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Deep dielectric charging of regolith within the Moon’s
permanently shadowed regions
A. P. Jordan1, T. J. Stubbs2, J. K. Wilson1, N. A. Schwadron1, H. E. Spence1, and C. J. Joyce1

1Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, New Hampshire, USA, 2NASA
Goddard Space Flight Center, Greenbelt, Maryland, USA

Abstract Energetic charged particles, such as galactic cosmic rays (GCRs) and solar energetic particles
(SEPs), can penetrate deep within the lunar surface, resulting in deep dielectric charging. This charging
process depends on the GCR and SEP currents, as well as on the regolith’s electrical conductivity and
permittivity. In permanently shadowed regions (PSRs) near the lunar poles, the discharging timescales are
on the order of a lunation (∼20 days). We present the first predictions for deep dielectric charging of lunar
regolith. To estimate the resulting subsurface electric fields, we develop a data-driven, one-dimensional,
time-dependent model. For model inputs, we use GCR data from the Cosmic Ray Telescope for the Effects
of Radiation on board the Lunar Reconnaissance Orbiter and SEP data from the Electron, Proton, and Alpha
Monitor on the Advanced Composition Explorer. We find that during the recent solar minimum, GCRs
create persistent electric fields up to ∼700 V/m. We also find that large SEP events create transient but
strong electric fields (≥106 V/m) that may induce dielectric breakdown. Such breakdown would likely result
in significant modifications to the physical and chemical properties of the lunar regolith within PSRs.

1. Introduction

A variety of processes electrically charge the Moon’s surface, with the dominant current sources typically
being the photoemission of electrons by solar UV and the collection of charged particles from the surround-
ing plasma environment [Stubbs et al., 2014]. When the Moon is in the solar wind, these current sources
typically charge the surface to a few volts positive on the dayside and down to ≈20–100 V negative near the
terminator [Freeman and Ibrahim, 1975; Halekas et al., 2008]. On the upstream-facing side of the Moon, the
lunar surface absorbs or reflects the incident solar wind plasma, thus forming a global-scale void or plasma
wake downstream of the Moon [Ogilvie et al., 1996; Bosqued et al., 1996; Halekas et al., 2005]. The lunar sur-
face within the wake region is mostly in shadow due to the solar wind’s near-radial flow away from the Sun,
so the surface charges to potentials of ∼200 V negative [Halekas et al., 2008]. Similar plasma wake structures
likely occur locally on much smaller spatial scales downstream of topographic features, such as mountains
and craters, near the terminator [Farrell et al., 2010]. Some studies predict that these so-called miniwakes
charge areas within some permanently shadowed regions (PSRs) near the lunar poles up to ∼100 V nega-
tive [Zimmerman et al., 2011, 2012]. The Moon also passes through the Earth’s magnetotail for a few days
each month [e.g., see Stubbs et al., 2007], during which encounters with the plasma sheet region can charge
the shadowed lunar surface to potentials of ∼200 V to ∼1 kV negative [Halekas et al., 2008]. During large
solar energetic particle (SEP) events the nightside lunar surface potential has been observed to reach a few
kilovolts negative [Halekas et al., 2007, 2009].

While previous studies have only considered how these processes charge the uppermost layer of the lunar
surface, we instead focus on deep dielectric charging of the regolith, in which energetic charged parti-
cles are deposited in the lunar subsurface. Because the lunar regolith is an electrical insulator (i.e., it has
an extremely low conductivity), deposited charges can remain separated within it for prolonged intervals.
Although deep dielectric charging has been an important topic for spacecraft engineering throughout
the Space Age, the study presented here is the first to consider it as a lunar surface process. This process
may have important consequences for the evolution of the regolith, particularly in PSRs where its electri-
cal conductivity is especially low due to the extreme cold (≲ 100 K). We have developed a one-dimensional,
time-dependent model to estimate the deep dielectric charging driven by energetic charged particles at
the Moon. Our model can apply to PSRs and other extremely cold regions on airless bodies throughout the
solar system.
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2. Properties of Energetic Charged Particles

Galactic cosmic rays (GCRs) are relativistic ions and electrons that typically received their energy in super-
nova shocks [Krymskii, 1977; Axford et al., 1977; Bell, 1978; Blandford and Ostriker, 1978]. The GCR proton
spectrum peaks at about 200 MeV, although some GCRs have energies many orders of magnitude greater.
Near solar minimum, their flux is ∼4 particles cm−2s−1, and at solar maximum their flux is ∼2 particles
cm−2s−1. This variation results from changes in the heliospheric magnetic field decreasing and increasing its
shielding of the inner heliosphere [Smart and Shea, 1985]. About 97% of GCRs are protons and heavier ions,
and the remainder are electrons [Smart and Shea, 1985]. Analysis of iron meteorites indicates that the varia-
tions in GCR fluxes over the past 1 Gyr have been no more than a factor of 2 [Arnold et al., 1961]. Therefore,
we can assume that past charging due to GCRs has likely varied little on long timescales. GCRs penetrate the
regolith to depths on the order of tens of centimeters [Walker, 1980], and because they have a net positive
charge, they necessarily charge the soil.

For GCR data, we use the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) on board the Lunar
Reconnaissance Orbiter (LRO) [Spence et al., 2010]. CRaTER began collecting data at the Moon on 23 June
2009. Because of its shielding, it detects only protons with energies greater than ∼15 MeV, but this energy
regime includes the peak of the GCR spectrum.

Unlike GCRs, SEPs gain their energy in solar flares and the shocks of coronal mass ejections [Gosling, 1993;
Reames, 2002]. Because electrons are much less massive, they propagate more quickly than the protons
from the acceleration region [Van Hollebeke et al., 1975]. SEP events occur sporadically but more frequently
during solar maximum, although major events can occur during solar minimum [Smart and Shea, 1985].
SEPs have lower characteristic energies than GCRs. While the ions have energies of ∼50 keV/nucleon to ∼10
GeV/nucleon and electrons have energies of ∼1 keV to ∼10 MeV, both the ion and electron fluxes peak at
energies lower than given in these ranges [McGuire and von Rosenvinge, 1984]. At the same time, however,
SEP fluxes often exceed GCR fluxes by many orders of magnitude. Also, each event tends to have a unique
energy spectrum, which limits our ability to generalize a typical SEP event.

For SEP proton and electron data, we use measurements from the Electron, Proton, and Alpha Monitor
(EPAM) on the Advanced Composition Explorer (ACE) [Gold et al., 1998]. EPAM has been collecting data
almost continuously since 30 August 1997. For the electrons, we use all four energy channels: 0.038–0.053,
0.053–0.103, 0.103–0.175, and 0.175–0.315 MeV. For the protons, we use all eight energy channels:
0.047–0.066, 0.066–0.114, 0.114–0.190, 0.190–0.310, 0.310–0.580, 0.580–1.05, 1.05–1.89, and 1.89–4.75 MeV.
Although the available SEP data do not cover all energies, EPAM covers a significant fraction of the typ-
ical SEP spectrum. SEPs at higher energies have much lower differential fluxes and so can be reasonably
neglected. SEPs at lower energies have a larger differential flux but a smaller penetration depth. (For a fur-
ther discussion of the implication of using EPAM data, see section 5.2.) Thus, using these data is sufficient for
this initial study.

Deep dielectric charging by SEPs in the lunar subsurface depends on the relative penetration depths of the
protons and electrons. If they both penetrate to roughly the same depths, then the net current density to
the subsurface is determined by the differences of their respective current densities. Alternatively, if protons
and electrons penetrate to different depths, then it is more appropriate to consider two separate subsurface
charge layers, one accumulating a positive charge and the other a negative charge from the incident SEPs.

We estimate penetration depths of SEP protons and electrons using the National Institute of Standards’
Stopping-Power and Range Tables for Protons (PSTAR) and for electrons (ESTAR). These tables estimate the
ranges of protons and electrons by calculating the effects of electronic and nuclear collisions [International
Commission on Radiation Units, 1993; Berger et al., 2005]. The ranges of these particles are available for var-
ious materials. Given how electrons scatter within matter and the issues associated with the EPAM energy
ranges mentioned below, the overlap between the lower electron layer and upper proton layer will likely be
greater than indicated in Figure 1 (see discussion in section 4).

Particle penetration distance predictions do not exist for either lunar regolith or lunar simulants. Therefore,
we instead use silicon dioxide (SiO2) as a regolith proxy, because lunar regolith comprises mainly silicate
material, i.e., mainly silicon and oxygen [Papike et al., 1991]. (Note that the chemical composition of the soil
has little effect on the penetration of energetic charged particles. For example, the penetration distance
would increase by less than 10% if the soil were pure aluminum.) The PSTAR and ESTAR ranges are given
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Figure 1. The typical penetration depths of the (left) electron
and (right) proton energy channels detected by ACE/EPAM. The
more energetic particles penetrate deeper.

in terms of the mass column density 𝜎m

(g/cm2). We convert these to penetration dis-
tances by assuming a lunar soil density of
𝜌m = 1.5 g/cm3, a value agreeing with the
best estimates for the mean density of the
soil’s upper 0–15 cm [Carrier et al., 1991]. For a
given stopping range, the penetration distance
within the soil is 𝜎m∕𝜌m, which is also the pen-
etration depth for a normally incident particle.
This depth, however, is not the typical penetra-
tion depth, because both GCRs and SEPs arrive
from 2π sr. The particle’s angle of incidence
determines the depth to which it penetrates:

z =
𝜎m

𝜌m
cos𝜃, (1)

where 𝜃 is the angle of incidence with respect
to the normal.

As mentioned, we assume that the source
of energetic particles subtends 2π sr, a good
assumption within larger complex craters and
impact basins (diameters of tens to hundreds
of kilometers), where the crater rim is typically
low on the horizon, if visible at all [Pike, 1974].
The rims of smaller (diameters <15 km) sim-
ple craters, however, block from view about

a third of the sky. These rims reduce proportionally the incident particle fluxes of energetic particles, thus
modifying the depth distribution. Therefore, our model results will be most relevant to larger craters.

With an isotropic distribution of incident particles, the median penetration depth zm has an equivalent inci-
dence angle of 𝜃 = 60◦ (cos 60◦ = 0.5). That is, half the incoming particles have 𝜃 < 60◦ and are deposited
below zm, while the other half have 𝜃 > 60◦ and are deposited above zm. Therefore, we take the typical pen-
etration depth of a particle with a given energy to be zm. The results are shown on a log scale in Figure 1.
Although some of the observed protons can penetrate to 0.2 mm, seven of the eight proton channels of
ACE/EPAM stop within the first 0.1 mm. Protons from only three of the eight channels penetrate as deeply
as the electrons. The electrons, on the other hand, can penetrate to 0.6 mm. As there is a significant differ-
ence in the proton and electron penetration depths at SEP energies, we assume that they form two separate
charge layers in the lunar subsurface. As mentioned above, the scattering of the electrons means that we
are likely overestimating their penetration depth. Our model, however, examines both limits—full overlap
and no overlap—so the exact penetration depth is unimportant, as shown in section 4.

Note that we consider only the charging from charged particles added to, not removed from, the regolith.
Atomic nuclei, for instance, can be ejected, or spalled, by GCRs. Atomic nuclei are less likely, however,
to escape than are secondary electrons, because GCRs are much less likely to have nuclear interactions
than electronic ones [Vaniman et al., 1991]. These secondary electrons escape more easily if created near
the regolith’s surface, which is most likely for GCRs (and SEP ions) with grazing incidences. Therefore, the
escape of these electrons from near the surface likely charges the upper, positive layer even more positive,
reinforcing the charging we find with the model. Note, too, that the yield of secondary electrons due to inci-
dent SEP electrons is probably negligible, as shown by studies using Apollo samples of the lunar regolith
[Willis et al., 1973]. All these phenomena are either insignificant or reinforce the charging we estimate below
with the model.

3. Electrical Properties of the Lunar Regolith

As we have just described, when energetic particles penetrate the regolith, they deposit space charge within
it. As described in the previous section, we assume that the particles deposit their charge at their penetra-
tion depth. The regolith acts as a capacitor, such that with time, the space charge dissipates, thus reducing

JORDAN ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1808
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the overall electric field. During this dissipation, the regolith also functions as a resistor. Therefore, we can
treat the regolith as a “leaky” capacitor, in which the charge density 𝜌 decays from its initial value 𝜌0 as
described by

𝜌(t) = 𝜌0e−t∕𝜏 , (2)

where t is time and 𝜏 is the e-folding time for discharging [see, for example, Buhler et al., 2007]. This e-folding
time is the ratio of its permittivity 𝜖 to its conductivity 𝜎: 𝜏 = 𝜖∕𝜎. (Permittivity is the effectiveness of a
material at keeping charge carriers within it separated, and conductivity is its effectiveness at allowing cur-
rent to flow through it.) Finding the value for 𝜏 is necessary for estimating deep dielectric charging of the
lunar regolith.

Both the permittivity and conductivity of the lunar sample soils have been measured in laboratory exper-
iments. Olhoeft and Strangway [1975] reviewed 92 laboratory measurements of the dielectric permittivity
and found the soil’s dielectric constant (or relative permittivity) to be between ∼1.5 and 4 for the densities
characteristic of the upper regolith, with the most common value being ≈2. We therefore assume 𝜖 = 2𝜖0

for this study.

Olhoeft et al. [1974] showed that an Apollo 15 soil sample’s conductivity has a temperature dependence
given by

𝜎 = 6 × 10−18e0.0237T , (3)

where 𝜎 is in units of siemens per meter (S/m) and T is the temperature in kelvin. While any given location on
the Moon may have a different conductivity due to mineralogical and physical variations of the near-surface
regolith, we assume the regolith in PSRs to follow the above temperature relation.

The above form for the conductivity applies only if the charging occurs over a vertical extent that is much
greater than the typical grain size. In other words, the dissipation current must pass through many grains
for that equation to apply. Otherwise, we would have to treat the soil as comprising individual rocks, which
have about 4 orders of magnitude higher conductivity [Olhoeft et al., 1973]. According to the review by
McKay et al. [1991], the average grain size for lunar soil is between 60 and 80 μm, although this is likely an
overestimate due to the size-sorting sieving technique being limited to grain sizes >10 μm. Aerosol mea-
surements have shown that grain sizes can be as small as a few 100 nm [Greenberg et al., 2007]. Thus, based
on the penetration depths we have shown, protons detected by EPAM stop within the first few grains, while
all electrons stop by tens of grains deeper in the regolith. Therefore, the particle penetration and charge
separation occur over a depth much greater than the typical grain size, and the form for the conductivity
given by equation (3) is valid. Note, too, that we define the penetration depth to be the depth at which half
the particles have already stopped (i.e., the center of the charge layer), so the other half penetrates deeper.

As stated above, the electrical conductivity of the regolith in PSRs depends on the temperature. Obser-
vations using the Diviner instrument on LRO show typical temperatures to be ∼50 K [Paige et al., 2010].
According to equation (3), this implies that the soil within PSRs has a conductivity of about 10−17 S/m.

For the above values of the regolith’s permittivity and conductivity, the discharging timescale 𝜏 within PSRs
is ∼20 days, which is on the order of a lunation. Because 𝜖 can be as great as 4 [Olhoeft and Strangway, 1975],
𝜏 may even be as long as 40 days. As we will show in section 5, this timescale determines the strength of the
electric fields that form in response to the accumulation of energetic charged particles.

4. Double Charge Layer Model

To estimate the electric fields due to deep dielectric charging by energetic particles at the Moon, we have
developed a one-dimensional, time-dependent model. For this first-order model, we ignore all input cur-
rents other than the energetic charged particles. As we limit the model to PSRs, we can ignore currents from
the photoemission of electrons. Similarly, we consider areas within PSRs where the wake-modified ambient
plasma current can reasonably be neglected [Farrell et al., 2010]. Therefore, we adopt the common assump-
tion that the environment within PSRs can effectively be treated as an ideal vacuum. (Note also that the
environment above lunar nightside areas shielded by magnetic anomalies could also be treated as an ideal
vacuum, and so these areas could be favorable locations for deep dielectric charging [cf. Bamford and et al.,
2012].) We also assume the regolith to be an ohmic material; in other words, the regolith’s charging decay

JORDAN ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1809
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is exponential, as in equation (2) (note that granular materials may deviate from this assumption, as experi-
ments with lunar simulant seem to indicate [Buhler et al., 2007]). We ignore radiation-induced conductivity,
caused by significant radiation damage increasing the medium’s conductivity. Properly accounting for this
effect requires laboratory measurements [Frederickson, 1977], but we know of no such studies for lunar soil.
Also, because the regolith’s nonlinear polarization terms, which would come into effect at very strong elec-
tric fields, are unknown, we do not include them. We further assume that the gain or loss in energy of the
energetic particles as they pass through the potential difference between the surrounding space environ-
ment and the lunar surface is negligible (see sections 1 and 2). We also assume the charge deposition layer
to be infinitely planar [cf. Stubbs et al., 2014]. This is reasonable because the particle deposition occurs over
regions whose length scales L are very large relative to the penetration depths (i.e., z ≪ L). According to this
approximation, the electric field due to a given charged layer is symmetric and uniform. Therefore, unless
both charge species penetrate to identical depths (as discussed in section 2), the exact penetrations depths
do not affect the resulting electric fields. This is analogous to a parallel plate capacitor.

The model works as follows. Two current densities penetrate the regolith: one of energetic protons (J+EP) and
another of electrons (J−EP). (The subscript EP refers to energetic particles.) The input currents create two layers
of space charge within the regolith: an upper, positive layer and a lower, negative layer. For convenience, we
assume that the layers do not overlap, as discussed in section 2. From Gauss’s law, the electric fields due to
these two infinite charged slabs are

E+ = 𝜅+

2𝜖
(4)

E− = 𝜅−

2𝜖
(5)

where 𝜅 is the areal charge density of the layers, in units of C m−2 (for brevity, we shall subsequently refer to
the areal charge density of the layers as simply the “charge density”). The superposition of these two electric
fields creates three regions: (i) within the regolith at the surface, i.e., at the top of the upper charge layer;
(ii) in the gap between the charge layers; and (iii) in the interior below the lower charge layer. These electric
fields are given by

Esurface = E+ + E− = 𝜅+ + 𝜅−

2𝜖
(6)

Egap = −E+ + E− = −𝜅+ + 𝜅−

2𝜖
(7)

Einterior = −E+ − E− = −(𝜅+ + 𝜅−)
2𝜖

, (8)

where the positive direction is away from the Moon’s interior. (A consequence of this model is that 𝜅+ ≥ 0
and 𝜅− ≤ 0.)

We assume that no charge flows out of the surface, meaning charge only dissipates within the gap region
and toward the interior below the lower layer. The gap current density Jgap dissipates charge buildup by
transporting charge between the two layers. The interior current density Jinterior dissipates charge through
a much larger scale electrical circuit in the regolith that is not explicitly considered in this study. Electrons,
whether provided by that circuit or by J−EP, are assumed to be the sole charge carriers for Jgap and Jinterior.
These two dissipation current densities are

Jgap = 𝜎Egap (9)

Jinterior = 𝜎Einterior (10)

All of these quantities are shown in Figure 2 for the four cases considered here.

The rate of change of the two layers’ charge densities is

d𝜅+

dt
= J+EP(t) + Jgap(t) (11)

d𝜅−

dt
= J−EP(t) − Jgap(t) + Jinterior(t) (12)

JORDAN ET AL. ©2014. American Geophysical Union. All Rights Reserved. 1810
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where J+EP(t) and J−EP(t) can be input into the
model as time series derived from spacecraft
measurements. In other words, the upper, pos-
itively charged layer is dissipated by only the
gap current density, while the lower, negative
layer is affected by both the gap and interior
current densities.

In this study, the initial conditions for the model
at t = t0 are set to 𝜅+(t0) = 0 and 𝜅−(t0) = 0,
which means that all the electric fields start
at zero, as dictated by equations (6)–(8). At
t = t0, the energetic particle currents, J+EP(t0)
and J−EP(t0), begin flowing, and charge starts
accumulating in the upper and lower layers
according to equations (11) and (12). At the
next time step (t = t1), 𝜅+(t1) and 𝜅−(t1) are
nonzero. The resulting electric fields are cal-
culated using equations (6)–(8), and these
fields determine the dissipation currents using
equations (9) and (10). The resulting values
of Jgap(t1) and Jsurface(t1) are then fed into the
next iteration, along with J+EP(t1) and J−EP(t1),
to determine the change in 𝜅+ and 𝜅− using
equations (11) and (12). Each iteration contin-
ues likewise. By following the same approach,
the model can be started with any set of
initial conditions.

In every simulation, the time step Δt is
much shorter than the discharging timescale
(Δt ≪ 𝜏). If this condition was satisfied, we
found the simulations to be insensitive to the
choice of Δt by comparing them with analytical
solutions for the most basic cases. In the
data-driven cases, Δt is simply the resolution of
the input time series J+EP and J−EP.

Assuming that EPAM detects all SEPs, Egap is the
strongest possible electric field, given that the
input current densities J+EP and J−EP are the only
means of charging the regolith. This is because
it results from assuming that all protons and
electrons are deposited in two nonoverlapping
layers. If the upper and lower layers partially
overlap each other, then Egap would be reduced
because the overlap would cancel some of the
charging in that region. (The exact reduction
would depend on the depth profile of both lay-
ers.) If the layers completely overlap each other,
then there is no gap, so Egap = 0. As can be
seen in Figure 1, the layers partially overlap, so
the maximum electric field strength within the
charging layers is less than |Egap|. Conversely,
Esurface and Einterior, which are equal and oppo-
site (Esurface = −Einterior), set the lower limit
on the electric field magnitude in the lunar
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(top) The charge density due to the accumulation of protons. (middle) The surface (solid line) and interior (dashed)
electric fields resulting from the charged layer. (bottom) The interior current density dissipating the charged layer.

regolith. They are independent of whether a gap exists between the upper and lower charge layers. Instead,
as equations (6) and (8) show, these electric fields depend only on the net charge in both layers (𝜅+ + 𝜅−).
This is because, in the regions above and below them, the two charge layers appear to exist just as a single
layer. Note that adding a surface charge layer is unlikely to prevent this subsurface charging, since a third
layer cannot simultaneously decrease or nullify all three electric fields.

Therefore, for a given set of J+EP and J−EP, the electric field within the regolith can be no stronger than |Egap|

and no weaker than |Esurface| (or |Einterior|). This is only true, however, if EPAM detects SEPs at all relevant
energies. In the next section, we discuss how this assumption affects our calculations.

5. Model Results
5.1. Test Case Examples
To demonstrate the model, we run three test cases. (In all modeling simulations, whether a test case or
not, we start with no subsurface charge, i.e., 𝜅+ = 𝜅− = 0, as discussed in section 4.) The first case is for a
constant proton flux of 4 particles cm−2s−1, such as that typically observed for GCRs during solar minimum
(see section 2). Case (1) in Figure 2 illustrates this scenario. There is no second, deeper charged layer; all the
charge is deposited in a single layer (J−EP and 𝜅− are both set to zero). We run the model for 400 days (∼20
discharging timescales). The model results are shown in Figure 3 for a dielectric constant of two and a typical
PSR regolith conductivity of 10−17 S/m. The charge density (top row) increases with time, until the resulting
electric field (middle row) is strong enough to create a dissipation current (bottom row) able to remove the
space charge at the rate it is added (from equations (11) and 12, J+EP + Jinterior = 0). That equilibrium electric
field is 640 V/m.

A second, though unrealistic, scenario occurs if the fluxes of protons and electrons are equal (4 particles
cm−2s−1), with the electrons penetrating more deeply, as is the case for the SEPs detected by ACE/EPAM (see
the second case in Figure 2). The model results are shown in Figure 4. In this situation, the amount of charge
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Figure 4. Model output using constant and equal fluxes of protons and electrons. (top) The charge density due to the
accumulation of protons (solid line) and electrons (gray dashed line). (middle) The gap electric field resulting from the
charged layers. (bottom) The gap current density dissipating the two layers. (Throughout all subsequent figures, gap
electric fields and gap current densities are shown as gray dashed lines.)

accumulated in the upper (positive) and lower (negative) charge layers increases at the same rate. There-
fore, the surface and interior electric fields remain zero at all times, because the net charge of the region
including both layers is zero. Between the layers, however, the gap electric field also increases with increas-
ing charging. Eventually, Egap is sufficient to drive a Jgap that dissipates the charges at their accumulation
rate. For the assumed proton and electron fluxes, Egap = 640 V/m, which is the same as in the first scenario.
Initially, both the gap field and current density increase more quickly than in the first scenario. This increase,
however, causes the layers to dissipate charge more quickly, until reaching an equilibrium in which the
charge density in the positively charged upper layer is half that in the first scenario. This results in the same
equilibrium electric field strength. While the electric field was outside the single positively charged layer in
the first scenario, in this second scenario the electric field occurs only within the gap.

The final test case is the same as the second but with a higher electron flux (40 particles cm−2s−1). The pro-
ton flux is still 4 particles cm−2s−1. This case is illustrated by the fourth case of Figure 2 and simulates a
relatively weak SEP event in which more electrons than protons impact the Moon. Figure 5 shows the results.

This scenario is more complex than the previous two. Initially, the upper layer charges positively and the
lower negatively, as expected. The magnitude of the negative layer’s charge density, however, increases
more rapidly. The gap electric field is directed downward, thus causing the upper layer to dissipate positive
charge faster than it accumulates (i.e., |Jgap| > |J+EP|), such that it begins to charge negatively. Eventually, the
system reaches equilibrium. A dissipation current still exists within the gap; it is carried by the electrons in
the regolith material and cancels out the charge from the energetic protons accumulated in the upper layer.
As we would expect, the electric field driving this current has a magnitude of 640 V/m, just as in the first test
case. The electric fields at the surface and in the interior, however, are nearly 6 kV/m.

5.2. Data-Driven GCR and SEP Simulations
The above test case scenarios demonstrate how this relatively basic lunar deep dielectric charging model
responds to a variety of steady boundary conditions. We now use data from CRaTER and ACE/EPAM to
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Figure 5. Model output using constant fluxes of protons and, at an order of magnitude greater flux, electrons. (top) The
charge density due to the accumulation of protons (solid line) and electrons (gray dashed line). (middle) The surface
(solid line), gap (gray dashed), and interior (dashed) electric fields resulting from the charged layers. (bottom) The gap
(gray dashed line) and interior (dashed) current densities dissipating the two layers.

estimate the subsurface electric fields within lunar PSRs. We begin with GCR data and then run the model
for three large SEP events.

Our first step in calculating PSR subsurface electric fields is to estimate those due to GCRs detected by
CRaTER (this corresponds to the first hypothetical scenario in section 5a, in which J−EP and 𝜅− are both zero).
As before, we initialize the simulation with zero subsurface charge, so we expect the first several months
of the simulation to be unrealistic as it approaches toward a near-equilibrium state. We use particles trig-
gering both D1 and D2, which are neighboring detectors in the telescope stack; this detection criterion
corresponds to a geometric factor of 24.152 cm2 sr [Spence et al., 2010]. The resulting GCR flux is shown in
Figure 6 (first row). We show data only up until March 2011, because SEP events contaminate most of the
GCR data after that period. The GCR flux reached an average value of nearly 4.5 particles cm−2s−1 during
the most recent solar minimum near the beginning of 2010. From this GCR flux, we derive the current den-
sity, J+EP, which is the CRaTER number flux multiplied by the proton’s charge. After 2010, the Sun’s activity
has increased, causing a decrease in GCR flux. This has caused the resulting charge density, electric field
strengths, and current density magnitudes to decrease as well (see second to fourth rows in Figure 6). The
peak electric fields (700 V/m) occurred near the end of solar minimum in this simulation. As the GCR flux
decreased, the electric field magnitude in the regolith also decreased to less than 600 V/m. This agrees with
the results of the first test scenario above. (Note that these peak fields apply above and below the region
of charging; due to the typical penetration of GCRs, this region is the top ∼40 cm of regolith. Within the
charging region, the field will be weaker.)

The first SEP event we analyze is the Bastille Day storm in July 2000 (Figure 7). The ACE/EPAM proton and
electron fluxes, shown in the first row, are used to calculate the model input current densities, J+EP and J−EP,
respectively. The peak fluxes were 1.4 × 106 protons cm−2s−1 and 3.9 × 106 electrons cm−2s−1, and the
particle fluences over the month of July were 5.6 × 1013 protons/cm2 and 1.8 × 1014 electrons/cm2.
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Figure 6. Model outputs using (first row) GCR fluxes measured by CRaTER. Note that the simulation starts with zero
charge density and takes a few months to reach realistic (near-equilibrium) values; the variations due to GCR fluctua-
tions occur after that time. (second row) The charge density due to the accumulation of protons. (third row) The surface
(solid line) and interior (dashed) electric fields resulting from the charged layer. (fourth row) The interior current density
dissipating the charged layer.

At the start of the event, on 13 July, the proton flux was greater than the electron flux, but the electron flux
became dominant as the event progressed. The electric field magnitude peaked in the gap (13 MV/m), while
the surface and interior fields had magnitudes of 7.2 MV/m. After the event, the charge densities, fields, and
current densities all began to decay.

As mentioned in the previous section, based on our assumption, these two field strengths could be con-
sidered the upper and lower limits of the electric field for the given set of J+EP and J−EP (this is also true for
the following two events). J+EP and J−EP, however, do not include all SEPs because ACE/EPAM does not detect
SEPs at all energies. Higher-energy SEPs are an insignificant fraction of the total flux, so we can reasonably
ignore them. Lower energy SEPs, however, have a greater flux and shallower penetration depth. Including
these lower energy SEPs in the model would increase |Egap|, but only because that field strength assumes
the charge layers do not overlap. In reality, however, the peak electric field strength within the charged lay-
ers could be greater than, less than, or equal to |Egap|, depending on the particle fluxes at each depth within
the regolith. On the other hand, Esurface and Einterior depend only on the difference between J+EP and J−EP, i.e., on
the net charge deposited to the subsurface. The electrons dominate during this event (and the two below),
despite being detected over an energy range (0.038–0.315 MeV) that is an order of magnitude smaller than
the proton’s range (0.047–4.75 MeV). It is therefore likely that the electrons would dominate even at lower
energies (i.e., higher fluxes). This means that including lower energy SEPs would make |Esurface| and |Einterior|

greater than estimated by this model.

The second SEP event we consider occurred in November 2001 (Figure 8). The peak fluxes were 1.9 × 106

protons cm−2s−1 and 5.0 × 106 electrons cm−2s−1, and the particle fluences over this time period were
1.9 × 1014 protons/cm2 and 3.8 × 1014 electrons/cm2. The strongest electric field occurred in the gap, with a
value of 16 MV/m. The interior and surface fields had peak magnitudes of 7.8 MV/m.
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Figure 7. Model outputs using (first row) SEP proton (solid line) and electron (gray dashed line) data from ACE/EPAM
during July 2000. (second row) The charge density due to the accumulation of protons (solid line) and electrons (gray
dashed line). (third row) The surface (solid line), gap (gray dashed), and interior (dashed) electric fields resulting from the
charged layers. The gray bar shows the range within which dielectric breakdown does not occur (see section 6). (fourth
row) The gap (gray dashed line) and interior (dashed) current densities dissipating the two layers.

Finally, the Halloween storms of 2003 are shown in Figure 9. Unlike the two previous SEP events, the protons
had a higher peak flux than the electrons: 2.1 × 106 protons⋅cm−2⋅s−1 and 1.1 × 106 electrons⋅cm−2⋅s−1.
The electrons, however, had a greater fluence over this time period: 1.3 × 1014 protons⋅cm−2 and 1.8 × 1014

electrons⋅cm−2. The strongest electric field occurred in the gap, with a value of 8.8 MV/m. The interior and
surface fields had magnitudes of 2.6 MV/m. The electric fields created by all three of these SEP events were
strong enough that they may have induced dielectric breakdown.

6. Dielectric Breakdown

The subsurface electric field strengths our model predicts during large SEP events pass the threshold nec-
essary for dielectric breakdown. Much research on how energetic particles charge dielectrics has occurred
over the past 50 years within the spacecraft engineering community (see the reviews by Whipple [1981] and
Robinson and Coakley [1992]). The deep dielectric charging of a spacecraft can affect the operation of instru-
ments and, in extreme cases, results in dielectric breakdown (see the reviews by Frederickson [1983] and
Balmain [1987]). For example, the Internal Discharge Monitor on board the Combined Release and Radia-
tion Effects Satellite detected dielectric breakdown while in Earth’s radiation belts at a fluence of ∼2× 1010

electrons/cm2 [Violet and Frederickson, 1993; Frederickson et al., 1992]. Electrostatic discharges are the lead-
ing cause of space mission failures due to the particle radiation environment within the magnetosphere
[Bedingfield et al., 1996; Koons et al., 1998].

Dielectric breakdown occurs when the electric field within an insulator is great enough to cause the material
to ionize and form a gaseous conducting channel [Budenstein, 1980]. The shape of such a channel resem-
bles a tree, with a main stem and small filaments branching off it. Depending on the strength of the field,
the channel can penetrate completely through the dielectric (full breakdown) or only partially (partial break-
down) [Frederickson et al., 1986]. For the purposes of this paper, we use the term “breakdown” to refer to
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Figure 8. Same as Figure 7 but for SEP events during November 2001.
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Figure 9. Same as Figure 7 but for SEP events during October and November 2003.
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both, since breakdown channels occur in both situations. To initiate full breakdown, the electric field must
be ∼107 V/m, while partial breakdown can occur at fields an order of magnitude smaller [Budenstein, 1980;
Frederickson et al., 1986].

Laboratory experiments confirm this breakdown threshold for a range of solids [Sørensen et al., 1999]. Note
that these experiments also indicate that full breakdown still sometimes occurs at fields as low as 106 V/m.
This is because inhomogeneities within the dielectric can increase the local electric field by a factor of 10
with respect to the average electric field (see also work on the breakdown of dust by McDonald et al. [1980]).
Inhomogeneities can include cavities, whether empty or gas filled, or even inclusions of material with differ-
ent dielectric strength [Budenstein, 1980; Lisitsyn et al., 1998; Mazzanti et al., 2005]. Although inconclusive,
additional vacuum experiments with lunar regolith simulant indicate that full breakdown may occur at
6× 106 V/m [Kirkici et al., 1996]. In Figures 7–9, the gray bar in the panel showing the electric field represents
the range over which breakdown does not occur. All values lying outside that bar can induce breakdown.
Therefore, the electric fields predicted in the previous section for large SEP events all exceed the threshold
for dielectric breakdown in the lunar regolith within PSRs.

To create an electric field of these strengths requires a charged particle fluence (time-integrated flux) of
∼1010–1011 cm−2 for spacecraft dielectrics [Garrett and Evans, 2001; Green and Dennison, 2008]. This fluence
must occur on a timescale less than the dielectric’s discharging timescale 𝜏 . Otherwise, the dielectric will
dissipate the deposited charge too quickly. As described above, the regolith’s discharging timescale is about
20 days within PSRs. The above three SEP events all had fluences >1010 cm−2 over the discharging timescale,
thus meeting this criterion for dielectric breakdown.

Campins and Krider [1989] conducted a series of laboratory experiments exploring whether the high fluxes
of electrons in Jupiter’s radiation belts might stimulate dielectric breakdown on Io’s surface. They bom-
barded natural mineral sulfur with 10–30 keV electrons. With fluxes similar to that in Jupiter’s radiation belts
(1010 electrons cm−2s−1), breakdown did occur, even to the point of being visible in a darkened room. In
their experiments, the charge was deposited in a layer in the upper ∼0.1 mm of sulfur.

Campins and Krider’s experiments suggest that if dielectric breakdown occurs frequently, it could play an
important role in the evolution of the surfaces of airless bodies. As they note, breakdown can melt and
boil off material, in addition to causing mechanical, optical, and chemical changes (see also the review by
Balmain [1987]). For example, breakdown can create craters on the surfaces of the dielectric [Bahder et al.,
1982]. Furthermore, breakdown fragments dielectrics along the boundaries of inclusions where the dielec-
tric constant changes. It has thus been proposed as a method for fragmenting rocks into their mineralogical
components [Lisitsyn et al., 1998; Andres et al., 2001].

Our modeling of three large SEP events in the previous section indicates that dielectric breakdown may have
occurred during those events within lunar PSRs. If this is the case, then we can roughly assess the impor-
tance of breakdown to the regolith by estimating the frequency of potentially breakdown-inducing SEP
events. A comprehensive analysis by Feynman et al. [1993] of SEP events occurring from 1973 to 1991 found
89 events for which the daily averaged flux of >1 MeV protons was > 460 cm−2 s−1 sr−1, their chosen flux
threshold (1 MeV was the lowest energy threshold in their study). About 20%, or ∼18 events, had fluences
> 1010 cm−2 (see their Figure 3a). This corresponds to a frequency of ∼1 event/yr potentially able to induce
dielectric breakdown in the lunar regolith.

Two limitations to the results of Feynman et al. [1993] must be noted. First, the authors calculate fluence
over a single SEP event. Since, however, the regolith’s discharging timescale (20–40 days) is longer than
typical events, the regolith may not have fully discharged before a subsequent event. Thus, both a single
large event or a series of smaller events could induce breakdown. Future work is necessary to determine
the importance of this. Second, the fluxes of lower energy SEP protons are typically higher than that of
>1 MeV protons. For events with insufficient fluences of >1 MeV protons to instigate breakdown, the fluence
of lower energy protons might still be sufficient to cause breakdown. Both these factors indicate that the
breakdown-inducing SEP event rate is likely much higher than 1 events/yr.

Throughout the Moon’s history, these potentially breakdown-inducing SEP events have affected more than
just the present-day top ∼1 mm of regolith. Meteoritic impacts have continuously gardened the regolith,
mixing it both vertically and horizontally [Arnold, 1975]. The area of an impactor’s ejecta layer is much
greater than the area excavated [Arnold, 1979]; therefore, gardening is primarily a protective process. Thus,
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most regolith affected by dielectric breakdown will typically be buried rather than destroyed or modified
during excavation by an impact. Modeling by Arnold [1975] estimates that on average, any given layer of
regolith will be buried with a protective 1 mm layer of regolith from another location after 1.2 Myr. Thus,
each 1 mm layer within the regolith’s gardened zone can experience breakdown-inducing SEP events for
1.2 Myr—a total of ∼1.2× 106 breakdown-inducing events. This applies to all regolith within the gardened
zone. (Note that as shown in Jordan et al. [2013], this exposure time to SEPs could be up to about twice as
long, depending on the amount of gardening. For simplicity, however, we use the above exposure time.)

In light of the effects mentioned above, breakdown may play a significant role in the weathering of the
regolith, especially within PSRs and polar areas with low average temperatures. Since breakdown prefer-
entially occurs along the boundaries of changes in the dielectric [Lisitsyn et al., 1998; Andres et al., 2001],
repeated breakdown would tend to fragment the regolith into its mineralogical components. Thus, such a
large number of breakdown-inducing SEP events could cause the regolith within PSRs to have a reduced
concentration of aggregates with respect to regolith in warmer regions.

This breakdown weathering could affect other airless bodies in the solar system. Mercury, for example, also
has permanently shadowed regions with temperatures below 100 K [Vasavada et al., 1999]. The soil within
those craters may therefore have a low conductivity. Furthermore, because Mercury is about 0.3 AU from
the Sun, SEP fluences are likely an order of magnitude greater there than at Earth. This means that PSRs on
Mercury may experience more frequent dielectric breakdown than those on the Moon.

7. Conclusions

We have estimated for the first time the electric fields due to deep dielectric charging of the Moon by
SEPs and GCRs. We have created a one-dimensional, two-layer, time-dependent model to calculate the
lunar subsurface charging. Using CRaTER GCR data as an input, we find that GCRs create persistent electric
fields up to 700 V/m. ACE/EPAM data during large SEP events show that such events create transient but
strong fields that may even induce dielectric breakdown. We find peak electric fields to be at least on the
order of 107 V/m; the lower-energy SEPs that EPAM cannot detect may create much stronger fields. Also,
the present layer of gardened regolith has likely experienced at least 1.2 × 106, and possibly many more,
breakdown-inducing events. This high number of events likely reduces the percentage of aggregate parti-
cles in the regolith in PSRs by slowly fragmenting the particles along mineralogical boundaries during large
SEP events.

There are several ways to test or adapt this first-order model. One test would require irradiating cryogenic
regolith with proton and electron beams to determine whether the resulting charging and occurrence of
dielectric breakdown match the model’s predictions. The model could also be adapted, by incorporating a
surface charging model, to predict the electric field above the Moon’s surface, which may relate to the Lunar
Prospector observations of surface charging during SEP events that were not readily explained by current
balance at the surface [Halekas et al., 2009]. This model could also be applied to deep dielectric charging
at other airless bodies in the solar system, such as Mercury, to estimate the importance of deep dielectric
charging and breakdown weathering.
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