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Abstract—Color is probably the most informative cue for 
object recognition and classification in natural scenes. Difference 
in shades can indicate to the biologist the potential for diversity 
of species or stress on the habitats. However, severe color 
distortions may occur in underwater imagery due to wavelength-
dependent attenuation of light. Affordable tri-chromatic sensors 
are used to record the ambient light condition and color correct 
the imagery, but results show that this approach works reliably 
only under highly controllable conditions. This paper proposes 
an approach that combines hyperspectral data collected for the 
object of interest, hardware properties of the imaging sensor, and 
exterior conditions (optical properties of water and illumination) 
with tri-chromatic underwater imagery. Due to ambiguity of 
color reconstruction underwater, demonstrated in the paper, a 
probabilistic approach is used for classification that allows the 
identification of the object of interest from other objects.  

Keywords—color underwater, spectrometry, benthic features, 
habitat classification 

I. INTRODUCTION 
Color is probably the one of the most informative cues for 

object (facies, micro-habitat, individual organism, etc.) 
recognition in underwater imagery. Color carries a wealth of 
useful information that can be used in a variety of marine 
applications – from health and stress levels of vegetation to 
identification of debris. However, many attempts to use color 
for underwater imagery directly were not very successful. In 
previous work, we have tried to assign specific palettes of 
colors to corresponding benthic features and to estimate their 
percentages of coverage on mosaics constructed from HD 
footage collected from an ROV platform [1, 2]. Using photo 
mosaics allowed for inclusion of higher proportion of imagery 
in the analysis (each mosaic consisted on average of 750 
frames), and thus derive better average cover values, and 
compensate for high heterogeneity of benthic environment. 

Benthic features (especially biological ones) can rarely be 
defined by a single color, and some variability is always 
present. Therefore, a tolerance limit (threshold) should be 
applied even in perfect conditions, and several color palettes 
should be used to extract a single feature. Color palettes were 
chosen manually, by “trial and error” method until 
segmentation results on the test mosaics have become 
satisfactory. The main difficulty in the proposed approach is 
inconsistency of the imagery due to variation of the altitude of 

the acquisition platform, which is unavoidable in the “real 
world” underwater imagery. Although light attenuation in the 
water column can be considered constant during the 
acquisition, its effect on the benthic features colors during the 
image acquisition remains unknown. Therefore instead of 
reconstructing true colors, the mosaics were manually divided 
into color classes and separate sets of color palettes, 
independently created for each class. Even after that, 
segmentation results for each analyzed mosaic needed to be 
manually supervised, making it impossible to develop a fully 
automatic process. 

The results obtained by this procedure were reasonably 
good for relatively uniform video mosaics, while for the 
mosaics with significant variations in colors results were much 
less successful (because of noticeable variations in acquisition 
platform altitude due to peculiarities of local bottom relief, 
ROV piloting mistakes, and hydrological factors affecting 
ROV movements underwater). 

Contrary to the widespread opinion, it is not sufficient to 
“have a decent illumination and compensate for stronger 
absorption in the red part of the spectrum” to obtain a color 
which is reproducible and thus allows for reliable recognition 
of the object of interest (OoI). 

The main reason for color restoration ambiguity is that 
objects usually have relatively complex spectral signatures 
(dependence of reflectivity on wavelength with changes that 
are on the order of tens of nanometers) and it is intuitively 
clear that just three measurements (R, G, and B channels with 
a spectral resolution of 70 to 150 nm) are not sufficient to 
reconstruct original (as if imaged in air) color. Depending on 
current water properties, illumination, range to the target, 
intrinsic diversity of spectral signatures within the class of 
targets (benthic features) that need to be classified, and 
properties of the sensor (camera) itself, recorded color may 
vary in an amazingly wide range. This paper demonstrates the 
extent of color reconstruction ambiguity in a numerical 
experiment. To obtain a truly reproducible color measurement, 
the underwater platform must be equipped with a multispectral 
sensor which is expensive. Most platforms have affordable 
trichromatic sensors (color video and still cameras) and their 
data can be useful for OoI recognition on the condition that 
the spectral characteristics of the object are already known. In 
some cases the samples of OoI’s can be taken to the top-side 
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this pdf and the probability that it had imaged an OoI is 
estimated. 

Various parameters, such as exterior conditions, sensor 
properties, range to the OoI, etc., strongly affect the recorded 
color. This fact plays an important role in ability to distinguish 
one OoI color family from another. Color families that are not 
distinguished under certain conditions (both map onto the same 
(a*,b*) region), may become separable when multiple images 
are acquired at different ranges, using light sources with a 
different spectra, or by a different imaging sensors.  

 
Figure 3. Disambiguation of OoI families by range variation. In air 
color obviously does not depend on range. 

 
Figure 4. Disambiguation by sensor parameter variation. 

Consider the (a*,b*) chart shown in Fig.3. White dot with 
red slanted cross indicates “true” color. At a range of 3 meters 
the in-water color corresponds to the black dot with red slanted 
cross. However, increasing the range from 1 meter to 9 meters, 
the in-water color changes along the curve indicated 1m-9m. 
Increasing some sensor parameter1 from 15 nm to 150 nm also 
leads to the change of in-water color shown in Fig.4. Thus, 
knowledge of OoI families allows for choice of conditions 
clearly separating in-water color clusters. 

IV. EXAMPLE OF REAL SPECTRA 
We have evaluated spectra of corals (Stylophora Pistillata): 
two samples from dead corals, D1 and D2, and two samples 
from healthy ones, L1 and L2, shown in Fig.5 [3]. 
 

 
Figure 5. Corals’ spectra acquired in the laboratory conditions. 

Assuming certain sensor properties, illumination, and water 
conditions we may predict the color of the four coral samples 
at various ranges. Fig.6 shows (a*,b*) components of their 
colors. Note that color of the D1 sample is very similar to 
colors of healthy samples, as its spectrum is very close to that 
of healthy corals, with only reflectance level being different. 

 
Figure 6. Color components for live and dead corals shown in a sub-
region of (a*,b*) space. 

V. HARDWARE 
 

 Hardware for measurement of water properties is available 
off-the-shelf. For example, accurate and effective measurement 
can be provided in situ by the HOBI Labs’ a-Sphere 
(http://www.hobilabs.com).  However, this is an expensive 
solution that may not be essential. Collection of water sample 

1 Standard deviation of quantum efficiency curve for the red channel of 
the sensor .  



underwater and determination of water properties post factum 
would be sufficient. We have used a light source, quartz 
cuvette and spectrometer produced by Ocean Optics 
(http://oceanoptics.com).  Ambient illumination at the time of 
acquisition of conventional imagery for classification can be 
measured by a spectrometer with a cosine corrector, to collect 
downwelling light. It is important to remember that the light 
that travels through water has two parts of the path: from water 
surface to the illuminated scene, and then to the camera. In 
some cases OoI spectra can be collected at the top side in the 
laboratory conditions. However, most of data must be collected 
in situ by a diver. For this purpose we have constructed a 
device which has a working name Underwater Recorder of 
Spectral Signatures (UROSS). The schematic drawing is 
presented in Fig.7. 

 
Figure 7. UROSS drawing. 

The components are marked by numbers. The cables are 
not depicted for clarity of the sketch. 

1. Spectrometer Qmini (http://www.rgb-lasers.com). 

2. White broad-spectrum LED (http://imm-
photonics.de). 

3. FitPC2 (http://www.fit-pc.com) running Windows 
7. 

4. Arduino Nano board communicating with a PC 
and controlling LCD display and temperature 
sensor (not shown). 

5. USB trigger 
(http://www.sensoriumembedded.com), 
converting signals from external switches to 
keystrokes for a PC. 

6. Bellows for elimination of stray light during the 
measurement. 

7. Custom-made bifurcated fiber optic cable 
transmitting the light from an LED to a collimator 
and reflected from OoI light to the spectrometer 
(http://www.thorlabs.com). 

8. Low-range PC controlled still camera. 

9. Collimator. 

10. Three momentary switches and a power switch. 

Battery pack (http://www.tenergy.com) (10000 mAh) is 
attached under the horizontal shelf and being fully charged 
provides sufficient power for four hours of non-stop work. 
Conventional frame camera in the front of the acquisition 
system is used as a reference for documentation to identify 
exactly which OoI spectrum that has been collected. Handles 
are attached to the back side of the device to allow a diver to 
hold and control the device using four switches. One to power 
the system and three momentary switches are used to send 
signals to a PC - to acquire a still image, to acquire spectrum 
signature, and to change folder in which the data are being 
saved.  

Upon power-up, device’s computer (FitPC2) turns on and 
automatically starts the UROSS software. A new root folder is 
created and a log file in which all actions (events) are recorded 
with appropriate timestamps. Within the root folder a data 
folder is created with all the recorded spectra and acquired 
images. When the user flicks “folder” switch, new sibling 
folder is created and all data files created after that are saved in 
this folder. This approach makes it easy to separate acquired 
data related to two or more OoI families. 

The on-board computer has an HDMI connector allowing 
to upload the executable to Arduino and to debug the UROSS 
software responsible for acquisition and data logging when the 
water-proof housing is open. Setting up a wireless dedicated ad 
hoc network allows to communicate with the computer and 
download data from it without taking the pressure housing off.  

VI. TESTING 
Preliminary testing has shown that UROSS records 

reflectance well – up to 2500 measurements with a spectral 
range between 200 to 1000 nm at a 0.33 nm resolution. The 
measurements do demonstrate some noise which is attributed 
to a stray light. Binning of measurements at 5 nm (Fig.8) 
produces smooth spectral signatures with a stronger signal-to-
noise ratio. 

 
Figure 8. Spectra of four squares from the Macbeth chart. Exposure 
time 0.01 s. 



VII. FUTURE WORK 
In the near future we plan to waterproof the housing of the 

system in order to withstand depths up to 30 meters and 
operate in different marine conditions around New England, 
USA (e.g., estuary, harbor, and offshore). We plan also to 
create a catalogue of spectral signatures for a number of OoI, 
specifically, macroalgal species, sediments, shell hash, and 
oyster beds. Conventional imagery acquired simultaneously 
will be processed and classified according to the scheme 
described in Section III. The results will be compared with the 
existing information and manual classification of images. 
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