most frequent change occurred when the field pH meter would not calibrate. In these cases, the water samples were analyzed for pH in the DES Laboratory Services Unit.

Date	Site	Issue
03/19/03	05-Ber	Sample collected downstream side of bridge due to ice cover upstream.
	All sites	The field pH meter would not calibrate. pH analyzed in the laboratory.
	02-Wnc	Ice cover above dam. Made a hole in the ice to collect sample.
	05-Oys	Field data lost.
4/24/03	05-Oys	No water temperature measured.
5/20/03	05-Oys	Preserved nutrient bottle overfilled.
6/19/03	05-Ber, 05-Sag	The field pH meter would not calibrate. pH analyzed in the laboratory.
7/22/03	All sites	The field pH meter would not calibrate. pH analyzed in the laboratory.
	05-Blm	Preserved nutrient bottle slightly overfilled.
8/19/03	05-Lmp	Dissolved oxygen meter would not calibrate.
10/28/03	02-Wnc	Drawdown in progress. Sample collected slightly upstream of usual site at dam.
10/30/03	07-Cch	Preserved nutrient bottle slightly overfilled.
11/19/03	All sites	Turbidity not measured in the field. Measured in the laboratory.
12/16/03	02-Wnc	River was frozen. No sample was collected.
	All sites	The field pH meter would not calibrate. pH analyzed in the laboratory.

 Table 7 Field problems encountered during the 2003 field season.

Gulfwatch Monitoring: Toxic Contaminant Monitoring of Shellfish Tissue

Physical data on the mussels were transferred from hard copy datasheets to Excel spreadsheets. Data entry was checked twice for transcription errors following DES protocols. The physical data for the samples are provided in Appendix D. The original datasheets will be kept on file at DES.

The laboratory results have not yet been received from the two laboratories. The 2003Gulfwatch data are expected in December 2005. Once the data are received, a report will be written for all NH Gulfwatch data. The report will discuss the status and trends of toxic contaminants found in

mussel tissue for estuarine waters. Emphasis will be placed on the potential impact of risks associated with contaminants found in the shellfish growing waters.

RECOMMENDATIONS

Ambient River Monitoring of Coastal Tributaries

The following recommendations pertain to the ambient river monitoring of coastal tributaries.

- 1. Monitoring should continue on a monthly basis at the nine coastal river sites to establish trends in ambient river quality. Baseline conditions and trends will be important in regards to monitoring the success of the NHEP *Management Plan* implementation.
- 2. Steps should be taken to ensure all agencies and organizations that are interested in the data have access to it. DES plans to add environmental monitoring data to the OneStop web-based program on the DES website.
- 3. Duplicates of laboratory parameters should be added in 2004 to comply with the quality assurance project plan.
- 4. DES should consider modifying the RPD for dissolved oxygen and possibly pH to be less stringent. The coordinator of the Ambient Rivers Monitoring Program is currently considering these changes.

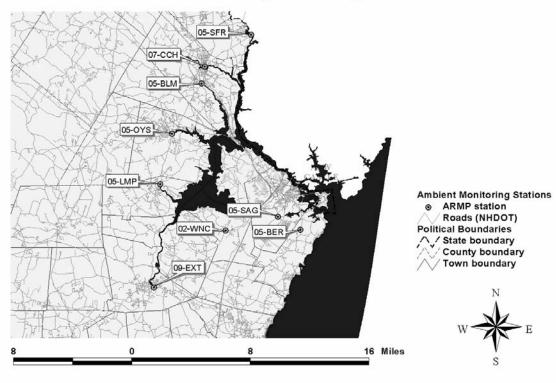
Gulfwatch Monitoring: Toxic Contaminant Monitoring of Shellfish Tissue

The following recommendations pertain to the New Hampshire Gulfwatch program.

- 1. The NHEP should consider increasing the funds for Gulfwatch monitoring to cover the costs of price increases at the contract laboratories.
- 2. The Gulf of Maine Council Environmental Quality Monitoring Committee should continue to explore other laboratories in an effort to expedite the analyses of the shellfish tissue.
- 3. The *New Hampshire Estuaries Project Monitoring Plan* recommends annual mussel sampling at three locations (Portsmouth Harbor, Great Bay and Hampton/Seabrook Harbor) and semi-annual clam and oyster sampling at Hampton/Seabrook Harbor and Great Bay, respectively. The annual mussel monitoring appears to be funded through 2004 but, the oyster and clam monitoring support is unknown at this time.

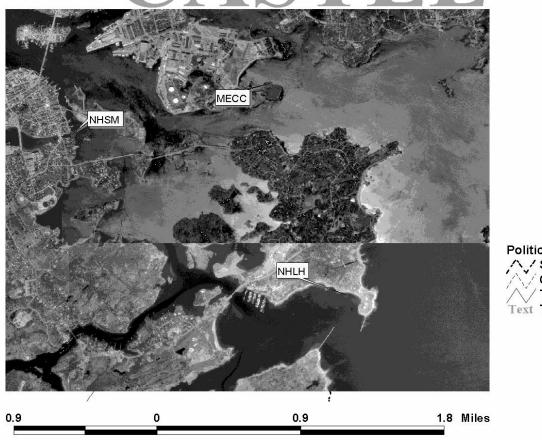
REFERENCES

 Chase, M., P. Hennigar, J. Sowles, S. Jones, R. Crawford, G. Harding, J. Pederson, C. Krahforst, D. Taylor and K. Coombs. 1998. *Evaluation of Gulfwatch 1997- Seventh Year of the Gulf of Maine Environmental Monitoring Plan*. The Gulf of Maine Council on the Marine Environment, State Planning Office, Augusta, ME. 122pp.


- Chase, M., S. Jones, P. Hennigar, J Sowles, G. Harding, K. Freeman, P. Wells, C Krahforst, R. Crawford, J. Pederson, and D. Taylor. 2001. Gulfwatch: Monitoring Spatial and Temporal Patterns of Trace Metal and Organic Contaminants in the Gulf of Maine (1991-1997) with the Blue Mussel, Mytilis edulis L.
- Chase, M., S. Jones, P. Hennigar, Sowles, K. Coombs, J. R. Crawford, G. Harding, J. Pederson and D. Taylor. 1997. Evaluation of Gulfwatch 1996- Sixth Year of the Gulf of Maine Environmental Monitoring Plan. The Gulf of Maine Council on the Marine Environment, State Planning Office, Augusta, ME. 122 pp.
- Chase, M., S. Jones, Sowles, J., P. Hennigar, G. Harding, R. Crawford, J. Pederson, K. Coombs, D. Taylor, and W. Robinson. 1996a. *Evaluation of Gulfwatch 1995- Fifth Year of the Gulf of Maine Environmental Monitoring Plan*. The Gulf of Maine Council on the Marine Environment, State Planning Office, Augusta ME.
- Chase, M., S. Jones, Sowles, J., P. Hennigar, G. Harding, R. Crawford, J. Pederson, K. Coombs, D. Taylor, and W. Robinson. 1996b. *Evaluation of Gulfwatch 1994- Fourth Year of the Gulf of Maine Environmental Monitoring Plan.* The Gulf of Maine Council on the Marine Environment, State Planning Office, Augusta ME.
- Jones, S. H., M. Chase, J. Sowles, P. Hennigar, N. Landry, P.G Wells, G.C.H. Harding, C. Krahforst, and G.L. Brun. 2001. *Monitoring for toxic contaminants in Mytilus edulis from New Hampshire and the Gulf of Maine*. J. Shellfish Res.
- Jones, S. and N. Landry. 2000. The New Hampshire Gulfwatch Program: 1998 A Part of the Eighth Year of the Gulf of Maine Environmental Monitoring Plan.
- Jones, S. H. and R. Langan. 2001. *New Hampshire Estuaries Monitoring Plan*. New Hampshire Estuaries Project, Office of State Planning, Portsmouth, NH.
- Jones et al. 1998. Evaluation of Gulfwatch 1997. The Gulf of Maine Council on the Marine Environment.
- Landry, Natalie and Stephen H. Jones. 2001. Toxic Contaminant Monitoring at Shellfish Growing Water Sites in New Hampshire: 2000. A Report to the New Hampshire Estuaries Project. Department of Environmental Services, Concord, NH. Report number R-WD-01-11.
- Lobel, P.B., S.P. Belkhode, S.E. Jackson and H.P. Longerich, 1991. Sediment in the intestinal tract: A potentially serious source of error in aquatic biological monitoring programs. Mar. Environ. Res. 31: 163-174.
- NHEP. 2000. *New Hampshire Estuaries Project Management Plan*. New Hampshire Estuaries Project, Office of State Planning. Portsmouth, New Hampshire.

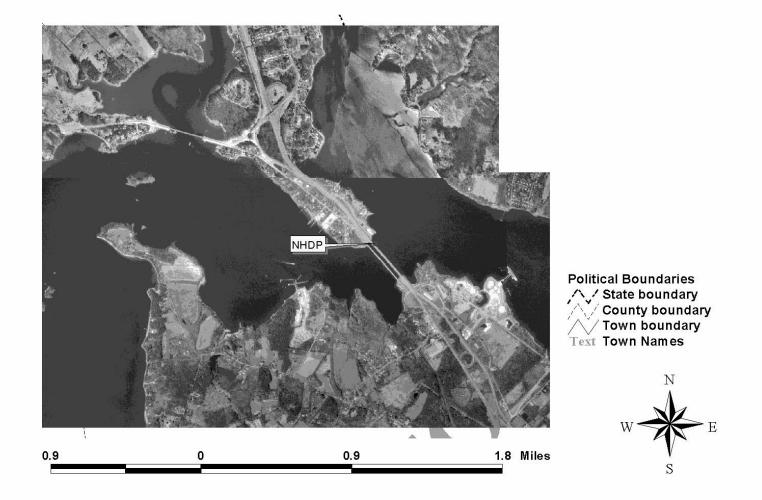
Robinson, W.E., D.K. Ryan and G.T. Wallace, 1993. Gut Contents: A significant contaminant of Mytilus edulid whole body metal concentrations. Arch. Environ. Contam. Toxicol. 25: 415-421.

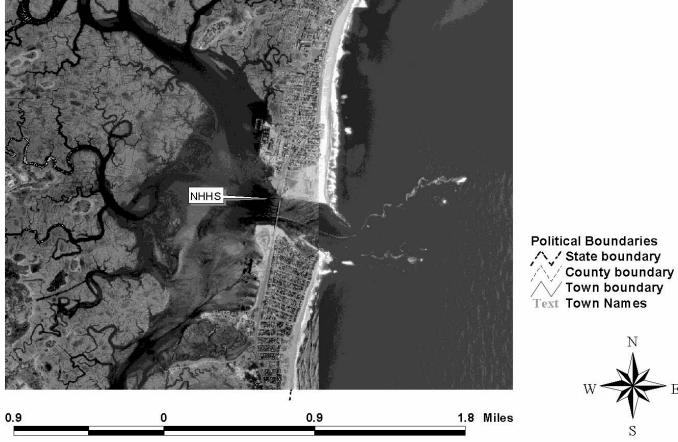
Piszczek, P. 2002. *Ambient River Monitoring Program Quality Assurance Project Plan*. NH Department of Environmental Services, Water Division-Watershed Management Bureau, Concord, NH.


- Seed, R., 1968. *Factors influencing shell shape in the mussel* Mytilus edulis. J. Mar. Biol. Ass. U.K. 48: 561-584/
- Sowles, J.R. Crawford, J. Machell, G. Atkinson, P. Hennigar, S. Jones, J. Pederson, and K. Coombs. 1994. Evaluation of Gulfwatch: 1992 Pilot Project of the Gulf of Maine Marine Environmental Monitoring Plan. The Gulf of Maine Council on the Marine Environment, State Planning Office, Augusta, ME.
- Sowles, J., R. Crawford, J. Machell, P. Hennigar, S. Jones, J. Pederson, K. Coombs, G. Atkinson,
 D. Taylor, G. Harding, M. Chase, and W. Robinson. 1996. Evaluation of Gulfwatch
 1993- Third Year of the Gulf of Maine Environmental Monitoring Plan. The Gulf of
 Maine Council on the Marine Environment, State Planning Office, Augusta, ME. 128p.
- Sowles, J., R. Crawford, P. Hennigar, G. Harding, S. Jones, M.E. Chase, W. Robinson, J. Pederson, K. Coombs, D. Taylor, and K. Freeman, 1997. *Gulfwatch project standard procedures: field and laboratory Gulfwatch implementation period 1993-2001*. Gulf of Maine Council on the Marine Environment, State Planning Office, Augusta, ME.
- Trowbridge, P. 2002. *New Hampshire Estuaries Project Monitoring Plan*. New Hampshire Department of Environmental Services, Concord, NH.

APPENDIX A - AMBIENT RIVER SITE MAPS

NHDES Enhanced Ambient Rivers Monitoring Program Tidal Tributary Monitoring Stations


APPENDIX B - GULFWATCH SITE MAPS


Gulfwatch 2003 Stations Near Portsmouth NH

Political Boundaries State boundary County boundary Town boundary Text Town Names

2003 Gulfwatch Station at Dover Point, Dover NH

2003 Gulfwatch Station at Hampton/Seabrook Harbor, Hampton, NH

APPENDIX C - AMBIENT RIVER DATA FOR COASTAL TRIBUTARIES

Berry's Brook at Sagamore Ave, Rye, 05-BER Note: Data not meeting RPD are shaded.

			BOD	BOD	BOD	CHL	CHL	DO	DO	DO SAT	DO SAT
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	9:31	2.4	<	MG/L	0.31	MG/M3	7.36	MG/L	52	%
ROUTINE SAMPLE	4/23/2003	13:25	2.4	<	MG/L	1.64	MG/M3	8.28	MG/L	72.3	%
FIELD DUPLICATE	4/23/2003	13:25	nd		MG/L	nd	MG/M3	8.31	MG/L	72.7	%
ROUTINE SAMPLE	5/20/2003	9:32	2.4	<	MG/L	1.23	UG/L	5.75	MG/L	57.3	%
ROUTINE SAMPLE	6/19/2003	13:55	2.4	<	MG/L	1.26	MG/M3	nd	nd	61.5	%
ROUTINE SAMPLE	7/24/2003	9:28	3.96		MG/L	5.28	MG/M3	1.59	MG/L	18.1	%
ROUTINE SAMPLE	8/20/2003	9:30	2.88		MG/L	1.99	MG/M3	1.22	MG/L	13.6	%
ROUTINE SAMPLE	9/16/2003	9:10	2.4	<	MG/L	9.65	UG/L	5.55	MG/L	59	%
ROUTINE SAMPLE	10/28/2003	9:30	2.4	<	MG/L	0.92	UG/L	4.99	MG/L	45.2	%
ROUTINE SAMPLE	11/18/2003	9:30	2.4	<	MG/L	0.5	UG/L	10.43	MG/L	74.5	%
ROUTINE SAMPLE	12/10/2003	9:30	2.4	<	MG/L	0.71	UG/L	8.77	MG/L	60.8	%

			EC	EC	EC	NITR	NITR	NITR	TKN	TKN	
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	QUAL	UNITS	RESULT	UNITS	
ROUTINE SAMPLE	3/19/2003	9:31	10	<	CTS/100ML	0.2	<	MG/L	0.4	MG/L	
ROUTINE SAMPLE	4/23/2003	13:25	60		CTS/100ML	0.2	<	MG/L	0.7	MG/L	
ROUTINE SAMPLE	5/20/2003	9:32	80		CTS/100ML	0.2	<	MG/L	0.9	MG/L	
ROUTINE SAMPLE	6/19/2003	13:55	nd		CTS/100ML	0.2	<	MG/L	0.9	MG/L	
ROUTINE SAMPLE	6/20/2003	8:55	180		CTS/100ML	nd		MG/L	nd	MG/L	
ROUTINE SAMPLE	7/24/2003	9:28	110		CTS/100ML	0.2	<	MG/L	1.5	MG/L	
ROUTINE SAMPLE	8/20/2003	9:30	DELETE		CTS/100ML	0.2	<	MG/L	1.6	MG/L	
ROUTINE SAMPLE	9/16/2003	9:10	750		CTS/100ML	0.2	<	MG/L	1.2	MG/L	
ROUTINE SAMPLE	10/28/2003	9:30	270		CTS/100ML	0.2	<	MG/L	1.1	MG/L	
ROUTINE SAMPLE	11/18/2003	9:30	30		CTS/100ML	0.2	<	MG/L	0.8	MG/L	
ROUTINE SAMPLE	12/10/2003	9:30	30		CTS/100ML	0.2	<	MG/L	0.6	MG/L	
			NO2NO3	NO2NO3	NO2NO3	PH	PH	Р	Р	COND	COND
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	9:31	0.05	<	MG/L	5.9	UNITS	0.011	MG/L	175.1	US/CM
ROUTINE SAMPLE	4/23/2003	13:25	0.05		MG/L	6.44	UNITS	0.02	MG/L	194.5	US/CM
FIELD DUPLICATE	4/23/2003	13:25	nd		MG/L	6.19	UNITS	nd	MG/L	195.9	US/CM

ROUTINE SAMPLE	5/20/2003	9:32	0.05	<	MG/L	6.4	UNITS	0.025	MG/L	223.7	US/CM
ROUTINE SAMPLE	6/19/2003	13:55	0.05	<	MG/L	6.5	UNITS	0.027	MG/L	221	US/CM
ROUTINE SAMPLE	7/24/2003	9:28	0.05	<	MG/L	6.4	UNITS	0.063	MG/L	275.1	US/CM
ROUTINE SAMPLE	8/20/2003	9:30	0.05	<	MG/L	6.46	UNITS	0.056	MG/L	344.2	US/CM
ROUTINE SAMPLE	9/16/2003	9:10	0.05	<	MG/L	6.47	UNITS	0.065	MG/L	302.4	US/CM
ROUTINE SAMPLE	10/28/2003	9:30	0.05	<	MG/L	5.97	UNITS	0.022	MG/L	261.6	US/CM
ROUTINE SAMPLE	11/18/2003	9:30	0.05		MG/L	6.85	UNITS	0.012	MG/L	154.5	US/CM
ROUTINE SAMPLE	12/10/2003	9:30	0.05	<	MG/L	7.22	UNITS	0.013	MG/L	178.9	US/CM
			TEMP	TEMP	TSS	TSS	TSS	TURB	TURB	WEATHER C	OMMENTS
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	UNITS	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS	
ROUTINE SAMPLE	3/19/2003	9:31	1.2	DEG C	1	<	MG/L	0.1	NTU	CLEAR, SLIC	GHT BREEZE
ROUTINE SAMPLE	4/23/2003	13:25	9.3	DEG C	1	<	MG/L	0.5	NTU	OVERCAST	
FIELD DUPLICATE	4/23/2003	13:25	9.6	DEG C	nd		MG/L	0.35	NTU		
ROUTINE SAMPLE	5/20/2003	9:32	15.3	DEG C	3.5		MG/L	0.75	NTU	CLEAR, WA	RM, NO WIND
ROUTINE SAMPLE	6/19/2003	13:55	18.9	DEG C	1	<	MG/L	0.8	NTU	CLOUDS, SL	IGHT BREEZE
ROUTINE SAMPLE	6/20/2003	8:55	nd	DEG C	nd		MG/L	nd	NTU	OVERCAST	
ROUTINE SAMPLE	7/24/2003	9:28	21	DEG C	8		MG/L	4.6	NTU		
ROUTINE SAMPLE	8/20/2003	9:30	20.8	DEG C	2.5		MG/L	4.4	NTU	CLEAR, SLIC	GHT BREEZE
ROUTINE SAMPLE	9/16/2003	9:10	18.5	DEG C	9.5		MG/L	5.2	NTU		
ROUTINE SAMPLE	10/28/2003	9:30	11	DEG C	8.5		MG/L	0.55	NTU	CLEAR	
ROUTINE SAMPLE	11/18/2003	9:30	1.7	DEG C	1.5		MG/L	0.3	NTU	SUNNY, CLE	AR
ROUTINE SAMPLE	12/10/2003	9:30	0.6	DEG C	1.5		MG/L	0.86	NTU	OVERCAST	
Legend											

Logona			
BOD	BIOCHEMICAL OXYGEN DEMAND	COND	SPECIFIC CONDUCTANCE
CHL	CHLOROPHYLL A, UNCORRECTED FOR PHEOPHYTIN	TEMP	TEMPERATURE WATER
DO	DISSOLVED OXYGEN	TSS	TOTAL SUSPENDED SOLIDS
DO SAT	DISSOLVED OXYGEN SATURATION	TURB	TURBIDITY
DELETED	LAB ACCIDENT		
EC	ESCHERICHIA COLI		
NITR	NITROGEN AMMONIA		
TKN	NITROGEN KJELDAHL		
nd	NO SAMPLE COLLECTED OR NO MEASUREMENT MADE		
NO2NO3	NITROGEN NITRATE + NITRITE		
Р	PHOSPHORUS AS P		
QUAL	QUALIFIER		

Sagamore Creek at Peverly Hill Road, Portsmouth, 05-Sag Note: Data not meeting RPD are shaded.

			BOD	BOD	BOD	CHL	CHL	DO	DO	DO SAT	DO SAT
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	9:55	2.4	<	MG/L	0.57	MG/L	11.37	MG/L	81.5	%
ROUTINE SAMPLE	4/23/2003	12:46	2.4	<	MG/L	2.56	UG/L	10.41	MG/L	91.6	%
ROUTINE SAMPLE	5/20/2003	9:59	2.4	<	MG/L	2.54	UG/L	11.08	MG/L	119.3	%
ROUTINE SAMPLE	6/19/2003	14:27	2.4	<	MG/L	1.82	UG/L	8.24	MG/L	93.8	%
ROUTINE SAMPLE	6/20/2003	9:10	nd		MG/L	nd	UG/L	nd	MG/L	nd	%
ROUTINE SAMPLE	7/24/2003	9:48	2.8		MG/L	3.41	MG/M3	5.68	MG/L	65.6	%
FIELD DUPLICATE	7/24/2003	9:48	nd		MG/L	nd	MG/M3	5.53	MG/L	64	%
ROUTINE SAMPLE	8/20/2003	10:00	2.4	<	MG/L	2.51	MG/M4	6.04	MG/L	71.1	%
ROUTINE SAMPLE	9/16/2003	9:31	2.4	<	MG/L	4.88	UG/L	6.94	MG/L	76.7	%
ROUTINE SAMPLE	10/28/2003	10:10	2.6		MG/L	4.74	UG/L	9.22	MG/L	86.1	%
ROUTINE SAMPLE	11/18/2003	10:03	2.4	<	MG/L	1.64	UG/L	13.04	MG/L	101.2	%
FIELD DUPLICATE	11/18/2003	10:03	nd		MG/L	nd	UG/L	13.12	MG/L	102.4	%
ROUTINE SAMPLE	12/10/2003	9:59	2.4	<	MG/L	2.37	UG/L	11.75	MG/L	82.9	%

			EC	EC	EC	NITR	NITR	NITR	TKN	TKN
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	QUAL	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	9:55	10	<	CTS/100ML	0.2	<	MG/L	0.3	MG/L
ROUTINE SAMPLE	4/23/2003	12:46	270		CTS/100ML	0.2	<	MG/L	0.5	MG/L
ROUTINE SAMPLE	5/20/2003	9:59	30		CTS/100ML	0.2	<	MG/L	0.5	MG/L
ROUTINE SAMPLE	6/19/2003	14:27	nd		CTS/100ML	0.2	<	MG/L	0.4	MG/L
ROUTINE SAMPLE	6/20/2003	9:10	80		CTS/100ML	. nd		MG/L	nd	MG/L
ROUTINE SAMPLE	7/24/2003	9:48	150		CTS/100ML	0.2	<	MG/L	0.5	MG/L
FIELD DUPLICATE	7/24/2003	9:48	nd		CTS/100ML	. nd		MG/L	nd	MG/L
ROUTINE SAMPLE	8/20/2003	10:00	DELETE		CTS/100ML	0.2	<	MG/L	1.2	MG/L
ROUTINE SAMPLE	9/16/2003	9:31	430		CTS/100ML	0.2	<	MG/L	0.4	MG/L
ROUTINE SAMPLE	10/28/2003	10:10	350		CTS/100ML	0.2	<	MG/L	0.7	MG/L
ROUTINE SAMPLE	11/18/2003	10:03	10		CTS/100ML	0.2	<	MG/L	0.6	MG/L
FIELD DUPLICATE	11/18/2003	10:03	nd		CTS/100ML	. nd		MG/L	nd	MG/L
ROUTINE SAMPLE	12/10/2003	9:59	50		CTS/100ML	0.2	<	MG/L	0.7	MG/L

			NO2NO3	NO2NO3	NO2NO3	PH	PH	Р	Р	COND	COND
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	9:55	0.21		MG/L	7.3	UNITS	0.046	MG/L	576	US/CM
ROUTINE SAMPLE	4/23/2003	12:46	0.1		MG/L	7.36	UNITS	0.032	MG/L	581	US/CM
ROUTINE SAMPLE	5/20/2003	9:59	0.05	<	MG/L	7.8	UNITS	0.021	MG/L	1034	US/CM
ROUTINE SAMPLE	6/19/2003	14:27	0.05	<	MG/L	7.7	UNITS	0.016	MG/L	1125	US/CM
ROUTINE SAMPLE	6/20/2003	9:10	nd		MG/L	nd	UNITS	nd	MG/L	nd	US/CM
ROUTINE SAMPLE	7/24/2003	9:48	0.05	<	MG/L	7.5	UNITS	0.014	MG/L	1447	US/CM
FIELD DUPLICATE	7/24/2003	9:48	nd		MG/L	nd	UNITS	nd	MG/L	1455	US/CM
ROUTINE SAMPLE	8/20/2003	10:00	0.05	<	MG/L	6.59	UNITS	0.009	MG/L	1260	US/CM
ROUTINE SAMPLE	9/16/2003	9:31	0.05	<	MG/L	7.07	UNITS	0.022	MG/L	1694	US/CM
ROUTINE SAMPLE	10/28/2003	10:10	0.06		MG/L	6.4	UNITS	0.043	MG/L	942	US/CM
ROUTINE SAMPLE	11/18/2003	10:03	0.05	<	MG/L	6.99	UNITS	0.023	MG/L	930	US/CM
FIELD DUPLICATE	11/18/2003	10:03	nd		MG/L	7.16	UNITS	nd	MG/L	944	US/CM
ROUTINE SAMPLE	12/10/2003	9:59	0.1		MG/L	7.28	UNITS	0.018	MG/L	799	US/CM

			TEMP	TEMP	TSS	TSS	TURB	TURB	WEATHER COMMENTS
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS
ROUTINE SAMPLE	3/19/2003	9:55	1.7	DEG C	11.5	MG/L	22	NTU	CLEAR, SLIGHT BREEZE
ROUTINE SAMPLE	4/23/2003	12:46	9.9	DEG C	7	MG/L	12	NTU	OVERCAST
ROUTINE SAMPLE	5/20/2003	9:59	18.8	DEG C	3.5	MG/L	4.3	NTU	CLEAR, WARM, NO WIND
ROUTINE SAMPLE	6/19/2003	14:27	21.8	DEG C	1.5	MG/L	2.8	NTU	SOME CLOUDS, SLIGHT BREEZE
ROUTINE SAMPLE	6/20/2003	9:10	nd	DEG C	nd	MG/L	nd	NTU	OVERCAST
ROUTINE SAMPLE	7/24/2003	9:48	22.6	DEG C	4	MG/L	0.95	NTU	
FIELD DUPLICATE	7/24/2003	9:48	22.6	DEG C	nd	MG/L	0.95	NTU	
ROUTINE SAMPLE	8/20/2003	10:00	23.6	DEG C	1	MG/L	0.8	NTU	CLEAR, SLIGHT BREEZE
ROUTINE SAMPLE	9/16/2003	9:31	20.3	DEG C	3	MG/L	2.4	NTU	
ROUTINE SAMPLE	10/28/2003	10:10	12.1	DEG C	19	MG/L	19	NTU	CLEAR
ROUTINE SAMPLE	11/18/2003	10:03	4.8	DEG C	5	MG/L	2.9	NTU	SUNNY, CLEAR
FIELD DUPLICATE	11/18/2003	10:03	4.8	DEG C	nd	MG/L	3	NTU	
ROUTINE SAMPLE	12/10/2003	9:59	1.2	DEG C	4	MG/L	5.52	NTU	OVERCAST

Legend BOD BIOCHEMICAL OXYGEN DEMAND

CHL CHLOROPHYLL A, UNCORRECTED FOR PHEOPHYTIN

DO DISSOLVED OXYGEN

DO SAT	DISSOLVED OXYGEN SATURATION
DELETED	LAB ACCIDENT
EC	ESCHERICHIA COLI
NITR	NITROGEN AMMONIA
TKN	NITROGEN KJELDAHL
nd	NO SAMPLE COLLECTED OR NO MEASUREMENT MADE
NO2NO3	NITROGEN NITRATE + NITRITE
Р	PHOSPHORUS AS P
QUAL	QUALIFIER
COND	SPECIFIC CONDUCTANCE
TEMP	TEMPERATURE WATER
TSS	TOTAL SUSPENDED SOLIDS
TURB	TURBIDITY

Winnicut River at Rt. 33 Bridge, Greenland, 02-WNC Note: Data not meeting RPD are shaded.

			BOD	BOD	BOD	CHL	CHL	DO	DO	DO SAT	DO SAT
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	10:30	2.4	<	MG/L	0.69	MG/M3	10.82	MG/L	77.8	%
ROUTINE SAMPLE	4/23/2003	11:40	2.4	<	MG/L	2.54	UG/L	9.17	MG/L	79.6	%
ROUTINE SAMPLE	5/20/2003	10:20	2.4	<	MG/L	3.27	UG/L	7.97	MG/L	84.5	%
ROUTINE SAMPLE	6/30/2003	9:50	2.4	<	MG/L	3.82	MG/M3	3.68	MG/L	43.3	%
ROUTINE SAMPLE	7/24/2003	10:24	2.76		MG/L	26.19	MG/M3	5.12	MG/L	59.9	%
ROUTINE SAMPLE	8/20/2003	8:56	2.4	<	MG/L	2.89	MG/M3	2.05	MG/L	23.7	%
ROUTINE SAMPLE	9/16/2003	10:05	2.4	<	MG/L	10.76	UG/L	7.48	MG/L	82.6	%
ROUTINE SAMPLE	10/28/2003	10:40	2.4	<	MG/L	3.63	UG/L	8.06	MG/L	75.4	%
ROUTINE SAMPLE	11/18/2003	10:44	2.4	<	MG/L	1.47	UG/L	10.08	MG/L	74.7	%

			EC	EC	EC	NITR	NITR	NITR	TKN	TKN
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	QUALIFIE	R UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	10:30	10	<	CTS/100ML	0.2	<	MG/L	0.3	MG/L
ROUTINE SAMPLE	4/23/2003	11:40	120		CTS/100ML	0.2	<	MG/L	0.6	MG/L
ROUTINE SAMPLE	5/20/2003	10:20	30		CTS/100ML	0.2	<	MG/L	0.6	MG/L
ROUTINE SAMPLE	6/30/2003	9:50	150		CTS/100ML	0.2	<	MG/L	0.8	MG/L
ROUTINE SAMPLE	7/24/2003	10:24	140		CTS/100ML	0.2	<	MG/L	0.8	MG/L
ROUTINE SAMPLE	8/20/2003	8:56	DELETE		CTS/100ML	0.2	<	MG/L	0.4	MG/L
ROUTINE SAMPLE	9/16/2003	10:05	300		CTS/100ML	0.2	<	MG/L	0.8	MG/L
ROUTINE SAMPLE	10/28/2003	10:40	120		CTS/100ML	0.2		MG/L	1.2	MG/L
ROUTINE SAMPLE	11/18/2003	10:44	40		CTS/100ML	0.2	<	MG/L	0.8	MG/L
No December data-rive										

			NO2NO3	NO2NO3	NO2NO3	PH	PH	Р	Р	COND	COND
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUALIFIEF	R UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	10:30	0.34		MG/L	6.7	UNITS	0.025	MG/L	69.8	US/CM
ROUTINE SAMPLE	4/23/2003	11:40	0.22		MG/L	6.37	UNITS	0.026	MG/L	229.7	US/CM
ROUTINE SAMPLE	5/20/2003	10:20	0.05	<	MG/L	7.1	UNITS	0.029	MG/L	311.8	US/CM
ROUTINE SAMPLE	6/30/2003	9:50	0.07		MG/L	7	UNITS	0.06	MG/L	311.1	US/CM
ROUTINE SAMPLE	7/24/2003	10:24	0.06		MG/L	7.3	UNITS	0.056	MG/L	411.1	US/CM

ROUTINE SAMPLE	8/20/2003	8:56	0.05	<	MG/L	6.59	UNITS	0.073	MG/L	427.5	US/CM
ROUTINE SAMPLE	9/16/2003	10:05	0.05	<	MG/L	6.8	UNITS	0.03	MG/L	418.2	US/CM
ROUTINE SAMPLE	10/28/2003	10:40	0.05		MG/L	6.38	UNITS	0.043	MG/L	355.6	US/CM
ROUTINE SAMPLE	11/18/2003	10:44	0.15		MG/L	7.13	UNITS	0.023	MG/L	214.4	US/CM
No December data r	war waa frazon										

No December data-river was frozen

			TEMP	TEMP	TSS	TSS	TSS	TURB	TURB	WEATHER COMMENTS
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	UNITS	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS
ROUTINE SAMPLE	3/19/2003	10:30	1.8	DEG C	2.5		MG/L	3.5	NTU	CLEAR, SLIGHT BREEZE
ROUTINE SAMPLE	4/23/2003	11:40	9.2	DEG C	1		MG/L	3.4	NTU	OVERCAST
ROUTINE SAMPLE	5/20/2003	10:20	18.2	DEG C	2		MG/L	2.1	NTU	SUNNY, WARM, NO WIND
ROUTINE SAMPLE	6/30/2003	9:50	25.5	DEG C	3.5		MG/L	4.1	NTU	CLOUDY, HUMID
ROUTINE SAMPLE	7/24/2003	10:24	23.5	DEG C	2.5		MG/L	2.7	NTU	
ROUTINE SAMPLE	8/20/2003	8:56	23.4	DEG C	2.5		MG/L	1.8	NTU	CLEAR, CALM
ROUTINE SAMPLE	9/16/2003	10:05	20.3	DEG C	1.5		MG/L	1.4	NTU	RAIN
ROUTINE SAMPLE	10/28/2003	10:40	12.3	DEG C	7.5		MG/L	4.6	NTU	CLEAR
ROUTINE SAMPLE	11/18/2003	10:44	3	DEG C	1	<	MG/L	2.9	NTU	SUNNY, CLEAR
Ma Daaasah as data si		-								

No December data-river was frozen

Legend	
BOD	BIOCHEMICAL OXYGEN DEMAND
CHL	CHLOROPHYLL A, UNCORRECTED FOR PHEOPHYTIN
DO	DISSOLVED OXYGEN
DO SAT	DISSOLVED OXYGEN SATURATION
DELETED	LAB ACCIDENT
EC	ESCHERICHIA COLI
NITR	NITROGEN AMMONIA
TKN	NITROGEN KJELDAHL
nd	NO SAMPLE COLLECTED OR NO MEASUREMENT MADE
NO2NO3	NITROGEN NITRATE + NITRITE
Р	PHOSPHORUS AS P
QUAL	QUALIFIER
COND	SPECIFIC CONDUCTANCE
TEMP	TEMPERATURE WATER
TSS	TOTAL SUSPENDED SOLIDS
TURB	TURBIDITY

Exeter River at the Hight Street Bridge, Exeter, 09-EXT Note: Data not meeting RPD are shaded.

			BOD	BOD	BOD	CHL	CHL	DO	DO	DO SAT	DO SAT
ACTIVITY CATEGORY	START DATE	START TIM	E RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	11:01	2.4	<	MG/L	0.88	MG/M3	12.33	MG/L	89.7	%
ROUTINE SAMPLE	4/23/2003	11:10	2.4	<	MG/L	1.64	UG/L	9.39	MG/L	83.7	%
ROUTINE SAMPLE	5/20/2003	10:52	2.4	<	MG/L	1.8	UG/L	8.26	MG/L	88.2	%
ROUTINE SAMPLE	6/30/2003	10:31	2.4	<	MG/L	8.39	MG/M3	4.91	MG/L	59.6	%
ROUTINE SAMPLE	7/22/2003	10:25	2.4	<	MG/L	14.27	UG/L	7.46	MG/L	88.3	%
ROUTINE SAMPLE	8/19/2003	9:32	2.4	<	MG/L	4.2	UG/L	4.55	MG/L	53.2	%
ROUTINE SAMPLE	9/16/2003	10:37	2.4	<	MG/L	17.9	UG/L	7.72	MG/L	88.2	%
ROUTINE SAMPLE	10/28/2003	11:20	2.4	<	MG/L	1.45	UG/L	8.67	MG/L	79.5	%
ROUTINE SAMPLE	11/18/2003	11:30	2.4	<	MG/L	0.9	UG/L	13.3	MG/L	100.3	%
ROUTINE SAMPLE	12/10/2003	10:47	2.4	<	MG/L	1.07	UG/L	11.98	MG/L	82.4	%

			EC	EC	EC	NITR	NITR	NITR	TKN	TKN
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	QUAL	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	11:01	10		CTS/100ML	0.2	<	MG/L	0.3	MG/L
ROUTINE SAMPLE	4/23/2003	11:10	180		CTS/100ML	0.2	<	MG/L	0.4	MG/L
ROUTINE SAMPLE	5/20/2003	10:52	10		CTS/100ML	0.2	<	MG/L	0.5	MG/L
ROUTINE SAMPLE	6/30/2003	10:31	60		CTS/100ML	0.2	<	MG/L	0.61	MG/L
ROUTINE SAMPLE	7/22/2003	10:25	30		CTS/100ML	0.2	<	MG/L	0.6	MG/L
ROUTINE SAMPLE	8/19/2003	9:32	20		CTS/100ML	0.2	<	MG/L	0.7	MG/L
ROUTINE SAMPLE	9/16/2003	10:37	680		CTS/100ML	0.2	<	MG/L	1.5	MG/L
ROUTINE SAMPLE	10/28/2003	11:20	100		CTS/100ML	0.2	<	MG/L	0.7	MG/L
ROUTINE SAMPLE	11/18/2003	11:30	40		CTS/100ML	0.2	<	MG/L	0.6	MG/L
ROUTINE SAMPLE	12/10/2003	10:47	10	<	CTS/100ML	0.2	<	MG/L	0.4	MG/L

			NO2NO3	NO2NO3	NO2NO3	PH	PH	Р	Р	COND	COND
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	11:01	0.21		MG/L	6.5	UNITS	0.018	MG/L	100.7	US/CM
ROUTINE SAMPLE	4/23/2003	11:10	0.09		MG/L	6.19	UNITS	0.2	MG/L	128.3	US/CM
ROUTINE SAMPLE	5/20/2003	10:52	0.06		MG/L	6.9	UNITS	0.02	MG/L	158.8	US/CM
ROUTINE SAMPLE	6/30/2003	10:31	0.18		MG/L	6.9	UNITS	0.052	MG/L	202.4	US/CM
ROUTINE SAMPLE	7/22/2003	10:25	0.05	<	MG/L	7.1	UNITS	0.04	MG/L	225.5	US/CM

ROUTINE SAMPLE	8/19/2003	9:32	0.08		MG/L	6.62	UNITS	0.058	MG/L	208	US/CM
ROUTINE SAMPLE	9/16/2003	10:37	0.05	<	MG/L	6.63	UNITS	0.047	MG/L	220.8	US/CM
ROUTINE SAMPLE	10/28/2003	11:20	0.05		MG/L	6.27	UNITS	0.029	MG/L	186.2	US/CM
ROUTINE SAMPLE	11/18/2003	11:30	0.07		MG/L	7.26	UNITS	0.019	MG/L	111.8	US/CM
ROUTINE SAMPLE	12/10/2003	10:47	0.15		MG/L	7.5	UNITS	0.011	MG/L	113.6	US/CM

			TEMP	TEMP	TSS	TSS	TSS	TURB	TURB	WEATHER COMMENTS
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	UNITS	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS
ROUTINE SAMPLE	3/19/2003	11:01	2.1	DEG C	4		MG/L	2.6	NTU	CLEAR, SLIGHT BREEZE
ROUTINE SAMPLE	4/23/2003	11:10	10.3	DEG C	2.5		MG/L	2.6	NTU	OVERCAST
ROUTINE SAMPLE	5/20/2003	10:52	18.4	DEG C	2		MG/L	1.8	NTU	CLEAR, WARM, NO WIND
ROUTINE SAMPLE	6/30/2003	10:31	25.3	DEG C	1.5		MG/L	4.6	NTU	CLOUDY, HUMID
ROUTINE SAMPLE	7/22/2003	10:25	24.5	DEG C	3		MG/L	3.1	NTU	OVERCAST, SHOWER
ROUTINE SAMPLE	8/19/2003	9:32	25.1	DEG C	3.5		MG/L	2.4	NTU	CLEAR, SLIGHT BREEZE
ROUTINE SAMPLE	9/16/2003	10:37	21.1	DEG C	2		MG/L	2.2	NTU	RAIN
ROUTINE SAMPLE	10/28/2003	11:20	11.6	DEG C	4		MG/L	3	NTU	CLEAR
ROUTINE SAMPLE	11/18/2003	11:30	3.6	DEG C	1	<	MG/L	1.86	NTU	SUNNY, CLEAR
ROUTINE SAMPLE	12/10/2003	10:47	3	DEG C	1		MG/L	1.73	NTU	OVERCAST

Legend	
BOD	BIOCHEMICAL OXYGEN DEMAND
CHL	CHLOROPHYLL A, UNCORRECTED FOR PHEOPHYTIN
DO	DISSOLVED OXYGEN
DO SAT	DISSOLVED OXYGEN SATURATION
DELETED	LAB ACCIDENT
EC	ESCHERICHIA COLI
NITR	NITROGEN AMMONIA
TKN	NITROGEN KJELDAHL
nd	NO SAMPLE COLLECTED OR NO MEASUREMENT MADE
NO2NO3	NITROGEN NITRATE + NITRITE
Р	PHOSPHORUS AS P
QUAL	QUALIFIER
COND	SPECIFIC CONDUCTANCE
TEMP	TEMPERATURE WATER
TSS	TOTAL SUSPENDED SOLIDS
TURB	TURBIDITY

Lamprey River at Rt. 108 Bridge, Newmarket, 05-LMP Note: Data not meeting RPD are shaded.

			BOD	BOD	BOD	CHL	CHL	DO	DO	DO SAT	DO SAT
ACTIVITY CATEGORY	' START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	11:55	2.4	<	MG/L	0.9	MG/M3	12.89	MG/L	92.8	%
ROUTINE SAMPLE	4/23/2003	10:27	2.4	<	MG/L	1.64	MG/M3	10.62	MG/L	94.7	%
ROUTINE SAMPLE	5/20/2003	12:17	2.4	<	MG/L	3.08	UG/L	9.61	MG/L	100.8	%
ROUTINE SAMPLE	6/30/2003	11:08	2.4	<	MG/L	6.73	MG/M3	7.93	MG/L	99.4	%
ROUTINE SAMPLE	7/22/2003	10:59	2.4	<	MG/L	31.34	UG/L	83.5	MG/L	101	%
ROUTINE SAMPLE	8/19/2003	10:23	2.4	<	MG/L	3.48	UG/L	nd	MG/L	nd	%
ROUTINE SAMPLE	8/20/2003	11:50	nd		MG/L	nd	UG/L	7.59	MG/L	95.6	%
ROUTINE SAMPLE	9/29/2003	11:13	2.4	<	MG/L	2.35	UG/L	8.97	MG/L	97.4	%
ROUTINE SAMPLE	10/28/2003	12:09	2.4	<	MG/L	1.47	UG/L	10.59	MG/L	97.8	%
ROUTINE SAMPLE	11/18/2003	12:47	2.4	<	MG/L	1.09	UG/L	13.34	MG/L	102.8	%
ROUTINE SAMPLE	12/10/2003	11:45	2.4	<	MG/L	0.9	UG/L	13.98	MG/L	96.5	%

			EC	EC	EC	NITR	NITR	NITR	TKN	TKN	
ACTIVITY CATEGORY	′ START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	QUAL	UNITS	RESULTS	UNITS	
ROUTINE SAMPLE	3/19/2003	11:55	10	<	CTS/100ML	0.2	<	MG/L	0.3	MG/L	
ROUTINE SAMPLE	4/23/2003	10:27	20		CTS/100ML	0.2	<	MG/L	0.4	MG/L	
ROUTINE SAMPLE	5/20/2003	12:17	20		CTS/100ML	0.2	<	MG/L	0.4	MG/L	
ROUTINE SAMPLE	6/30/2003	11:08	20		CTS/100ML	0.2	<	MG/L	0.4	MG/L	
ROUTINE SAMPLE	7/22/2003	10:59	10		CTS/100ML	0.2	<	MG/L	0.7	MG/L	
ROUTINE SAMPLE	8/19/2003	10:23	10		CTS/100ML	0.2	<	MG/L	0.5	MG/L	
ROUTINE SAMPLE	8/20/2003	11:50	nd		CTS/100ML	nd		MG/L	nd	MG/L	
ROUTINE SAMPLE	9/29/2003	11:13	30		CTS/100ML	0.2	<	MG/L	0.4	MG/L	
ROUTINE SAMPLE	10/28/2003	12:09	20		CTS/100ML	0.2	<	MG/L	0.5	MG/L	
ROUTINE SAMPLE	11/18/2003	12:47	10		CTS/100ML	0.2	<	MG/L	0.5	MG/L	
ROUTINE SAMPLE	12/10/2003	11:45	20		CTS/100ML	0.2	<	MG/L	0.3	MG/L	
[NO2NO3	NO2NO3	NO2NO3	PH	PH	Р	Р	COND	COND

			NO2NO3	NO2NO3	NO2NO3	РН	РН	Р	Р	COND	COND	i
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS	
ROUTINE SAMPLE	3/19/2003	11:55	0.31		MG/L	6.8	UNITS	0.021	MG/L	94	US/CM	
ROUTINE SAMPLE	4/23/2003	10:27	0.13		MG/L	6.46	UNITS	0.014	MG/L	105.5	US/CM	
ROUTINE SAMPLE	5/20/2003	12:17	0.05	<	MG/L	6.9	UNITS	0.018	MG/L	119	US/CM	
ROUTINE SAMPLE	6/30/2003	11:08	0.15		MG/L	7.3	UNITS	0.028	MG/L	171.4	US/CM	

ROUTINE SAMPLE	7/22/2003	10:59	0.1	MG/L	7.3	UNITS	0.048	MG/L	183.9	US/CM
ROUTINE SAMPLE	8/19/2003	10:23	0.08	MG/L	6.55	UNITS	0.026	MG/L	158.6	US/CM
ROUTINE SAMPLE	8/20/2003	11:50	nd	MG/L	nd	UNITS	nd	MG/L	nd	US/CM
ROUTINE SAMPLE	9/29/2003	11:13	0.07	MG/L	6.35	UNITS	0.021	MG/L	188.1	US/CM
ROUTINE SAMPLE	10/28/2003	12:09	0.05	MG/L	6.23	UNITS	0.019	MG/L	124.9	US/CM
ROUTINE SAMPLE	11/18/2003	12:47	0.06	MG/L	7.27	UNITS	0.019	MG/L	68.5	US/CM
ROUTINE SAMPLE	12/10/2003	11:45	0.15	MG/L	7.52	UNITS	0.01	MG/L	73.4	US/CM

			TEMP	TEMP	TSS	TSS	TSS	TURB	TURB	WEATHER COMMENTS
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	UNITS	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS
ROUTINE SAMPLE	3/19/2003	11:55	1.1	DEG C	3		MG/L	2	NTU	CLEAR, SLIGHT BREEZE
ROUTINE SAMPLE	4/23/2003	10:27	10.3	DEG C	1	<	MG/L	1.2	NTU	OVERCAST
ROUTINE SAMPLE	5/20/2003	12:17	17.8	DEG C	2		MG/L	1.4	NTU	SUNNY, CLEAR, NO WIND
ROUTINE SAMPLE	6/30/2003	11:08	27	DEG C	1	<	MG/L	1.8	NTU	PARTLY CLOUDY, HUMID
ROUTINE SAMPLE	7/22/2003	10:59	24.6	DEG C	4.5		MG/L	3.3	NTU	OVERCAST, WINDY
ROUTINE SAMPLE	8/19/2003	10:23	nd	DEG C	1	<	MG/L	1.5	NTU	CLEAR, SLIGHT BREEZE
ROUTINE SAMPLE	8/20/2003	11:50	27.5	DEG C	nd		MG/L	nd	NTU	
ROUTINE SAMPLE	9/29/2003	11:13	19.4	DEG C	2		MG/L	1.3	NTU	PARTLY CLOUDY
ROUTINE SAMPLE	10/28/2003	12:09	11.8	DEG C	6		MG/L	2.5	NTU	CLEAR
ROUTINE SAMPLE	11/18/2003	12:47	4.5	DEG C	2		MG/L	1.48	NTU	SUNNY, CLEAR
ROUTINE SAMPLE	12/10/2003	11:45	0.5	DEG C	1		MG/L	1.04	NTU	OVERCAST

EDGEND	1		
BOD	BIOCHEMICAL OXYGEN DEMAND	TSS	TOTAL SUSPENDED SOLIDS
CHL	CHLOROPHYLL A, UNCORRECTED FOR PHEOPHYTIN	TURB	TURBIDITY
00	DISSOLVED OXYGEN		
DO SAT	DISSOLVED OXYGEN SATURATION		
DELETED	LAB ACCIDENT		
C	ESCHERICHIA COLI		
IITR	NITROGEN AMMONIA		
KN	NITROGEN KJELDAHL		
d	NO SAMPLE COLLECTED OR NO MEASUREMENT MADE		
O2NO3	NITROGEN NITRATE + NITRITE		
)	PHOSPHORUS AS P		
QUAL	QUALIFIER		
OND	SPECIFIC CONDUCTANCE		
EMP	TEMPERATURE WATER		

Oyster River at the Rt. 108 Bridge and Mill Pond, Durham, 05-OYS Note: Data not meeting RPD are shaded.

			BOD	BOD	BOD	CHL	CHL	DO	DO	DO SAT	DO SAT
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	12:18	2.4	<	MG/L	1.07	MG/M3	dl	MG/L	dl	%
ROUTINE SAMPLE	4/23/2003	10:05	2.4	<	MG/L	2.39	UG/L	10.78	MG/L	95.5	%
ROUTINE SAMPLE	5/20/2003	12:40	2.4	<	MG/L	2.92	UG/L	9.52	MG/L	105.7	%
FIELD DUPLICATE	5/20/2003	12:40	nd		MG/L	nd	UG/L	9.03	MG/L	98.2	%
ROUTINE SAMPLE	6/30/2003	11:30	2.4	<	MG/L	10.05	MG/M3	7.96	MG/L	97.2	%
FIELD DUPLICATE	6/30/2003	11:30	nd		MG/L	nd	MG/M3	7.96	MG/L	97.1	%
ROUTINE SAMPLE	7/22/2003	11:20	2.4	<	MG/L	2.27	UG/L	9.29	MG/L	111.4	%
ROUTINE SAMPLE	8/19/2003	11:00	2.4	<	MG/L	6	UG/L	6.42	MG/L	76.7	%
ROUTINE SAMPLE	9/29/2003	10:35	2.4	<	MG/L	5.83	UG/L	7.97	MG/L	82.6	%
FIELD DUPLICATE	9/29/2003	10:35	nd		MG/L	nd	UG/L	7.99	MG/L	83.6	%
ROUTINE SAMPLE	10/30/2003	10:20	2.5		MG/L	2.73	UG/L	11.33	MG/L	104.4	%
FIELD DUPLICATE	10/30/2003	10:20	nd		MG/L	nd	UG/L	10.84	MG/L	100.1	%
ROUTINE SAMPLE	11/19/2003	0:00	na		MG/L	1.82	UG/L	na	MG/L	na	%
ROUTINE SAMPLE	12/16/2003	9:10	2.4	<	MG/L	1.26	UG/L	13.37	MG/L	91.9	%

			EC	EC	EC	NITR	NITR	NITR	TKN	TKN
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	QUAL	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	12:18	10		CTS/100ML	0.2	<	MG/L	0.4	MG/L
ROUTINE SAMPLE	4/23/2003	10:05	30		CTS/100ML	0.2	<	MG/L	0.4	MG/L
ROUTINE SAMPLE	5/20/2003	12:40	20		CTS/100ML	0.2	<	MG/L	0.4	MG/L
FIELD DUPLICATE	5/20/2003	12:40	nd		CTS/100ML	nd		MG/L	nd	MG/L
ROUTINE SAMPLE	6/30/2003	11:30	40		CTS/100ML	0.2	<	MG/L	0.6	MG/L
FIELD DUPLICATE	6/30/2003	11:30	nd		CTS/100ML	nd		MG/L	nd	MG/L
ROUTINE SAMPLE	7/22/2003	11:20	10		CTS/100ML	0.2	<	MG/L	0.5	MG/L
ROUTINE SAMPLE	8/19/2003	11:00	10		CTS/100ML	0.2	<	MG/L	0.6	MG/L
ROUTINE SAMPLE	9/29/2003	10:35	30		CTS/100ML	0.2	<	MG/L	0.6	MG/L
FIELD DUPLICATE	9/29/2003	10:35	nd		CTS/100ML	nd		MG/L	nd	MG/L
ROUTINE SAMPLE	10/30/2003	10:20	560		CTS/100ML	0.2	<	MG/L	0.9	MG/L
FIELD DUPLICATE	10/30/2003	10:20	nd		CTS/100ML	nd		MG/L	nd	MG/L
ROUTINE SAMPLE	11/19/2003	0:00	na		CTS/100ML	na		MG/L	na	MG/L
ROUTINE SAMPLE	12/16/2003	9:10	20		CTS/100ML	0.2	<	MG/L	0.3	MG/L

			NO2NO3	NO2NO3	PH	PH	Р	Р	COND	COND
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	12:18	0.54	MG/L	6.9	UNITS	0.04	MG/L	dl	US/CM
ROUTINE SAMPLE	4/23/2003	10:05	0.18	MG/L	6.44	UNITS	0.024	MG/L	156.4	US/CM
ROUTINE SAMPLE	5/20/2003	12:40	0.07	MG/L	7.3	UNITS	0.028	MG/L	183.5	US/CM
FIELD DUPLICATE	5/20/2003	12:40	nd	MG/L	nd	UNITS	nd	MG/L	176.6	US/CM
ROUTINE SAMPLE	6/30/2003	11:30	0.18	MG/L	7.4	UNITS	0.043	MG/L	279.2	US/CM
FIELD DUPLICATE	6/30/2003	11:30	nd	MG/L	nd	UNITS	nd	MG/L	280.2	US/CM
ROUTINE SAMPLE	7/22/2003	11:20	0.07	MG/L	7.7	UNITS	0.037	MG/L	295.5	US/CM
ROUTINE SAMPLE	8/19/2003	11:00	0.16	MG/L	6.91	UNITS	0.036	MG/L	342.8	US/CM
ROUTINE SAMPLE	9/29/2003	10:35	0.16	MG/L	6.5	UNITS	0.032	MG/L	208.2	US/CM
FIELD DUPLICATE	9/29/2003	10:35	nd	MG/L	6.54	UNITS	nd	MG/L	207.5	US/CM
ROUTINE SAMPLE	10/30/2003	10:20	0.13	MG/L	6.33	UNITS	0.092	MG/L	113.3	US/CM
FIELD DUPLICATE	10/30/2003	10:20	nd	MG/L	6.35	UNITS	nd	MG/L	113.7	US/CM
ROUTINE SAMPLE	11/19/2003	0:00	na	MG/L	na	UNITS	na	MG/L	na	US/CM
ROUTINE SAMPLE	12/16/2003	9:10	0.24	MG/L	8.26	UNITS	0.017	MG/L	83.8	US/CM

			TEMP	TEMP	TSS	TSS	TURB	TURB	WEATHER COMMENTS
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS
ROUTINE SAMPLE	3/19/2003	12:18	dl	DEG C	6	MG/L	dl	NTU	CLEAR, SLIGHT BREEZE
ROUTINE SAMPLE	4/23/2003	10:05	nd	DEG C	3.5	MG/L	3.8	NTU	OVERCAST
ROUTINE SAMPLE	5/20/2003	12:40	20.5	DEG C	3.5	MG/L	2.9	NTU	SUNNY, CLEAR, NO WIND
FIELD DUPLICATE	5/20/2003	12:40	19.5	DEG C	nd	MG/L	2.8	NTU	SUNNY, CLEAR, NO WIND
ROUTINE SAMPLE	6/30/2003	11:30	25.3	DEG C	2.5	MG/L	3.5	NTU	PARTLY CLOUDY
FIELD DUPLICATE	6/30/2003	11:30	25.5	DEG C	nd	MG/L	3.5	NTU	PARTLY CLOUDY
ROUTINE SAMPLE	7/22/2003	11:20	24.4	DEG C	4.5	MG/L	3.1	NTU	OVERCAST
ROUTINE SAMPLE	8/19/2003	11:00	24.2	DEG C	1	MG/L	2.6	NTU	CLEAR, SLIGHT BREEZE
ROUTINE SAMPLE	9/29/2003	10:35	17.4	DEG C	2	MG/L	5.5	NTU	CLOUDY
FIELD DUPLICATE	9/29/2003	10:35	17.7	DEG C	nd	MG/L	5.6	NTU	
ROUTINE SAMPLE	10/30/2003	10:20	11.8	DEG C	16	MG/L	24	NTU	PARTLY CLOUDY, WINDY
FIELD DUPLICATE	10/30/2003	10:20	11.9	DEG C	nd	MG/L	24	NTU	
ROUTINE SAMPLE	11/19/2003	0:00	na	DEG C	na	MG/L	na	NTU	
ROUTINE SAMPLE	12/16/2003	9:10	0.3	DEG C	3.5	MG/L	3.9	NTU	PARTLY CLOUDY

Legend	
BOD	BIOCHEMICAL OXYGEN DEMAND
CHL	CHLOROPHYLL A, UNCORRECTED FOR PHEOPHYTIN
dl	DATA LOST
DO	DISSOLVED OXYGEN
DO SAT	DISSOLVED OXYGEN SATURATION
DELETED	LAB ACCIDENT
EC	ESCHERICHIA COLI
NITR	NITROGEN AMMONIA
TKN	NITROGEN KJELDAHL
na	ANAYSES NOT YET COMPLETED BY LAB
nd	NO SAMPLE COLLECTED OR NO MEASUREMENT MADE
NO2NO3	NITROGEN NITRATE + NITRITE
Р	PHOSPHORUS AS P
QUAL	QUALIFIER
COND	SPECIFIC CONDUCTANCE
TEMP	TEMPERATURE WATER
TSS	TOTAL SUSPENDED SOLIDS
TURB	TURBIDITY

Bellamy River at Rt. 108 Bridge, Dover, 05-BLM Note: Data not meeting RPD are shaded.

			BOD	BOD	BOD	CHL	CHL	DO	DO	DO SAT	DO SAT
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	12:41	2.4	<	MG/L	0.88	MG/M3	12	MG/L	89.4	%
ROUTINE SAMPLE	4/24/2003	9:45	2.4	<	MG/L	2.94	UG/L	10.68	MG/L	92.8	%
ROUTINE SAMPLE	5/20/2003	13:13	2.4	<	MG/L	6.59	UG/L	9.4	MG/L	112.1	%
ROUTINE SAMPLE	6/30/2003	12:08	2.4	<	MG/L	8.18	MG/M3	8.44	MG/L	105.7	%
ROUTINE SAMPLE	7/22/2003	11:43	2.4	<	MG/L	9.84	UG/L	8.65	MG/L	105.9	%
ROUTINE SAMPLE	8/19/2003	11:25	2.4	<	MG/L	8.01	UG/L	8.1	MG/L	98.5	%
ROUTINE SAMPLE	9/29/2003	10:06	2.4	<	MG/L	6.02	UG/L	8.1	MG/L	86.6	%
ROUTINE SAMPLE	10/30/2003	9:16	2.4	<	MG/L	6.4	UG/L	10.4	MG/L	93.7	%
ROUTINE SAMPLE	11/19/2003	10:04	2.4	<	MG/L	3.63	UG/L	12.26	MG/L	94.8	%
ROUTINE SAMPLE	12/16/2003	9:52	2.4	<	MG/L	1.97	UG/L	13.33	MG/L	93.4	%

			EC	EC	EC	NITR	NITR	NITR	TKN	TKN
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	QUAL	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	12:41	30		CTS/100ML	0.2	<	MG/L	0.4	MG/L
ROUTINE SAMPLE	4/24/2003	9:45	60		CTS/100ML	0.2	<	MG/L	0.3	MG/L
ROUTINE SAMPLE	5/20/2003	13:13	5	<	CTS/100ML	0.2	<	MG/L	0.4	MG/L
ROUTINE SAMPLE	6/30/2003	12:08	20		CTS/100ML	0.2	<	MG/L	0.5	MG/L
ROUTINE SAMPLE	7/22/2003	11:43	10	<	CTS/100ML	0.2	<	MG/L	0.5	MG/L
ROUTINE SAMPLE	8/19/2003	11:25	20		CTS/100ML	0.2	<	MG/L	0.4	MG/L
ROUTINE SAMPLE	9/29/2003	10:06	10		CTS/100ML	0.2	<	MG/L	0.3	MG/L
ROUTINE SAMPLE	10/30/2003	9:16	170		CTS/100ML	0.2	<	MG/L	0.5	MG/L
ROUTINE SAMPLE	11/19/2003	10:04	40		CTS/100ML	0.2	<	MG/L	1.6	MG/L
ROUTINE SAMPLE	12/16/2003	9:52	20		CTS/100ML	0.2	<	MG/L	0.4	MG/L

			NO2NO3	NO2NO3	NO2NO3	PH	PH	Р	Р	COND	COND
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUALIFIEF	R UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	12:41	0.18		MG/L	6.8	UNITS	0.023	MG/L	91	US/CM
ROUTINE SAMPLE	4/24/2003	9:45	0.07		MG/L	6.9	UNITS	0.016	MG/L	81.9	US/CM
ROUTINE SAMPLE	5/20/2003	13:13	0.05	<	MG/L	7.1	UNITS	0.022	MG/L	120.5	US/CM
ROUTINE SAMPLE	6/30/2003	12:08	0.07		MG/L	7.2	UNITS	0.045	MG/L	164.5	US/CM
ROUTINE SAMPLE	7/22/2003	11:43	0.05	<	MG/L	7.3	UNITS	0.036	MG/L	262.3	US/CM

ROUTINE SAMPLE	8/19/2003	11:25	0.05	<	MG/L	7.01	UNITS	0.032	MG/L	218.8	US/CM
ROUTINE SAMPLE	9/29/2003	10:06	0.05	<	MG/L	6.48	UNITS	0.019	MG/L	134.7	US/CM
ROUTINE SAMPLE	10/30/2003	9:16	0.05	<	MG/L	6.33	UNITS	0.039	MG/L	111.7	US/CM
ROUTINE SAMPLE	11/19/2003	10:04	0.05	<	MG/L	7.39	UNITS	0.018	MG/L	73.5	US/CM
ROUTINE SAMPLE	12/16/2003	9:52	0.08		MG/L	6.7	UNITS	0.014	MG/L	66.1	US/CM

			TEMP	TEMP	TSS	TSS	TSS	TURB	TURB	WEATHER COMMENTS
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	UNITS	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS
ROUTINE SAMPLE	3/19/2003	12:41	2.2	DEG C	2		MG/L	3.7	NTU	CLEAR, SLIGHT BREEZE
ROUTINE SAMPLE	4/24/2003	9:45	9.2	DEG C	1	<	MG/L	2	NTU	
ROUTINE SAMPLE	5/20/2003	13:13	25.2	DEG C	3		MG/L	2	NTU	CLEAR, SUNNY, BREEZE
ROUTINE SAMPLE	6/30/2003	12:08	26.6	DEG C	1		MG/L	3.7	NTU	CLOUDY, BREEZY
ROUTINE SAMPLE	7/22/2003	11:43	25.8	DEG C	4		MG/L	2.9	NTU	OVERCAST, WINDY
ROUTINE SAMPLE	8/19/2003	11:25	27.1	DEG C	2		MG/L	2.6	NTU	CLEAR, SLIGHT BREEZE
ROUTINE SAMPLE	9/29/2003	10:06	18.6	DEG C	1		MG/L	3.1	NTU	CLOUDY
ROUTINE SAMPLE	10/30/2003	9:16	10.7	DEG C	5		MG/L	7.4	NTU	CLEAR, BREEZY
ROUTINE SAMPLE	11/19/2003	10:04	4.8	DEG C	2		MG/L	2.9	NTU	OVERCAST
ROUTINE SAMPLE	12/16/2003	9:52	1	DEG C	2		MG/L	1.9	NTU	PARTLY CLOUDY

Legend	
BOD	BIOCHEMICAL OXYGEN DEMAND
CHL	CHLOROPHYLL A, UNCORRECTED FOR PHEOPHYTIN
DO	DISSOLVED OXYGEN
DO SAT	DISSOLVED OXYGEN SATURATION
DELETED	LAB ACCIDENT
EC	ESCHERICHIA COLI
NITR	NITROGEN AMMONIA
TKN	NITROGEN KJELDAHL
nd	NO SAMPLE COLLECTED OR NO MEASUREMENT MADE
NO2NO3	NITROGEN NITRATE + NITRITE
Р	PHOSPHORUS AS P
QUAL	QUALIFIER
COND	SPECIFIC CONDUCTANCE
TEMP	TEMPERATURE WATER
TSS	TOTAL SUSPENDED SOLIDS
TURB	TURBIDITY

Cocheco River at the Rt. 9 Bridge (Central Avenue), Dover, 07-CCH Note: Data not meeting RPD are shaded.

			BOD	BOD	BOD	CHL	CHL	DO	DO	DO SAT
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS
ROUTINE SAMPLE	3/19/2003	13:37	2.4	<	MG/L	1.26	MG/M3	14.82	MG/L	107.7
FIELD DUPLICATE	3/19/2003	13:37	nd		MG/L	nd	MG/M4	14.63	MG/L	102.3
ROUTINE SAMPLE	4/24/2003	10:05	2.4	<	MG/L	1.99	UG/L	12.12	MG/L	105
ROUTINE SAMPLE	5/22/2003	9:30	2.4	<	MG/L	2.7	MG/M3	8.92	MG/L	91.5
ROUTINE SAMPLE	6/30/2003	12:58	2.4	<	MG/L	11.47	MG/M3	8.4	MG/L	105.3
ROUTINE SAMPLE	7/22/2003	12:35	2.4	<	MG/L	13.69	UG/L	9.44	MG/L	113.6
ROUTINE SAMPLE	8/19/2003	12:25	2.4	<	MG/L	3.27	UG/L	7.37	MG/L	94.3
FIELD DUPLICATE	8/19/2003	12:25	nd		MG/L	nd	UG/L	6.88	MG/L	84.4
ROUTINE SAMPLE	9/29/2003	9:42	2.4	<	MG/L	1.99	UG/L	8.82	MG/L	92
ROUTINE SAMPLE	10/30/2003	8:48	2.4	<	MG/L	2.7	UG/L	13.26	MG/L	118.7
ROUTINE SAMPLE	11/19/2003	10:33	2.4	<	MG/L	0.88	UG/L	13.61	MG/L	100.3
ROUTINE SAMPLE	12/16/2003	10:40	2.4	>	MG/L	1.23	UG/L	14.05	MG/L	97.1
FIELD DUPLICATE	12/16/2003	10:40	nd		MG/L	nd	UG/L	14.75	MG/L	101.4

			EC	EC	EC	NITR	NITR	NITR	TKN	TKN
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	QUAL	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	13:37	10	<	CTS/100ML	0.2	<	MG/L	0.3	MG/L
FIELD DUPLICATE	3/19/2003	13:37	nd		CTS/100ML	nd		MG/L	nd	MG/L
ROUTINE SAMPLE	4/24/2003	10:05	20		CTS/100ML	0.2	<	MG/L	0.3	MG/L
ROUTINE SAMPLE	5/22/2003	9:30	30		CTS/100ML	0.2	<	MG/L	0.4	MG/L
ROUTINE SAMPLE	6/30/2003	12:58	120		CTS/100ML	0.2	<	MG/L	0.5	MG/L
ROUTINE SAMPLE	7/22/2003	12:35	40		CTS/100ML	0.2	<	MG/L	0.5	MG/L
ROUTINE SAMPLE	8/19/2003	12:25	80		CTS/100ML	0.2	<	MG/L	0.4	MG/L
FIELD DUPLICATE	8/19/2003	12:25	nd		CTS/100ML	nd		MG/L	nd	MG/L
ROUTINE SAMPLE	9/29/2003	9:42	30		CTS/100ML	0.2	<	MG/L	0.3	MG/L
ROUTINE SAMPLE	10/30/2003	8:48	390		CTS/100ML	0.2	<	MG/L	0.6	MG/L
ROUTINE SAMPLE	11/19/2003	10:33	10	<	CTS/100ML	0.2	<	MG/L	0.3	MG/L
ROUTINE SAMPLE	12/16/2003	10:40	70		CTS/100ML	0.2	<	MG/L	0.3	MG/L
FIELD DUPLICATE	12/16/2003	10:40	nd		CTS/100ML	nd		MG/L	nd	MG/L

			NO2NO3	NO2NO3	PH	PH	Р	Р	COND	COND
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	13:37	0.53	MG/L	6.8	UNITS	0.031	MG/L	121.3	US/CM
FIELD DUPLICATE	3/19/2003	13:37	nd	MG/L	nd	UNITS	nd	MG/L	120.7	US/CM
ROUTINE SAMPLE	4/24/2003	10:05	0.41	MG/L	6.9	UNITS	0.021	MG/L	113.5	US/CM
ROUTINE SAMPLE	5/22/2003	9:30	0.37	MG/L	7	UNITS	0.029	MG/L	121.4	US/CM
ROUTINE SAMPLE	6/30/2003	12:58	0.76	MG/L	7.4	UNITS	0.09	MG/L	218	US/CM
ROUTINE SAMPLE	7/22/2003	12:35	1.16	MG/L	7.8	UNITS	0.073	MG/L	292.9	US/CM
ROUTINE SAMPLE	8/19/2003	12:25	0.57	MG/L	6.75	UNITS	0.085	MG/L	188.4	US/CM
FIELD DUPLICATE	8/19/2003	12:25	nd	MG/L	6.98	UNITS	nd	MG/L	185.7	US/CM
ROUTINE SAMPLE	9/29/2003	9:42	0.53	MG/L	6.46	UNITS	0.072	MG/L	160.5	US/CM
ROUTINE SAMPLE	10/30/2003	8:48	0.13	MG/L	6.59	UNITS	0.051	MG/L	108.7	US/CM
ROUTINE SAMPLE	11/19/2003	10:33	0.32	MG/L	7.52	UNITS	0.023	MG/L	72.6	US/CM
ROUTINE SAMPLE	12/16/2003	10:40	0.28	MG/L	6.6	UNITS	0.041	MG/L	55.1	US/CM
FIELD DUPLICATE	12/16/2003	10:40	nd	MG/L	nd	UNITS	nd	MG/L	54.3	US/CM

			TEMP	TEMP	TSS	TSS	TSS	TURB	TURB	WEATHER COMMENTS
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	UNITS	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS
ROUTINE SAMPLE	3/19/2003	13:37	2.3	DEG C	2.5		MG/L	5	NTU	CLEAR, SLIGHT BREEZE
FIELD DUPLICATE	3/19/2003	13:37	0.8	DEG C	nd		MG/L	5.9	NTU	
ROUTINE SAMPLE	4/24/2003	10:05	9	DEG C	1	<	MG/L	2.5	NTU	
ROUTINE SAMPLE	5/22/2003	9:30	16.4	DEG C	3.5		MG/L	2.1	NTU	OVERCAST, WINDY
ROUTINE SAMPLE	6/30/2003	12:58	26.7	DEG C	3		MG/L	3.5	NTU	CLOUDY, BREEZY
ROUTINE SAMPLE	7/22/2003	12:35	24.7	DEG C	4		MG/L	3.4	NTU	OVERCAST
ROUTINE SAMPLE	8/19/2003	12:25	25.8	DEG C	1	<	MG/L	2	NTU	CLEAR, SLIGHT BREEZE
FIELD DUPLICATE	8/19/2003	12:25	25.7	DEG C	nd		MG/L	2	NTU	
ROUTINE SAMPLE	9/29/2003	9:42	17.4	DEG C	2		MG/L	3.5	NTU	CLOUDY
ROUTINE SAMPLE	10/30/2003	8:48	10.4	DEG C	12.5		MG/L	11	NTU	CLEAR, BREEZY
ROUTINE SAMPLE	11/19/2003	10:33	2.8	DEG C	3.5		MG/L	1.8	NTU	OVERCAST
ROUTINE SAMPLE	12/16/2003	10:40	0.3	DEG C	2		MG/L	1.8	NTU	PARTLY CLOUDY
FIELD DUPLICATE	12/16/2003	10:40	0.3	DEG C	nd		MG/L	1.8	NTU	PARTLY CLOUDY

LegendBODBIOCHEMICAL OXYGEN DEMANDCHLCHLOROPHYLL A, UNCORRECTED FOR PHEOPHYTINDODISSOLVED OXYGEN

DO SAT	DISSOLVED OXYGEN SATURATION
DELETED	LAB ACCIDENT
EC	ESCHERICHIA COLI
NITR	NITROGEN AMMONIA
TKN	NITROGEN KJELDAHL
nd	NO SAMPLE COLLECTED OR NO MEASUREMENT MADE
NO2NO3	NITROGEN NITRATE + NITRITE
Р	PHOSPHORUS AS P
QUAL	QUALIFIER
COND	SPECIFIC CONDUCTANCE
TEMP	TEMPERATURE WATER
TSS	TOTAL SUSPENDED SOLIDS
TURB	TURBIDITY

Salmon Falls River at Rt. 4, Rollinsford, 05-SFR Note: Data not meeting RPD are shaded.

			BOD	BOD	BOD	CHL	CHL	DO	DO	DO SAT	DO SAT
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	13:04	2.4	<	MG/L	0.86	MG/M3	12.55	MG/L	88.7	%
ROUTINE SAMPLE	4/24/2003	10:29	2.4	<	MG/L	2.02	UG/L	10.93	MG/L	92.9	%
FIELD DUPLICATE	4/24/2003	10:29	nd		MG/L	nd	UG/L	10.88	MG/L	92.5	%
ROUTINE SAMPLE	5/22/2003	9:30	2.4	<	MG/L	4.17	MG/M3	8.94	MG/L	91.8	%
ROUTINE SAMPLE	6/30/2003	12:40	5.5		MG/L	41.62	MG/M3	9.75	MG/L	123.2	%
ROUTINE SAMPLE	7/22/2003	12:11	2.4	<	MG/L	14.29	UG/L	7.97	MG/L	96.4	%
ROUTINE SAMPLE	8/19/2003	13:06	2.76		MG/L	18.65	UG/L	7.83	MG/L	102.5	%
ROUTINE SAMPLE	9/29/2003	9:04	2.4	<	MG/L	3.65	UG/L	7.77	MG/L	82.6	%
ROUTINE SAMPLE	10/30/2003	7:51	2.4	<	MG/L	1.99	UG/L	10.7	MG/L	95.5	%
ROUTINE SAMPLE	11/19/2003	10:50	2.4	<	MG/L	0.88	UG/L	13.01	MG/L	98.4	%
ROUTINE SAMPLE	12/16/2003	10:18	2.4	<	MG/L	1.26	UG/L	14.35	MG/L	98.6	%

			EC	EC	EC	NITR	NITR	NITR	TKN	TKN	
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	QUAL	UNITS	RESULTS	UNITS	
ROUTINE SAMPLE	3/19/2003	13:04	5		CTS/100ML	0.2	<	MG/L	0.3	MG/L	
ROUTINE SAMPLE	4/24/2003	10:29	50		CTS/100ML	0.2	<	MG/L	0.3	MG/L	
FIELD DUPLICATE	4/24/2003	10:29	nd		CTS/100ML	nd		MG/L	nd	MG/L	
ROUTINE SAMPLE	5/22/2003	9:30	10		CTS/100ML	0.2	<	MG/L	0.4	MG/L	
ROUTINE SAMPLE	6/30/2003	12:40	20		CTS/100ML	0.2	<	MG/L	1.3	MG/L	
ROUTINE SAMPLE	7/22/2003	12:11	10	<	CTS/100ML	0.2	<	MG/L	0.7	MG/L	
ROUTINE SAMPLE	8/19/2003	13:06	5		CTS/100ML	0.2	<	MG/L	0.7	MG/L	
ROUTINE SAMPLE	9/29/2003	9:04	50		CTS/100ML	0.2	<	MG/L	0.4	MG/L	
ROUTINE SAMPLE	10/30/2003	7:51	250		CTS/100ML	0.2	<	MG/L	0.5	MG/L	
ROUTINE SAMPLE	11/19/2003	10:50	10		CTS/100ML	0.2	<	MG/L	0.4	MG/L	
ROUTINE SAMPLE	12/16/2003	10:18	10	<	CTS/100ML	0.2	<	MG/L	0.3	MG/L	
			NO2NO3	NO2NO3		PH	PH	P	P	COND	COND

			NO2NO3	NO2NO3	NO2NO3	PH	PH	Р	Р	COND	COND
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS	UNITS	RESULTS	UNITS
ROUTINE SAMPLE	3/19/2003	13:04	0.24		MG/L	6.6	UNITS	0.044	MG/L	86.6	US/CM
ROUTINE SAMPLE	4/24/2003	10:29	0.13		MG/L	6.6	UNITS	0.021	MG/L	74.7	US/CM
FIELD DUPLICATE	4/24/2003	10:29	nd		MG/L	nd	UNITS	nd	MG/L	74.5	US/CM
ROUTINE SAMPLE	5/22/2003	9:30	0.15		MG/L	6.7	UNITS	0.024	MG/L	98	US/CM

ROUTINE SAMPLE	6/30/2003	12:40	0.15		MG/L	7.4	UNITS	0.075	MG/L	147.2	US/CM
ROUTINE SAMPLE	7/22/2003	12:11	0.26		MG/L	7.2	UNITS	0.056	MG/L	200.8	US/CM
ROUTINE SAMPLE	8/19/2003	13:06	0.15		MG/L	6.85	UNITS	0.036	MG/L	115.3	US/CM
ROUTINE SAMPLE	9/29/2003	9:04	0.22		MG/L	6.62	UNITS	0.024	MG/L	135.7	US/CM
ROUTINE SAMPLE	10/30/2003	7:51	0.08		MG/L	6.46	UNITS	0.026	MG/L	96	US/CM
ROUTINE SAMPLE	11/19/2003	10:50	0.05	<	MG/L	7.48	UNITS	0.011	MG/L	60.9	US/CM
ROUTINE SAMPLE	12/16/2003	10:18	0.1		MG/L	6.7	UNITS	0.018	MG/L	46.2	US/CM

			TEMP	TEMP	TSS	TSS	TSS	TURB	TURB	WEATHER COMMENTS
ACTIVITY CATEGORY	START DATE	START TIME	RESULTS	UNITS	RESULTS	QUAL	UNITS	RESULTS	UNITS	RESULTS
ROUTINE SAMPLE	3/19/2003	13:04	1	DEG C	4		MG/L	2.3	NTU	CLEAR, SLIGHT BREEZE
ROUTINE SAMPLE	4/24/2003	10:29	8.3	DEG C	1	<	MG/L	0.95	NTU	
FIELD DUPLICATE	4/24/2003	10:29	8.2	DEG C	nd		MG/L	1.8	NTU	
ROUTINE SAMPLE	5/22/2003	9:30	16.6	DEG C	4.5		MG/L	1.5	NTU	OVERCAST, BREEZY
ROUTINE SAMPLE	6/30/2003	12:40	27.3	DEG C	6.5		MG/L	2.1	NTU	
ROUTINE SAMPLE	7/22/2003	12:11	25	DEG C	5.5		MG/L	2.6	NTU	PARTLY CLOUDY
ROUTINE SAMPLE	8/19/2003	13:06	29.2	DEG C	3.5		MG/L	1.9	NTU	CLEAR, BREEZY
ROUTINE SAMPLE	9/29/2003	9:04	18.5	DEG C	2		MG/L	2.3	NTU	CLOUDY
ROUTINE SAMPLE	10/30/2003	7:51	10.3	DEG C	2.5		MG/L	4	NTU	CLEAR, WINDY
ROUTINE SAMPLE	11/19/2003	10:50	3.7	DEG C	3		MG/L	1.5	NTU	OVERCAST
ROUTINE SAMPLE	12/16/2003	10:18	0.2	DEG C	2.5		MG/L	1.7	NTU	PARTLY CLOUDY

Legend	
BOD	BIOCHEMICAL OXYGEN DEMAND
CHL	CHLOROPHYLL A, UNCORRECTED FOR PHEOPHYTIN
DO	DISSOLVED OXYGEN
DO SAT	DISSOLVED OXYGEN SATURATION
DELETED	LAB ACCIDENT
EC	ESCHERICHIA COLI
NITR	NITROGEN AMMONIA
TKN	NITROGEN KJELDAHL
nd	NO SAMPLE COLLECTED OR NO MEASUREMENT MADE
NO2NO3	NITROGEN NITRATE + NITRITE
Р	PHOSPHORUS AS P
QUAL	QUALIFIER
COND	SPECIFIC CONDUCTANCE

TEMPTEMPERATURE WATERTSSTOTAL SUSPENDED SOLIDSTURBTURBIDITY

APPENDIX D - GULFWATCH PHYSICAL DATA 2003

NH-GOM 2003 Sample Jar Data Summary

Indigenous Musse	els	Autumn, 2003	GOM						
				TARE W	/EIGHT	TOTAL	VEIGHT	TISSUE W	/EIGHT
Site	Site #	Jar label	Locatior	ORGANICS	METALS	ORGANICS	METALS	ORGANICS	METALS
Clark Cove	MECC-1	MECC1N031002	1	177.396	178.275	273.775	277.092	96.379	98.817
on Seavey I.	MECC-2	MECC2N021002	2	178.441	177.347	276.689	284.040	98.248	106.693
in Portsmouth	MECC-3	MECC3N031002	3	178.537	179.045	267.933	265.626	89.396	86.581
Harbor, Maine	MECC-4	MECC4N031002	4	178.061	178.005	278.240	274.764	100.179	96.759
	Site #	Jar label	Locatior						
South Mill	NHSM-1	NHSM1N031002	1	177.587	177.365	296.728	290.663	119.141	113.298
Pond	NHSM-2	NHSM2N031002	2	177.918	177.415	308.937	315.227	131.019	137.812
Portsmouth,	NHSM-3	NHSM3N031002	3	177.588	177.527	310.552	301.625	132.964	124.098
New Hampshire	NHSM-4	NHSM4N031002	4	178.192	178.394	288.937	298.269	110.745	119.875
	Site #	Jar label	Locatior						
Hampton-	NHHS-1	NHHS1N031001	1	177.873	178.147	288.839	298.243	110.966	120.096
Seabrook Harbor	NHHS-2	NHHS2N031001	2	177.572	177.579	273.317	293.618	95.745	116.039
Hampton,	NHHS-3	NHHS3N031001	3	178.875	177.525	296.510	304.880	117.635	127.355
New Hampshire	NHHS-4	NHHS4N031001	4	177.827	178.441	299.627	313.782	121.800	135.341
		1							
	Site #	Jar label	Locatior						
Dover Point	NHDP-1	NHDP1N031001	1	177.960	177.381	269.627	260.952	91.667	83.571
	NHDP-2	NHDP2N031001	2	178.052	177.453	271.743	282.436	93.691	104.983
Dover	NHDP-3	NHDP3N031001	3	177.484	178.947	263.385	270.221	85.901	91.274
New Hampshire	NHDP-4	NHDP4N031001	4	177.526	177.415	272.827	267.438	95.301	90.023
		1							
	Site #	Jar label	Locatior						
Little Harbor	NHLH-1	NHLH1N031001	1	179.040	177.158	259.200	261.943	80.160	84.785
	NHLH-2	NHLH2N031001	2	177.310	177.982	248.605	248.146	71.295	70.164
New Castle	NHLH-3	NHLH3N031001	3	177.770	178.144	256.632	256.333	78.862	78.189
New Hampshire	NHLH-4	NHLH4N031001	4	177.524	177.376	249.935	262.084	72.411	84.708

	MECC	2003 MET	ALS		T=	sal=	pH=		
Indigenous	Mussels	5					Tared	Cumulative	Jar
Site	#	Length (mm))	Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Wet weight (g)	Weight (g)
MECC-1	1	53.6	11	53.5	27.7	21.4	4.496	182.771	178.275
MECC-1	2	53.5	12	57.7	30.6	25.4	10.989	189.264	
MECC-1	3	56.9	13	54.0	30.3	22.5	15.293	193.568	
MECC-1	4	52.7	14	57.7	27.8	25.0	21.441	199.716	
MECC-1	5	51.3	15	52.7	28.9	22.0	26.401	204.676	
MECC-1	6	56.1	16	50.7	26.9	19.2	30.213	208.488	
MECC-1	7	57.1	17	53.2	29.0	21.2	34.312	212.587	
MECC-1	8	57.7	18	51.7	26.9	22.7			
MECC-1	9	56.1	19	51.7	27.7	22.8	42.098	220.373	
MECC-1	10	56.1	20	57.9	31.9	24.3	48.593	226.868	
	1-20 to						98.817	277.092	
MECC-2	1	56.4	11	54.4	26.8	22.5	5.431	182.778	177.347
MECC-2	2	57.0	12	50.9	26.5	23.9	9.716	187.063	1771017
MECC-2	3	50.4	13	56.8	30.3	22.0	15.353	192.700	
MECC-2	4	55.6	14	52.5	24.8	20.7	19.623	196.970	
MECC-2	5	56.4	15	52.7	29.6	22.4	25.272	202.619	
MECC-2	6	57.1	16	54.2	26.6	20.5	29.474	206.821	
MECC-2	7	51.5	17	53.4	26.0	22.7	35.184	212.531	
MECC-2	8	56.5	18	54.6	29.4	22.0	40.522	217.869	
MECC-2	9	52.1	19	50.4	28.5	21.4	45.445	222.792	
MECC-2	10	50.7	20	54.3	26.1	27.9	52.586	229.933	
	1-20 tota		20	0110	20.1	27.9	106.693	284.040	
MECC-3	1	57.7	11	55.5	29.2	22.9	3.709	182.754	179.045
MECC-3	2	57.7	12	55.4	27.1	22.7	8.108	187.153	177.045
MECC-3	3	54.2	13	50.6	29.0	19.9	11.808	190.853	
MECC-3	4	50.8	13	50.6	29.5	19.9	14.741	193.786	
MECC-3	5	57.7	15	53.1	28.5	23.8	20.365	199.410	
MECC-3	6	53.3	16	52.5	27.6	20.5	24.280	203.325	
MECC-3	7	56.8	17	54.3	29.8	20.5	29.231	203.325	
MECC-3	8	55.6	18	50.7	25.8	20.6	33.509	212.554	
MECC-3	9	55.0	19	52.8	26.5	20.0	37.275	216.320	
MECC-3	10	52.5	20	51.1	26.4	20.2	40.636	210.520	
	1-20 tota		20	51.1	20.4	20.2	86.581	265.626	
MECC-4	1-20 100	53.7	11	57.8	32.2	20.1	00.301	203.020	178.005
MECC-4 MECC-4	2	50.8	11	57.8	28.1	20.1			170.003
MECC-4 MECC-4	3	52.2	12	53.2	28.1	19.6			
MECC-4 MECC-4	4	58.1	13	55.9	28.8	24.0			
MECC-4 MECC-4	5	55.7	14	53.9	28.8	24.0			
MECC-4 MECC-4	6	52.2	15	56.6	27.5	25.5			
MECC-4 MECC-4	7	52.2	10	55.3	29.3	23.4			
MECC-4 MECC-4	8	57.2	17	55.5	28.4	24.7			
MECC-4 MECC-4	<u>8</u> 9	57.2	18	58.4	31.9	23.8			
MECC-4 MECC-4	10	55.4	20	52.4	28.4	22.0			
	1-20 tota		20	52.4	20.4	20.0	96.759	274.764	
	1-20 101	11					20.737	2/4./04	

	MEGO	2002 ODC							
Indiaanaua	MECC	2003 ORG	ANIC	28			Tared	Cumulative	Jar
Indigenous Site	#	Length (mm)		Longth (mm)	Hoight (mm)	Width (mm)		Wet weight (g)	Weight (g)
MECC-1		51.5	11	54.5	Height (IIIII)	widui (iiiii)	wet weight (g)	wet weight (g)	177.396
MECC-1 MECC-1	1 2	51.5	11	54.5					177.390
MECC-1 MECC-1	3	52.8	12	56.0					
MECC-1 MECC-1		57.3		50.9					
MECC-1 MECC-1	4 5	57.3	14 15	58.2					
		51.3		58.2					
MECC-1	6 7	56.6	16 17	52.2					
MECC-1	-	50.6							
MECC-1	8 9	56.2	18	59.2					
MECC-1 MECC-1	10	53.5	19 20	54.7					
MECC-I	1-20 tot		20	52.8			96.379	273.775	
			11	57 (90.379	213.115	170 441
MECC-2	1	55.6	11	57.6					178.441
MECC-2	2	53.7	12	54.1					
MECC-2	3	51.3	13	56.3					
MECC-2	4	57.0	14	53.7					
MECC-2	5	51.3	15	51.5					
MECC-2	6	51.9	16	55.0					
MECC-2	7	55.6	17	55.5					
MECC-2	8	51.4	18	56.4					
MECC-2	9	56.9	19	55.4					
MECC-2	10	57.8	20	51.4					
	1-20 tota						98.248	276.689	
MECC-3	1	55.3	11	52.0					178.537
MECC-3	2	50.9	12	51.5					
MECC-3	3	54.6	13	58.2					
MECC-3	4	52.0	14	51.3					
MECC-3	5	53.5	15	51.7					
MECC-3	6	51.9	16	54.9					
MECC-3	7	50.7	17	50.2					
MECC-3	8	54.3	18	53.1					
MECC-3	9	51.4	19	24.7					
MECC-3	10	53.2	20	54.2					
	1-20 tota						89.396	267.933	
MECC-4	1	57.4	11	54.4					178.061
MECC-4	2	54.2	12	53.3					
MECC-4	3	56.2	13	57.9					
MECC-4	4	55.9	14	53.9					
MECC-4	5	52.1	15	56.3					
MECC-4	6	57.6	16	56.6					
MECC-4	7	58.6	17	50.9					
MECC-4	8	56.9	18	56.9					
MECC-4	9	53.5	19	54.7					
MECC-4	10	58.0	20	54.6					
	1-20 tota	ıl					100.179	278.240	

	NHSM	2003 META	LS		T=	sal=	pH=		
Indigenous	Mussels						Tared	Cumulative	Jar
Site	#	Length (mm)		Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Wet weight (g)	Weight (g)
NHSM-1	1	56.7	11	51.6	29.3	18.7	4.628	181.993	177.365
NHSM-1	2	51.8	12	51.8	26.8	22.5	8.833	186.198	
NHSM-1	3	58.2	13	58.0	32.3	21.0	15.923	193.288	
NHSM-1	4	57.6	14	50.3	30.5	19.5	18.846	196.211	
NHSM-1	5	59.9	15	52.1	31.0	19.3	23.791	201.156	
NHSM-1	6	57.5	16	59.6	31.4	24.1	31.457	208.822	
NHSM-1	7	54.5	17	56.1	29.9	24.2	37.804	215.169	
NHSM-1	8	52.2	18	57.8	31.8	24.1	43.833	221.198	
NHSM-1	9	51.5	19	57.9	33.7	24.2	49.703	227.068	
NHSM-1	10	57.4	20	53.8	27.2	20.1	53.535	230.900	
	1-20 tot						113.298	290.663	
NHSM-2	1	56.1	11	56.3	29.0	22.9	6.944	184.359	177.415
NHSM-2	2	57.8	12	59.9	31.4	25.0	15.155	192.570	
NHSM-2	3	56.4	13	58.5	28.3	30.7	22.564	199.979	
NHSM-2	4	55.9	14	54.1	30.5	22.8	26.624	204.039	
NHSM-2	5	58.1	15	59.9	31.6	27.9	37.216	214.631	
NHSM-2	6	52.9	16	59.3	29.6	24.3	45.089	222.504	
NHSM-2	7	55.2	17	58.8	31.6	24.8	52.658	230.073	
NHSM-2	8	55.1	18	59.9	31.4	25.7	59.497	236.912	
NHSM-2	9	54.8	19	58.2	32.1	22.4	65.513	242.928	
NHSM-2	10	58.5	20	57.1	28.8	23.8	71.993	249.408	
	1-20 tota	1					137.812	315.227	
NHSM-3	1	56.7	11	57.8	33.7	22.5	6.920	184.447	177.527
NHSM-3	2	56.0	12	58.5	31.0	23.0	14.200	191.727	
NHSM-3	3	57.6	13	58.0	33.7	24.5	21.533	199.060	
NHSM-3	4	52.1	14	58.9	31.4	23.6	27.896	205.423	
NHSM-3	5	54.3	15	56.7	30.3	20.2	34.167	211.694	
NHSM-3	6	56.7	16	58.9	30.2	25.7	40.797	218.324	
NHSM-3	7	55.5	17	59.7	29.3	27.1	46.229	223.756	
NHSM-3	8	56.5	18	55.9	31.0	22.5	51.853	229.380	
NHSM-3	9	57.9	19	56.7	31.1	25.3	60.084	237.611	
NHSM-3	10	56.3	20	52.5	26.5	20.5	64.360	241.887	
	1-20 tota						124.098	301.625	
NHSM-4	1	53.4	11	54.7	30.9	21.0			178.394
NHSM-4	2	56.6	12	57.1	30.7	27.7			
NHSM-4	3	55.6	13	58.2	30.9	22.9			
NHSM-4	4	57.3	14	54.5	29.7	22.6			
NHSM-4	5	53.1	15	56.5	29.0	26.5			
NHSM-4	6	58.5	16	53.0	30.1	23.5			
NHSM-4	7	54.9	17	55.6	28.9	26.1			
NHSM-4	8	53.6	18	56.0	30.6	24.8			
NHSM-4	9	57.2	19	53.8	29.1	22.1			
NHSM-4	10	53.4	20	57.1	31.6	21.0			
	1-20 tota		-				119.875	298.269	

	NHSM	2003 ORGA	NIC	S					
Indigenous	Mussels			5			Tared	Cumulative	Jar
Site	#	Length (mm))	Length	Height	Width	Wet weight	Wet weight	Weight
NHSM-1	1	57.2	11	58.0	6		0	0	177.587
NHSM-1	2	59.9	12	59.2					
NHSM-1	3	52.7	13	57.1					
NHSM-1	4	51.7	14	55.3					
NHSM-1	5	57.0	15	53.1					
NHSM-1	6	58.1	16	51.5					
NHSM-1	7	58.2	17	58.5					
NHSM-1	8	58.0	18	52.8					
NHSM-1	9	51.9	19	51.2					
NHSM-1	10	55.2	20	54.9					
	1-20 tot						119.141	296.728	
NHSM-2	1	54.1	11	58.6					177.918
NHSM-2	2	57.2	12	54.4					
NHSM-2	3	56.0	13	55.6					
NHSM-2	4	56.5	14	59.5					
NHSM-2	5	57.0	15	56.4					
NHSM-2	6	56.3	16	59.8					
NHSM-2	7	59.2	17	56.5					
NHSM-2	8	59.2	18	52.9					
NHSM-2	9	55.0	19	58.2					
NHSM-2	10	59.4	20	58.4					
	1-20 tota	ıl					131.019	308.937	
NHSM-3	1	59.9	11	56.3					177.588
NHSM-3	2	59.6	12	57.6					
NHSM-3	3	58.3	13	57.7					
NHSM-3	4	59.3	14	57.5					
NHSM-3	5	54.3	15	57.9					
NHSM-3	6	56.1	16	53.7					
NHSM-3	7	58.8	17	58.8					
NHSM-3	8	56.4	18	59.6					
NHSM-3	9	57.8	19	59.5					
NHSM-3	10	58.2	20	58.0					
	1-20 tota	ıl					132.964	310.552	
NHSM-4	1	59.6	11	54.7					178.192
NHSM-4	2	54.3	12	53.3					
NHSM-4	3	57.1	13	55.8					
NHSM-4	4	53.2	14	57.0					
NHSM-4	5	56.6	15	56.9					
NHSM-4	6	52.9	16	57.3					
NHSM-4	7	51.8	17	50.5					
NHSM-4	8	55.9	18	56.7					
NHSM-4	9	56.6	19	54.7					
NHSM-4	10	59.8	20	53.4					
	1-20 tota	l]	110.745	288.937	

	NHHS 2	2003 META	LS		T=	sal=	pH=		
Indigenous	Mussels						Tared	Cumulative	Jar
Site	#	Length (mm))	Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Wet weight (g)	Weight (g)
NHHS-1	1	56.0	11	57.2	30.1	22.3	5.478	183.625	178.147
NHHS-1	2	52.9	12	52.3	27.9	24.4	11.505	189.652	
NHHS-1	3	54.9	13	58.5	32.1	25.7	20.215	198.362	
NHHS-1	4	52.4	14	55.1	29.6	22.8	25.973	204.120	
NHHS-1	5	51.2	15	53.8	32.2	26.0	32.816	210.963	
NHHS-1	6	59.7	16	56.6	33.7	24.8	40.310	218.457	
NHHS-1	7	55.0	17	53.7	28.0	23.1	46.340	224.487	
NHHS-1	8	53.8	18	55.4	29.9	24.2	52.727	230.874	
NHHS-1	9	53.1	19	54.9	30.5	25.3	58.825	236.972	
NHHS-1	10	53.5	20	58.6	28.9	22.1	65.685	243.832	
	1-20 tot						120.096	298.243	
NHHS-2	1	52.6	11	58.6	33.6	26.5	9.062	186.641	177.579
NHHS-2	2	53.8	12	53.6	28.0	21.2	14.696	192.275	
NHHS-2	3	52.8	13	56.8	31.3	24.8	21.546	199.125	
NHHS-2	4	53.3	14	56.0	28.5	27.4	28.736	206.315	
NHHS-2	5	57.1	15	56.7	31.0	23.2	34.433	212.012	
NHHS-2	6	54.1	16	57.0	30.4	25.7	41.735	219.314	
NHHS-2	7	57.7	17	57.7	29.1	23.0	48.630	226.209	
NHHS-2	8	54.4	18	56.7	29.4	22.1	54.839	232.418	
NHHS-2	9	58.6	19	58.0	29.6	25.0	61.905	239.484	
NHHS-2	10	51.1	20	57.7	29.0	22.2	67.745	245.324	
	1-20 tota						116.039	293.618	
NHHS-3	1	57.2	11	53.9	29.5	23.4	5.604	183.129	177.525
NHHS-3	2	55.8	12	54.3	27.4	23.6	12.180	189.705	
NHHS-3	3	56.8	13	52.1	26.7	19.8	16.074	193.599	
NHHS-3	4	58.2	14	55.7	29.8	24.0	22.499	200.024	
NHHS-3	5	58.8	15	57.1	29.1	21.7	28.558	206.083	
NHHS-3	6	56.1	16	55.6	30.2	24.7	35.701	213.226	
NHHS-3	7	53.8	17	53.0	29.5	19.6	40.229	217.754	
NHHS-3	8	53.1	18	55.2	27.1	24.4	45.665	223.190	
NHHS-3	9	55.3	19	59.3	34.4	25.5	54.047	231.572	
NHHS-3	10	54.0	20	52.3	28.7	23.6	60.030	237.555	
	1-20 tota			0210	2017	2010	127.355	304.880	
NHHS-4	1	54.3	11	57.5	31.2	24.5			178.441
NHHS-4	2	56.8	12	58.2	27.0	25.4			1,0,111
NHHS-4	3	58.0	13	57.6	29.5	25.3			
NHHS-4	4	54.4	14	57.4	31.6	26.5			
NHHS-4	5	58.4	15	50.9	27.5	20.0			
NHHS-4	6	56.6	16	52.3	53.5	27.7			
NHHS-4	7	55.7	17	58.0	27.4	30.1			
NHHS-4	8	58.0	18	58.2	33.0	24.3			
NHHS-4	9	57.9	19	50.9	28.6	24.0			
NHHS-4	10	58.9	20	56.3	31.9	24.0			
	1-20 tota			2 3.2	21.7		135.341	313.782	

	NHHS	2003 ORGA	NIC	S					
Indigenous	Mussels			5			Tared	Cumulative	Jar
Site	#	, Length (mm)		Length (mm)	Height (mm)	Width (mm)	Wet weight (g)		Weight (g)
NHHS-1	1	55.2	11	53.5	Tiergin (iiiii)	Widdii (iiiiii)	wet weight (g)	wet weight (g)	177.873
NHHS-1	2	55.0	12	58.8					177.875
NHHS-1	3	53.9	13	53.9					
NHHS-1	4	54.3	13	53.5					
NHHS-1	5	54.5	14	53.3					
NHHS-1	6	52.1	16	51.0					
	-								
NHHS-1	7	57.1	17	54.7					
NHHS-1	8	54.8	18	58.6					
NHHS-1	9	59.5	19	56.7					
NHHS-1	10	53.6	20	57.4			110.044		
	1-20 tot						110.966	288.839	
NHHS-2	1	52.4	11	53.9					177.572
NHHS-2	2	50.4	12	56.0					
NHHS-2	3	55.5	13	54.4					
NHHS-2	4	56.0	14	50.9					
NHHS-2	5	54.3	15	52.9					
NHHS-2	6	56.7	16	53.5					
NHHS-2	7	54.2	17	52.2					
NHHS-2	8	50.3	18	52.8					
NHHS-2	9	52.4	19	54.6					
NHHS-2	10	50.4	20	54.6					
	1-20 tota	ıl					95.745	273.317	
NHHS-3	1	50.6	11	58.6					178.875
NHHS-3	2	55.6	12	54.3					
NHHS-3	3	57.7	13	55.9					
NHHS-3	4	56.7	14	56.0					
NHHS-3	5	53.5	15	54.0					
NHHS-3	6	51.6	16	57.3					
NHHS-3	7	54.9	17	53.5					
NHHS-3	8	51.1	18	50.3					
NHHS-3	9	57.9	19	55.0					
NHHS-3	10	55.9	20	55.4					
	1-20 tota						117.635	296.510	
NHHS-4	1	50.2	11	56.6					177.827
NHHS-4	2	53.9	12	56.1					
NHHS-4	3	54.4	13	57.5					
NHHS-4	4	56.6	14	51.7					
NHHS-4	5	55.1	15	54.2					
NHHS-4	6	52.8	16	50.3					
NHHS-4	7	57.9	17	57.0					
NHHS-4	8	55.0	18	50.1					
NHHS-4	9	52.9	19	54.9					
NHHS-4	10	53.7	20	56.1					
11110-4	1-20 tota		20	50.1			121.800	299.627	
	1-20 1010	u					121.000	277.021	

	NHDP 2	2003 META	LS		T=	sal=	pH=		
Indigenous	Mussels						Tared	Cumulative	Jar
Site	#	Length (mm))	Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Wet weight (g)	Weight (g)
NHDP-1	1	55.9	11	57.2	28.9	22.3	5.831	183.212	177.381
NHDP-1	2	54.7	12	51.6	24.0	21.7	8.871	186.252	
NHDP-1	3	51.9	13	54.1	28.6	22.7	13.979	191.360	
NHDP-1	4	55.2	14	54.2	28.2	19.3	18.034	195.415	
NHDP-1	5	56.4	15	50.0	25.6	19.2	21.675	199.056	
NHDP-1	6	53.2	16	53.3	28.5	22.6	27.288	204.669	
NHDP-1	7	52.5	17	52.6	25.5	19.7	30.841	208.222	
NHDP-1	8	58.2	18	52.1	27.5	21.9	35.041	212.422	
NHDP-1	9	51.1	19	50.6	26.9	19.1	38.759	216.140	
NHDP-1	10	57.5	20	51.8	26.9	23.9	43.065	220.446	
	1-20 tot						83.571	260.952	
NHDP-2	1	55.6	11	54.7	27.6	22.8	4.835	182.288	177.453
NHDP-2	2	57.5	12	54.9	26.7	22.7	9.956	187.409	
NHDP-2	3	56.5	13	58.8	30.2	23.7	16.485	193.938	
NHDP-2	4	53.5	14	55.4	26.5	25.1	21.368	198.821	
NHDP-2	5	59.6	15	53.0	27.7	21.3	25.723	203.176	
NHDP-2	6	53.7	16	51.7	25.0	22.7	30.721	208.174	
NHDP-2	7	58.7	17	60.0	30.1	24.1	37.112	214.565	
NHDP-2	8	51.2	18	54.7	27.9	21.9	41.599	219.052	
NHDP-2	9	53.4	19	53.5	23.4	24.0	46.107	223.560	
NHDP-2	10	53.7	20	57.6	30.2	24.3	52.060	229.513	
	1-20 tota	1					104.983	282.436	
NHDP-3	1	59.3	11	53.0	25.9	25.1	3.270	182.217	178.947
NHDP-3	2	51.5	12	53.6	27.1	22.7	8.019	186.966	
NHDP-3	3	52.7	13	52.6	25.3	22.7	12.467	191.414	
NHDP-3	4	52.7	14	54.9	27.2	25.2	18.254	197.201	
NHDP-3	5	57.7	15	55.1	29.0	22.1	25.349	204.296	
NHDP-3	6	56.0	16	51.3	27.2	22.6	29.138	208.085	
NHDP-3	7	55.6	17	50.2	25.0	21.5	30.994	209.941	
NHDP-3	8	53.3	18	52.2	27.8	22.8	33.938	212.885	
NHDP-3	9	54.4	19	51.1	26.4	22.0	37.849	216.796	
NHDP-3	10	56.3	20	55.1	25.3	23.8	43.065	222.012	
	1-20 tota						91.274	270.221	
NHDP-4	1	54.8	11	55.4	27.8	22.3			177.415
NHDP-4	2	53.1	12	57.1	27.1	22.7			
NHDP-4	3	58.0	13	56.7	25.6	24.7			
NHDP-4	4	52.9	14	57.1	29.0	24.2			
NHDP-4	5	53.2	15	58.6	26.7	25.3			
NHDP-4	6	54.6	16	54.9	27.8	20.8			
NHDP-4	7	52.1	17	54.0	27.5	22.8			
NHDP-4	8	55.1	18	54.9	27.6	23.0			
NHDP-4	9	52.8	19	54.3	27.2	23.1			
NHDP-4	10	55.2	20	54.3	26.5	23.3			
	1-20 tota						90.023	267.438	

				~					
T 1'		2003 ORGA	NIC	S				C 1.	
U	Mussels			T (1 ()	II • 1 ()	W 7. 141 ()	Tared	Cumulative	Jar
Site	#	Length (mm)		U (Height (mm)	Width (mm)	Wet weight (g)	wet weight (g)	Weight (g)
NHDP-1	1	56.9	11	54.6					177.960
NHDP-1	2	58.5	12	53.9					
NHDP-1	3	56.8	13	54.2					
NHDP-1	4	50.9	14	50.5					
NHDP-1	5	55.5	15	50.6					
NHDP-1	6	52.0	16	53.1					
NHDP-1	7	52.4	17	54.6					
NHDP-1	8	53.5	18	56.3					
NHDP-1	9	57.3	19	54.4					
NHDP-1	10	53.6	20	53.6			01.47	2.00.027	
	1-20 tot						91.667	269.627	
NHDP-2	1	53.9	11	53.9					178.052
NHDP-2	2	57.8	12	53.2					
NHDP-2	3	53.5	13	54.5					
NHDP-2	4	56.2	14	50.0					
NHDP-2	5	56.6	15	54.3					
NHDP-2	6	52.9	16	50.6					
NHDP-2	7	54.2	17	57.5					
NHDP-2	8	52.4	18	52.8					
NHDP-2	9	54.9	19	54.8					
NHDP-2	10	54.2	20	51.0					
	1-20 tota						93.691	271.743	
NHDP-3	1	53.3	11	51.5					177.484
NHDP-3	2	57.9	12	50.1					
NHDP-3	3	53.9	13	53.0					
NHDP-3	4	51.1	14	54.3					
NHDP-3	5	53.0	15	53.0					
NHDP-3	6	55.0	16	50.3					
NHDP-3	7	56.7	17	55.3					
NHDP-3	8	57.2	18	54.6					
NHDP-3	9	50.9	19	54.1					
NHDP-3	10	52.0	20	59.4					
	1-20 tota	1					85.901	263.385	
NHDP-4	1	54.7	11	55.2					177.526
NHDP-4	2	52.8	12	51.8					
NHDP-4	3	55.4	13	52.6					
NHDP-4	4	58.1	14	53.4					
NHDP-4	5	53.4	15	53.6					
NHDP-4	6	53.3	16	58.0					
NHDP-4	7	55.1	17	53.5					
NHDP-4	8	51.8	18	54.3					
NHDP-4	9	60.0	19	56.8					
NHDP-4	10	52.5	20	56.3					
	1-20 tota	1					95.301	272.827	

	NHLH	2003 META	LS		T=	sal=	pH=		
Indigenous	Mussels						Tared	Cumulative	Jar
Site	#	Length (mm)		Length (mm)	Height (mm)	Width (mm)	Wet weight (g)	Wet weight (g)	Weight (g)
NHLH-1	1	58.5	11	54.3	30.3	23.3	3.803	180.961	177.158
NHLH-1	2	52.4	12	51.0	27.3	22.6	7.995	185.153	
NHLH-1	3	57.6	13	57.9	31.9	23.8	12.836	189.994	
NHLH-1	4	51.2	14	50.3	23.6	25.3	16.275	193.433	
NHLH-1	5	54.7	15	57.3	30.1	24.1	21.869	199.027	
NHLH-1	6	56.0	16	54.8	29.5	22.6	25.648	202.806	
NHLH-1	7	55.9	17	53.5	28.2	22.8	30.064	207.222	
NHLH-1	8	57.6	18	53.6	28.7	24.9	34.183	211.341	
NHLH-1	9	56.8	19	58.8	31.0	25.0	39.407	216.565	
NHLH-1	10	55.2	20	50.8	29.6	20.2	43.252	220.410	
	1-20 tot			00.0			84.785	261.943	
NHLH-2	1	52.9	11	52.2	27.3	21.8	3.341	181.323	177.982
NHLH-2	2	56.3	12	50.7	27.2	21.5	6.706	184.688	111.702
NHLH-2	3	51.5	12	51.7	27.2	21.3	10.165	188.147	
NHLH-2 NHLH-2	4	52.3	13	50.4	28.3	20.9	13.470	191.452	
NHLH-2 NHLH-2	5	52.8	14	57.9	30.0	20.9	13.470	191.432	
NHLH-2 NHLH-2	6	56.9	15	55.3	27.4	24.0	21.923	196.149	
	7	50.8	10	55.0	27.4	25.0	21.923	203.357	
NHLH-2 NHLH-2	8	50.8	17	55.0 56.5	30.0	24.6	25.375	203.357 203.579	
NHLH-2 NHLH-2	8 9	51.8	18	56.5	25.8	25.2	32.743	203.579 210.725	
NHLH-2	10	50.7	20	56.8	28.6	25.8	37.126	215.108	
	1-20 tota						70.164	248.146	
NHLH-3	1	53.4	11	51.7	27.9	20.9	3.252	181.396	178.144
NHLH-3	2	58.0	12	55.7	27.5	24.1	7.558	185.702	
NHLH-3	3	55.2	13	58.3	30.5	24.3	12.859	191.003	
NHLH-3	4	59.1	14	55.8	29.7	24.7	17.225	195.369	
NHLH-3	5	58.7	15	51.5	28.3	21.2	20.092	198.236	
NHLH-3	6	54.7	16	55.3	29.0	23.0	23.875	202.019	
NHLH-3	7	55.7	17	58.2	30.0	24.9	28.501	206.645	
NHLH-3	8	52.1	18	54.3	28.2	22.2	30.639	208.783	
NHLH-3	9	58.5	19	53.4	28.0	21.4	34.155	212.299	
NHLH-3	10	55.2	20	55.3	25.5	24.4	37.873	216.017	
	1-20 tota						78.189	256.333	
NHLH-4	1	57.7	11	57.9	28.5	22.7			177.376
NHLH-4	2	54.8	12	53.0	26.0	23.2			
NHLH-4	3	56.7	13	59.9	33.7	23.7			
NHLH-4	4	56.7	14	59.0	29.8	23.0			
NHLH-4	5	52.4	15	53.9	26.1	23.6			
NHLH-4	6	52.3	16	59.8	29.3	26.3			
NHLH-4	7	58.1	17	59.0	31.6	28.8			
NHLH-4	8	52.8	18	52.2	26.6	22.4			
NHLH-4	9	59.4	19	56.6	26.0	22.9			
NHLH-4	10	55.9	20	51.5	28.0	21.6			
	1-20 tota	1					84.708	262.084	

	NHLH	2003 ORGAN	ICS					
Indigenous	Mussels		105			Tared	Cumulative	Jar
Site	#	Length (mm)	Length (mm)	Height (mm)	Width (mm)		Wet weight (g)	Weight (g)
NHLH-1	1	54.2	58.0				6 (6)	179.040
NHLH-1	2	51.9	54.0					1771010
NHLH-1	3	58.7	53.6					
NHLH-1	4	52.4	52.1					
NHLH-1	5	53.1	53.2					
NHLH-1	6	52.3	57.0					
NHLH-1	7	57.6	59.8					
NHLH-1	8	55.3	56.9					
NHLH-1	9	54.4	58.9					
NHLH-1	10	52.5	52.0					
	1-20 tot					80.160	259.200	
NHLH-2	1	56.5	58.2					177.310
NHLH-2	2	50.8	53.2					
NHLH-2	3	52.4	55.5					
NHLH-2	4	52.7	51.5					
NHLH-2	5	56.8	54.8					
NHLH-2	6	53.3	52.2					
NHLH-2	7	57.0	50.5					
NHLH-2	8	54.0	59.2					
NHLH-2	9	50.3	53.5					
NHLH-2	10	51.0	52.5					
1-20 total		ıl				71.295	248.605	
NHLH-3	1	53.7	53.7					177.770
NHLH-3	2	56.5	58.0					
NHLH-3	3	57.2	56.5					
NHLH-3	4	53.1	58.8					
NHLH-3	5	57.7	58.5					
NHLH-3	6	58.0	53.0					
NHLH-3	7	59.5	56.0					
NHLH-3	8	53.2	57.6					
NHLH-3	9	50.9	56.0					
NHLH-3	10	57.0	52.9					
1-20 total						78.862	256.632	
NHLH-4	1	59.7	52.6					177.524
NHLH-4	2	51.7	59.7					
NHLH-4	3	57.8	57.6					
NHLH-4	4	50.7	54.7					
NHLH-4	5	58.1	54.5					
NHLH-4	6	52.5	53.2					
NHLH-4	7	54.9	56.0					
NHLH-4	8	50.5	52.8					
NHLH-4	9	56.8	52.4					
NHLH-4	10	56.6	54.8					
	1-20 tota	ıl				72.411	249.935	