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Abstract Local acceleration driven bywhistler-mode choruswaves is fundamentally important for accelerating
seed electron populations to highly relativistic energies in the outer radiation belt. In this study, we quantitatively
evaluate chorus-driven electron acceleration during the 17 March 2013 storm, when the Van Allen Probes
observed very rapid electron acceleration up to several MeVwithin ~12 hours. A clear radial peak in electron phase
space density (PSD) observed near L*~4 indicates that an internal local acceleration process was operating. We
construct the global distribution of chorus wave intensity from the low-altitude electron measurements made by
multiple Polar Orbiting Environmental Satellites (POES) satellites over a broad region, which is ultimately used to
simulate the radiation belt electron dynamics driven by chorus waves. Our simulation results show remarkable
agreement in magnitude, timing, energy dependence, and pitch angle distribution with the observed electron
PSD near its peak location. However, radial diffusion and other loss processes may be required to explain the
differences between the observation and simulation at other locations away from the PSD peak. Our simulation
results, together with previous studies, suggest that local acceleration by chorus waves is a robust and ubiquitous
process and plays a critical role in accelerating injected seed electrons with convective energies (~100 keV) to
highly relativistic energies (several MeV).

1. Introduction

Outer radiation belt electron fluxes are highly variable during geomagnetic storms due to a competition
between various loss and acceleration processes [Reeves et al., 2003; Bortnik and Thorne, 2007; Li et al., 2006; Li
et al., 2007; Xiao et al., 2009; Thorne, 2010; Turner et al., 2013]. Energetic plasma sheet electrons transported
into the inner magnetosphere during substorms or periods of enhanced convection provide seed electrons,
which can be further energized to highly relativistic energies [Horne and Thorne, 2003; Baker and Kanekal,
2008; Thorne, 2010]. The potential candidates for providing this further acceleration include local acceleration
by wave-particle interactions [Summers et al., 2002; Horne et al., 2005a] and inward radial diffusion [Perry et al.,
2005; Ukhorskiy et al., 2009]. Specifically, whistler-mode chorus waves are known to provide local acceleration
of energetic electrons through efficient energy diffusion [Horne and Thorne, 1998; Summers et al., 2002]. Peaks
observed in the electron phase space density (PSD) [Green and Kivelson, 2004; Iles et al., 2006; Chen et al., 2007;
Reeves et al., 2013] in the heart of the outer radiation belt suggest that an internal local acceleration process is
operating. Thorne et al. [2013] simulated the evolution of the electron PSD during the 9 October 2012 storm
and found that local acceleration driven by whistler-mode chorus waves was able to reproduce the observed
electron PSD increases near the PSD peak location. Their simulation results were not only able to reproduce
the magnitude, timing, and energy dependence of the electron PSD, but also the evolution of the electron
pitch angle distribution, which provides direct evidence of the rapid electron PSD increase driven by local
acceleration of chorus waves during that particular storm. However, whether chorus-driven electron
acceleration is always, frequently, or only sometimes, the dominant process responsible for the observed
electron energization is a question that needs further investigation.

In the process of simulating radiation belt electron dynamics during a selected event, it is critical to adopt
realistic global wave distributions and plasma parameters. However, in situ observations of waves and plasma
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parameters are confined to a limited range in the L-shell and magnetic local time (MLT) during each event
when observed from equatorial satellites alone. Therefore, statistical global distributions of chorus waves
dependent on solar wind parameters and/or geomagnetic indices were used previously to simulate the
evolution of electron PSD [e.g., Horne et al., 2005a, 2005b; Albert et al., 2009]. However, a statistical global
wave model does not necessarily provide an accurate spatiotemporal evolution of wave intensities in each
individual event. More recently, by taking advantage of the extensive coverage of multiple low-altitude
satellites, Li et al. [2013] inferred the global distribution of chorus wave intensity from the ratio of the
precipitated and trapped electron fluxes measured by Polar Orbiting Environmental Satellites (POES) using a
physics-based inversion technique [Ni et al., 2014]. Thorne et al. [2013] adopted the global chorus wave
distribution obtained from this technique to simulate the evolution of the electron PSD and showed excellent
agreement with the observation during the 9 October 2012 storm, as discussed above. Tu et al. [2014]
also simulated this storm with the DREAM3D code using an event-specific global chorus wave model
obtained from the POES electron precipitation [Chen et al., 2014] and found that event-specific global chorus
wave model and realistic seed electron population play an important role in reproducing the observed
electron dynamics.

In the present study, we apply the technique shown in Li et al. [2013] to construct the global distribution of
chorus wave intensity, which is used to simulate the electron PSD evolution during another interesting
geomagnetic storm, which occurred on 17 March 2013 and caused rapid electron acceleration up to several
MeV within ~12 h. Relativistic electron dynamics and chorus wave activity during this storm have been
analyzed in Baker et al. [2014] and Foster et al. [2014] using in situ Van Allen Probes observations. They found
that substorm processes play a significant role in creating a seed electron population and chorus wave
enhancements are associated with a fast energization of relativistic electrons. In this study, by solving the 2-D
Fokker-Planck equation, we quantitatively examine whether chorus-driven acceleration can lead to the
observed electron PSD, in terms of its evolution in magnitude, timing, and pitch angle distributions
during this geomagnetic storm at various locations, not only near the peak in PSD but also in the regions
away from the peak.

2. Data Analysis
2.1. Van Allen Probes Data Analysis

Particle and wave measurements from the twin Van Allen Probes near the equatorial magnetosphere [Mauk
et al., 2012] were used to analyze the 17 March 2013 geomagnetic storm. Energetic electron measurements,
which are used to analyze the seed electron population and relativistic radiation belt electrons and their pitch
angle distributions, are obtained from both the Relativistic Electron Proton Telescope (REPT) [Baker et al.,
2012] and the Magnetic Electron Ion Spectrometer (MagEIS) instruments [Blake et al., 2013], which are
elements of the Energetic Particle, Composition, and Thermal Plasma instrument suite [Spence et al., 2013].
The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) provides measurements of
DC magnetic fields (magnetometer instrument) and a comprehensive set of wave electric and magnetic
fields (Waves instrument) [Kletzing et al., 2013]. The Waveform Receiver (WFR) on the EMFISIS Waves
instrument measures wave power spectral density from 10Hz up to 12 kHz [Kletzing et al., 2013], which is well
suited to measure whistler-mode chorus waves. The High Frequency Receiver (HFR) is designed to provide
electric spectral intensity between 10 and 400 kHz, thus enabling measurements of the upper hybrid
resonance frequency, from which the total plasma density can be calculated. The upper hybrid resonance
frequency or the lower frequency cutoff of the continuum radiation (which provides the upper limit of the
plasma density) is used to identify the location of the plasmapause and to determine the plasma density in
the outer radiation belt used in our simulation.

2.2. Construction of the Global Chorus Wave Intensities From the POES Electron Measurements

Chorus wave amplitudes are inferred from the ratio of the precipitated and trapped electron fluxes over the
energy range of 30–100 keV measured by multiple POES satellites. Based on the fact that lower-band chorus
waves play a dominant role in driving 30–100keV electron precipitation [e.g., Lam et al., 2010; Thorne et al., 2010],
using quasi-linear diffusion theory [Kennel and Petschek, 1966], we developed a physics-based technique to link
the electron pitch angle distribution near the bounce loss cone driven by chorus wave scattering and the two-
directional electronmeasurements by POES satellites over the energy range of 30–100keV [Evans and Greer, 2004;
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Green, 2013]. Details of this technique are described in Li et al. [2013] and Ni et al. [2014]. Since multiple POES
satellites are present over awide range ofMLTwith an orbital period of ~100min, inferred choruswave amplitudes
from the ratio of precipitated and trapped electron fluxes provide extensive coverage in L and MLT with a time
resolution comparable to ~0.5–1h. This technique has been validated by analyzing a number of conjunction
events between the Van Allen Probes and POES satellites and is confirmed to provide reasonable estimates on the
whistler-mode wave amplitudes including both chorus and hiss [Li et al., 2013, 2014]. This data-driven dynamic
global chorus distribution is used in our simulation to quantify chorus-driven electron acceleration in the outer
radiation belt, as discussed in section 3.2.

3. Observational and Simulation Results
3.1. Observation of Electrons and Chorus Waves

An overview of the 17 March 2013 storm is shown in Figure 1, which includes solar wind parameters,
geomagnetic indices, and electron fluxes observed by both MagEIS and REPT. Over the period between 06
and 09 UT on 17 March 2013, the solar wind dynamic pressure (Figure 1a) suddenly increased associated with
the shock arrival [Baker et al., 2014], which pushed the magnetopause location down to ~6 RE at noon
according to the predicted magnetopause location by Shue et al. [1998], as shown in Figure 1c. In association
with this compression of the magnetopause, relativistic electron fluxes (>~2MeV) decreased by almost an
order of magnitude from Trajectory 2 to 3 (see Figure 1j), which is likely due to the magnetopause shadowing
effect and the following outward radial diffusion process [e.g., Shprits et al., 2006; Turner et al., 2012].
Subsequently, electron fluxes with energies below a fewMeV exhibited rapid increases from Trajectory 3 to 4
within several hours, while higher-energy electron fluxes above ~3MeV gradually increased during the
following ~10 h until Trajectory 6, after which electron fluxes exhibited insignificant changes. During this
acceleration interval from Trajectory 3 to 6 (red horizontal line shown in Figure 1), the interplanetary
magnetic field (IMF) Bz was mostly southward (Figure 1b), the predicted magnetopause location generally
stayed above ~8 RE (Figure 1c), and strongly negative values were recorded in both SYM-H (Figure 1d) and AL
(Figure 1e), all of which favor electron acceleration by enhancing the seed electron fluxes and various wave
activities and reducing the magnetopause loss [e.g., Kataoka and Miyoshi, 2008;McPherron et al., 2009; Thorne
et al., 2013]. We simulate the electron PSD evolution during this acceleration interval from ~12 to ~24 UT on
17 March 2013, which is described in section 3.2 below.

We calculated the evolution of the electron PSD for a constant first adiabatic invariant (μ=3433MeV/G) and
second adiabatic invariant (K=0.10 G1/2RE) along the trajectories of both Van Allen Probes A and B during a
more extended time interval from ~09:07 UT on 17 March to ~08:32 UT on 18 March to show a more complete
sequence of the PSD evolution around the acceleration interval. The calculated electron PSD is shown in
Figure 2 as a function of L*, color-coded for different times, and is generally consistent with the PSD values
shown in Baker et al. [2014]. Note that L* is calculated for 90° pitch angle particles using the TS05 model
[Tsyganenko and Sitnov, 2005]. For this given μ=3433MeV/G, the corresponding electron energy varies from
~2–3MeVat L* = 5 to ~6MeVat L* = 3. For the provided K=0.10 G1/2RE, the corresponding electron pitch angles
range from~40° to ~90° during the trajectories of Van Allen Probes A and B, whichweremostly within 15° of the
magnetic equator over the L* between 3 and 5. Before ~12 UT on 17 March, the PSD was very low (<~10�10

(cMeV�1 cm�1)3), probably due to the substantial loss caused by the magnetopause shadowing effect associated
with the relatively large dynamic pressure increases over 06–11 UT on 17 March. The electron PSD started to
increase from Pass 2 and continued to increase until Pass 7 and 8, where a clear peak in PSDwas observed at L* of
4.1–4.3. Subsequently, the peak was smoothed out predominantly toward larger L*, leading to a decreased PSD at
L* between 4.1 and 4.3 and an increased PSD at L*> 4.7. This rising peak in PSD from Pass 2 to 8 is likely to be
caused by an internal acceleration process, while the flattened PSD profile is probably due to outward radial
diffusion [e.g., Shprits et al., 2006; Turner et al., 2012]. In Figure 2, the PSD values were not shown if the
corresponding electron energy for the fixed μ was less than 2MeV (the lower limit of REPT energy channel) or
larger than ~5.6MeV, above which electron fluxes are close to the background level, or L* from TS05 was not
defined because it fell on an open drift boundary. Here we focus on simulating the electron PSD evolution during
the acceleration time interval from Pass 2 to 8, approximately from ~12 to ~24 UT on 17 March 2013.

Since we evaluate electron acceleration driven by chorus waves, in Figure 3, we show the chorus waves
directly observed by the EMFISIS instrument and inferred from the POES electron measurements using the
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inversion technique described above. Since the apogee of the Van Allen Probes was located near the
midnight sector during this storm, the outbound (inbound) pass corresponds to the premidnight
(postmidnight) sector. The EMFISIS wave observations (Figure 3b and 3c) show that chorus waves remained
strong during the acceleration interval associated with strong disturbances in the AL index (Figure 3a) near
the nightside. Note that during this interval, the plasmapause was compressed to below 3 RE, which can be
inferred from the upper hybrid resonance line detected from the EMFISIS instrument [Foster et al., 2014].
Chorus wave amplitudes inferred from the two-directional POES electron measurements are shown with a
bin size of 1 h × 0.2 L over six different MLT ranges (Figures 3d–3i). The comparison of directly measured and

Figure 1. Solar wind parameters, geomagnetic indices, and energetic electron fluxes observed by the Van Allen Probes
during the 17 March 2013 storm. (a) Solar wind dynamic pressure, (b) the z component of the interplanetary magnetic
field in the GSM coordinate, (c) The magnetopause location obtained using the Shue et al. [1998] model, (d) SYM-H, and (e)
AL index. (f )–(j) Electron fluxes observed by MagEIS and REPT on both Van Allen Probes A and B at various energies. The red
horizontal arrow represents the acceleration time interval, during which our simulation is performed.
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inferred chorus wave amplitudes in the
premidnight (20–24 MLT) and
postmidnight sector (00–04 MLT) shows a
good agreement in each corresponding
MLT sector.

We constructed the global chorus wave
intensity distribution based on the inferred
chorus wave amplitudes averaged over
each 4 h UT interval during the period of
12–24 UT on 17 March around three
different L-shells, 3.5, 4.25, and 5.0. The
wave and plasma parameters used to
simulate the electron PSD evolution at
L= 4.25, where the peak in electron PSD
was observed, are shown in Table 1 by
averaging the values over 4.0–4.5 in L-shell.
We adopted the electron density (Ne)
inferred from the upper hybrid resonance
line or the lower frequency cutoff of the
continuum radiation measured by EMFISIS,
which was averaged over the acceleration
interval in the premidnight (20–24 MLT)

and postmidnight (00–04 MLT) sector, respectively. In other MLT sectors, we scaled the density values by a
factor of 0.43 from the statistical plasmatrough density model [Sheeley et al., 2001], since 0.43 is the ratio
between the measured electron density and the statistical model value at L~4.25 over 00–04 MLT. The
ambient plasma density is further assumed to be constant as a function of latitude and remain constant over
the 12 h acceleration interval.

To evaluate the quasi-linear diffusion coefficients of radiation belt electrons driven by whistler-mode chorus,
we assume that the chorus wave power spectral density IB (f) follows a Gaussian frequency distribution with
lower and upper cutoffs flc and fuc, the median value fm, and the bandwidth δf:

IB fð Þ ¼ 2 Bwj j2
π1=2δf

erf
fm � f lc

δf

� �
þ erf

f uc � f m
δf

� �� ��1

exp � f � f m
δf

� �2
" #

; (1)

where |Bw|
2 is the averaged chorus magnetic wave power and erf is the error function. We set flc/fce = 0.05 and

fuc/fce = 0.5, while fm/fce and δf/fce change with the MLT sector, as shown in Table 1. The wave normal
distribution of chorus is also assumed to be Gaussian and given by

g θð Þ ¼ exp � tanθ � tanθm
tanθw

� �2
" #

θlc ≤ θ ≤ θucð Þ; (2)

where θ is the wave normal angle, θm the peak, θw the angular width, and θlc and θuc the lower and upper
bounds to the wave normal distribution, outside which the wave power is zero. Here we use a frequently
adopted model for the chorus wave normal angle distribution, that is, θlc = 0°, θuc = 45°, θm = 0°, and θw = 30°
[e.g., Horne et al., 2005b; Thorne et al., 2013], to represent the quasi-parallel lower-band chorus waves
particularly during active times [e.g., Li et al., 2011; Agapitov et al., 2013; Artemyev et al., 2013]. The latitudinal
extent (|λ|) of chorus waves varies in different MLT sectors based on the statistical results [Meredith et al., 2012;
Agapitov et al., 2013].

3.2. Simulation of Energetic Electron Acceleration

Drift and bounce averaged diffusion coefficients driven by lower-band chorus waves at L= 4.25 are
computed using the UCLA full diffusion code [Ni et al., 2008, 2011; Shprits and Ni, 2009] in a dipole magnetic
field model based on the parameters shown in Table 1. Note that to simulate the stretching of the nightside
magnetic field associated with the strong storm-time geomagnetic activity, we adopted the dipole field
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configuration but scaled the background magnetic field intensity by a factor of 0.69 for the 00–04 MLT and
20–24 MLT sectors according to the in situ magnetic field intensity measured by Van Allen Probes. We
calculated the diffusion coefficients including cyclotron harmonic resonances from�10 to 10 and the Landau
resonance. The net scattering rates of pitch angle (hDαeqαeqi), momentum (hDppi), and mixed diffusion

coefficients (hDαeqpi) for energetic electrons due to the interaction with chorus waves at L= 4.25 are shown as

a function of equatorial pitch angle (αeq) and kinetic energy (E) in Figure 4 over three time intervals of 12–16,
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Environmental Satellites (POES) satellites over various magnetic local time (MLT) ranges.
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16–20, and 20–24 UT. Both pitch angle and momentum diffusion coefficients are stronger at large pitch
angles (>40°) at energies above hundreds of keV. However, at small pitch angles, the pitch angle diffusion
significantly dominates over the momentum diffusion in a broad range of electron energies. During these three
time intervals, all of the three diffusion coefficients did not exhibit significant changes, which is consistent with the
similar averaged wave activities during the period of 12–24 UT on 17 March, as shown in Figure 3.

Table 1. Adopted Model Parameters at L=4.25 in Various Magnetic Local Time (MLT) Ranges, Showing Chorus Wave
Spectrum, Wave Latitudinal Extension (|λ|), Plasma Density (Ne), the Ratio of Plasma to Electron Cyclotron Frequency
(fpe/fce), and Chorus Wave Amplitudes (Bw)

fm/fce δf/fce |λ| Ne (cm
�3) fpe/fce

00–04 MLT 0.25 0.1 <10° 9.3 3.5
04–08 MLT 0.23 0.1 <15° 9.5 2.4
08–12 MLT 0.21 0.08 <45° 13.5 2.9
12–16 MLT 0.2 0.08 <40° 17.4 3.3
16–20 MLT 0.2 0.06 <25° 17.2 3.3
20–24 MLT 0.22 0.08 <10° 13.1 4.2

Bw (pT)

Mar. 17 Mar. 17 Mar. 17
12–16 UT 16–20 UT 20–24 UT

00–04 MLT 115.7 131.9 117.5
04–08 MLT 100.2 120.9 144.0
08–12 MLT 68.7 118.4 110.4
12–16 MLT 112.8 79.3 118.8
16–20 MLT 52.7 44.4 10.9
20–24 MLT 140.8 107.1 57.4

Figure 4. (a)–(c) Bounce and drift averaged pitch angle diffusion coefficients as a function of equatorial pitch angle (αeq)
and electron energy (E) during the intervals 12–16, 16–20, and 20–24 UT of 17 March 2013. (d)–(f) The same as Figures 4a–4c but
for momentum diffusion coefficients. (g)–(i) The same as Figures 4a–4c but for mixed diffusion coefficients.
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In order to simulate the electron PSD evolution, we solved the 2-D Fokker-Planck equation over the energy
range 0.1–30MeV, similar to the study by Thorne et al. [2013]. The initial electron energy spectrum at 90°
equatorial pitch angle was adopted from a spline fitting of the electron PSD as a function of energy (not
shown) between ~100 keV and 8.8MeV measured by MagEIS and REPT on both Van Allen Probes during
Trajectory 3 (Figure 1) just before ~12 UT on 17 March, and was extrapolated from 8.8 to 30MeV by assuming
a power law distribution at higher energies. The initial pitch angle distribution of the electron PSD (f ) is
assumed to be f (αeq, p) = f (αeq = 90°, p) (sinαeq)

n, where n= 0.65, which was obtained by fitting the pitch
angle distribution of the observed electron PSD at ~100 keV. The electron PSD at the lower energy boundary
(100 keV) was kept at a constant value, which was obtained by averaging over this 12 h acceleration time
interval, and the electron PSD at the upper energy boundary (30 MeV) was set to a constant value. The lower
and upper boundary conditions for the equatorial pitch angle distribution were set as ∂f (αeq=0°, p)/∂αeq=0 and
∂f (αeq=90°, p)/∂αeq=0. The 2-D Fokker-Planck equation was numerically solved by using the standard alternative
direction implicit method for a time interval of 12hwith a time step of 1 s. The drift and bounce averaged diffusion
coefficients were updated every 4h corresponding to the diffusion coefficients shown in Figure 4.

Figure 5 shows the electron PSD evolution over a broad range of energies from ~567 to 5600 keV at L= 4.25
near the PSD peak location. Note that the observation result shown at the designated time is obtained by
averaging the observed electron PSD from both Van Allen Probes A and B over the L-shell between 4.0 and
4.5 within ±2 h of the indicated time. The comparison of the observed (Figure 5a) and simulated electron PSD
evolution at ~90° pitch angles (Figure 5f) overall indicates excellent agreement with the magnitude, timing,
and energy dependence. Lower-energy electrons were accelerated first followed by higher-energy electrons
with a time delay of several hours and several-MeV electrons experienced nearly 2 orders of magnitude
increases in PSD during this acceleration interval. Note that the seed electron PSD (hundreds of keV)
increased by almost two orders of magnitude from ~12 to ~16 UTassociated with the substantial decreases in
the AL index (Figure 1e) caused by strong substorm activity, followed by a decrease in PSD by nearly an order
of magnitude from ~16 to ~20 UT corresponding to the reduced substorm activity. However, these in situ
seed electron populations were observed near the midnight sector, where the substorm injection
preferentially occurs, and thus the observed seed electron population near the midnight sector may not
necessarily represent the electron PSD averaged over all MLT sectors. This variation of the electron PSD at a
few hundreds keV led to corresponding PSD changes for electron energies below ~1MeV. Consequently, the
simulated evolution of electron PSD was not very consistent with the observation at energies below ~1MeV,

Figure 5. Comparison of observational and simulation results of the electron PSD evolution at energies from 567 keV
to 5600 keV at L~4.25. (a) Increases of perpendicular electron PSD observed by both MagEIS and REPT during 12–24 UT
on 17 March. (f) The Fokker-Planck simulation results of perpendicular electron PSD with the same format as Figure 5a. (b)–(e)
The observed evolution of the electron pitch angle distribution with 4 h time intervals from 12 to 24 UT on 17 March. (g)–(j)
Fokker-Planck simulation results of the electron pitch angle evolution with the same format as Figures 5b–5e.
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partially because we adopted a fixed lower boundary condition (at 100 keV) averaged over the entire
acceleration interval. We also performed the simulation by updating the PSD values at the lower-energy
boundary of 100 keV (not shown), and the simulated electron PSD below ~1MeV was even larger than the
simulation results shown in Figure 5 due to the substantial increase in electron PSD at ~16 UT but lack of
mechanisms of reducing them, such as electron loss due to the open drift trajectory, pitch angle scattering
by hiss in plumes, and radial diffusion process. Note that during this storm the plasmapause location was
compressed down to <3 RE, which suggests the presence of the strong storm time convection electric
field, and thus ~100keV electrons in the location at above ~3.5 RE are likely to be located on open drift orbits
and ultimately lost to themagnetopause [e.g., Chen et al., 2003]. However, the several-MeV electron PSD evolution
was less affected by this significant seed electron PSD variation, showing a gradual increase with time, and was
very similar in both results of using the fixed and floating lower energy boundary. Furthermore, we also performed
the simulation until 04 UT on 18 March 2013 and the simulation result is almost identical to Figure 5j, since the
chorus wave activity was overall very weak over 00–04 UT on 18 March 2013, as shown in Figure 3.

We also compare the evolution of the electron pitch angle distribution from the observation and
simulation in Figures 5b–5e and Figures 5g–5j. We show the observed and simulated electron pitch angle
distributions in separate panels in order to focus on their overall buildup on a timescale of several hours
and the evolution of electron pitch angle distributions rather than detailed differences between them.
We note that the indicated timing is not very precise due to the averaged PSD values within ±2 h of the
indicated time over the L-shell of 4.0–4.5, since electron data from the Van Allen Probes are only available
every ~4–5 h in the same L-shell range. Overall, the similarities between the observed and simulated
electron pitch angle distributions are quite impressive. First, they both show a flat distribution at pitch angles
above ~50°, which is due to the larger electron pitch angle and momentum diffusion coefficients over relatively
large pitch angles. Second, the gradient toward the loss cone is smaller at lower energies and larger at higher
energies, which is entirely consistent with the profile of pitch angle and momentum diffusion coefficients, that
are flat for a wider (narrower) range of pitch angles at lower (higher) energies. Third, the large gradient toward
the loss cone shown both in the observation and simulation is direct evidence of the dominance of the
momentum diffusion over the pitch angle scattering loss caused by chorus waves. However, this gradient is
larger in the simulation compared to the observation, which might be due to the lack of other possible
mechanisms of scattering electrons, such as electron scattering by hiss in plumes or radial diffusion.

Figure 6. The same as Figure 5 but at L=3.5.
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We also performed similar simulations at different L-shells of 3.5 and 5.0 away from the PSD peak, as shown in
Figures 6 and 7 respectively. At L=3.5 (Figure 6) although the simulated electron PSD captured the essential
evolution of the observed PSD, the simulated values at energies above ~2MeV are slightly lower than the
observed PSD. This might be due to the absence of the inward radial diffusion process in our simulation,
which could increase the PSD inside the location of the PSD peak. At L= 5.0 (Figure 7), the observed electron
pitch angle distribution after ~20 UT became very flat, different from the distribution at L=3.5 and 4.25. This
is probably related to the effect of outward radial diffusion, which is relatively stronger at higher L-shells
caused by the gradient from the PSD peak (L~4.25) toward the higher L-shells, where losses caused by the
magnetopause shadowing are more significant. The simulated electron PSD driven by chorus wave
acceleration at L=5.0 is also generally lower than the observed values at energies above ~3MeV, which
suggests that the outward radial diffusion may have contributed to increase the electron PSD. This is also
consistent with the flattened radial electron PSD profile at L*>~4.2 after ~20 UT, as shown from Pass 7 to 12
in Figure 2. Note that the simulated electron PSD below ~1MeV is generally larger than the observed values
at the end of the simulation at all three different L-shells. This is probably due to the lack of other loss
processes in the simulation, such as electron loss due to the open drift trajectory [Chen et al., 2003], pitch
angle scattering by hiss in plumes, which is more effective for lower energies [Li et al., 2007; Summers et al.,
2008; Ni et al., 2013], and radial diffusion process [e.g., Perry et al., 2005; Turner et al., 2012], as discussed above.

4. Summary and Discussions

In the present paper, using the global chorus wave intensity distribution inferred from low-altitude electron
measurements, we quantify the role of chorus waves in energetic electron dynamics during the 17 March
2013 storm, when energetic electrons experienced very efficient acceleration within ~12 h. Our simulation
results using 2-D quasi-linear diffusion theory show remarkable agreement with the observed electron
PSD evolution near the PSD peak location at L~4.25. Particularly, our simulation successfully reproduced the
electron PSD changes in magnitude, timing, energy dependence, and the shape of the electron pitch angle
distribution. At a lower L-shell of 3.5, our simulated electron PSD is slightly lower than the observed values, which
might be related to our neglect of the inward radial diffusion process. At a higher L-shell of 5.0, our simulated
electron PSD is also smaller than the observed value, which may be due to the lack of outward radial diffusion,
which could increase the PSD at larger L-shells away from the PSD peak. Overall, our simulation driven by the
interaction between chorus waves and energetic electrons is able to reproduce the essential features of the
electron PSD evolution near the PSD peak location, which indicates that chorus waves play a dominant role in
accelerating the seed electrons to highly relativistic energies during this geomagnetic storm.

Figure 7. The same as Figure 5 but at L=5.0.
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Although chorus waves are shown to play a key role in the electron PSD evolution, other processes need to
be taken into account in order to fully understand the radiation belt electron dynamics. While our 2-D
Fokker-Planck simulation was able to capture the essential features of the electron PSD evolution near the
PSD peak location, the simulation results away from the peak location underestimated the actual electron
PSD. This is probably because we did not include the radial diffusion process, which could modify the PSD
profile away from the PSD peak location as discussed above. Furthermore, the observed PSD evolution is the
result of a net competition of all acceleration and loss processes. In our simulation, we did not evaluate
the loss processes during this geomagnetic storm, other than the loss caused by the chorus itself. The
Van Allen Probes observed modestly strong He+ band electromagnetic ion cyclotron (EMIC) waves at ~3 RE
on the nightside during the March 17 storm, but not at larger L-shells above 3.5 (not shown). The signature
of electron pitch angle distribution driven by EMIC waves, such as shown in Li et al. [2007], was not clearly
observed by the Van Allen Probes electron measurements. Therefore, loss processes driven by EMIC waves
may not be significant in the heart of the outer radiation belt in this particular storm.

In this simulation, we also did not include the scattering loss caused by hiss in plumes. Although Van Allen Probes
with the apogee located near the midnight sector and THEMIS with the apogee near 9 MLT did not directly
observe a plume structure, the presence of a plume in the afternoon sector during this storm was captured from
the GPS satellite observations [Foster et al., 2014]. Consequently, any hiss in the plumes will cause additional
electron scattering particularly at larger pitch angles and lower energies (<1MeV) [e.g., Li et al., 2007; Summers
et al., 2008; Ni et al., 2013], which will need to be included to reproduce the observed electron pitch
angle distribution.

In our 2-D simulation, we made several assumptions including chorus wave frequency spectrum, their
latitudinal extension, wave normal distribution, and plasma density at certainMLTsectors (except for 00–04MLT
and 20–24 MLT where the density measurements from Van Allen Probes were available), since the in situ
measurements on such parameters are limited. These parameters may also modify the simulation results,
and the sensitivity of the PSD evolution dependent on the variation of these parameters is beyond the
scope of this paper and is left for a future study.

Nevertheless, our simulation using the available in situ wave and particle measurements and the global
chorus wave intensity inferred from the two-directional POES electron measurements clearly indicate that
chorus-driven electron acceleration is a dominant process during this 17 March 2013 storm event. It is
important to note that our conclusion on the dominance of chorus in the local acceleration of electrons to
relativistic energies is different from the recent assertions of Shprits et al. [2013], who claim that a different
process is responsible for highly relativistic electron acceleration during storms. This study, together with
other previous studies simulating electron acceleration events [e.g., Horne et al., 2005a; Albert et al., 2009;
Glauert et al., 2014; Shprits et al., 2009; Xiao et al., 2009; Su et al., 2010; Thorne et al., 2013; Tu et al., 2014; Turner
et al., 2014], suggests that the chorus-driven electron acceleration is a robust and ubiquitous process in the
Earth’s inner magnetosphere and plays a crucial role in accelerating injected seed electrons with convective
energies (~100 keV) to highly relativistic energies (several MeV) in the outer radiation belt.
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