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Abstract - Underwater Video Spot Detector (UVSD) is a 

software package designed to analyze underwater video for 
continuous spatial measurements (path traveled, distance to the 
bottom, roughness of the surface etc.)  

 
Laser beams of known geometry are often used in 

underwater imagery to estimate the distance to the bottom. This 
estimation is based on the manual detection of laser spots which 
is labor intensive and time consuming so usually only a few 
frames can be processed this way. This allows for spatial 
measurements on single frames (distance to the bottom, size of 
objects on the sea-bottom), but not for the whole video transect.  

 
We propose algorithms and a software package 

implementing them for the semi-automatic detection of laser 
spots throughout a video which can significantly increase the 
effectiveness of spatial measurements. The algorithm for spot 
detection is based on the Support Vector Machines approach to 
Artificial Intelligence. The user is only required to specify on 
certain frames the points he or she thinks are laser dots (to train 
an SVM model), and then this model is used by the program to 
detect the laser dots on the rest of the video. 

 
As a result the precise (precision is only limited by quality 

of the video) spatial scale is set up for every frame. This can be 
used to improve video mosaics of the sea-bottom. The temporal 
correlation between spot movements changes and their shape 
provides the information about sediment roughness. 
Simultaneous spot movements indicate changing distance to the 
bottom; while uncorrelated changes indicate small local bumps. 

 
UVSD can be applied  to quickly identify and quantify 

seafloor habitat patches, help visualize habitats and benthic 
organisms within  large-scale landscapes, and estimate transect 
length and area surveyed along video transects. 
 

I. INTRODUCTION 
 

Determination of scales, sizes and distances of various 
objects from underwater imagery is an important issue in 
underwater habitat biology, geology, archaeology, cable 
laying industry, etc., where contact measurements cannot be 
done straightforwardly. To aid with this task, lasers are often 
used. 

 
A simple setup includes two or more lasers with parallel 

beams, approximately parallel to a camera optical axis. In 
this setup, distance between projections of laser beams on a 

planar surface perpendicular to the beams is equal to a 
distance between the lasers. These projections appear in an 
image taken by a camera as bright distinct spots (which will 
be called laser dots in this paper). When the imaged surface 
(seafloor, in our case) is at an infinite distance from the 
camera, laser dots converge to a single point (vanishing 
point). The position of this point within an image frame 
depends on mutual orientation of the camera and lasers. 
Distance between the camera and seafloor is uniquely 
identified by a distance between a laser dot and a vanishing 
point (or equivalently, a distance between laser dots). Recent 
advances in using this technology are described in [1-4]. 

 
Detection of laser dots in underwater images, however, is 

not a simple task. Watching footage with laser dots in a view, 
human rarely has problems with their detection. Even if an 
eye loses such a feature, it is easily picked up again after few 
frames. Given any single frame without an advantage of 
knowing the approximate position of laser dots makes the 
detection task significantly more difficult. 

 
We have developed an approach where predictive power 

of human brain compliments robustness and repeatability of 
a computer. The human operator is training an artificial 
intelligence scheme on few chosen frames, and this scheme 
is then used to process the rest of the video footage. 
 

II. PREPROCESSING: LENS CORRECTION 
 

Prior to processing all the footage undergoes lens 
correction procedure. This correction is not essential for the 
subject of this paper, but is usually important for accuracy of 
measurements, which are the final goal for the whole project. 
The correction is based on a set of camera-specific 
parameters determined in a calibration procedure, described 
in [5]. 
 

III. CLASSIFICATION 
 

A. Support Vector Machines 
Automation of laser spots detection is done using an 

artificial intelligence learning system known as Support 
Vector Machine (SVM) [6, 7]. Recently SVM classifiers 
have attracted much attention due to relative simplicity in 
application and good results achieved in a variety of 
problems. SVMs are designed to solve two-class problems 
(as is the one discussed in this paper). 
 



 

 2

SVM is an apparatus to classify the input data according 
to a decision model developed during a user-supervised 
training. Data points, crucial for classification, that are 
selected by SVM, form a basis of support vectors, which 
determine a decision surface – hyper-plane in the feature 
space separating data points with different class membership. 
The training process allows for choosing interactively data 
points leading to an optimal separation between two different 
classes. 
 

The user chooses few frames from video footage and 
within each frame selects a rectangular area (or areas) with 
laser dots. Pixels in these areas (active zones) are manually 
classified into one of two classes: as part of a laser dot, or as 
part of a background. All pixels within active zones 
constitute data for the training process, each pixel being a 
vector in a 3-dimensional color space: RGB, HSL, or other. 
The size of training set is a tradeoff between model accuracy 
and its generality. We have found that the best results are 
achieved when the dimension of an active zone is 
approximately three or four times larger than the laser dot 
diameter.  

Fig. 1. Results of the classification of an entire frame (notice that the digits 
at the top of the frame were classified as laser dots too). 

 
The SVM-based approach allows for using in 

classification not only brightness of pixels, as has been done 
in earlier work, but also their color, which increases 
robustness of detection. 
 
B. Iterative Approach to Training 

Appearance of laser dots change from frame to frame due 
to changing conditions: seafloor sediment, water clarity, 
distance from lasers to seafloor, etc. This requires an iterative 
approach – initially trained SVM model is used for 
processing of video footage, then the user decides which 
frames were processed poorly, and uses these frames for 
model refinement. Occasionally, when visual conditions 
change dramatically within a single footage, multiple 
refinements may lead to model over-fitting – the only 
solution for this seems to be the use of different SVM models 
for different parts of the footage. 
 

 
IV. DETECTION 

 
A. Pixel Processing 

During the classification stage, each pixel is classified by 
SVM in one of two categories: as either a part of a laser dot 
or not. Obviously there is no need to classify each and every 
pixel in acquired images - laser dots may appear in a video 
frame only along straight lines that are projections of laser 
beams onto retinal plane of the image (beam lines). Taking 
these simple geometrical constraints into consideration not 
only saves the processing time, but also allows to avoid a 
multitude of false positives often appearing in a near field, 
where intense illumination causes colors to saturate (Fig.1).  
 

In principle, precise knowledge of camera and laser setup 
allows for calculation of beam lines, but a small error in an 
angle measurement may lead to a much larger error in their 
predicted parameters, so in practice it is simpler to determine 
these parameters directly from the footage by means of 
image processing. All the acquired frames, corrected for the 
lens distortion (even weak distortion may preclude beam 
lines from being straight), are stacked (Fig. 2.), and tiny 
reflections of laser light from particles suspended in water 
column form bright belts showing where the beam lines are. 
This approach works reliably even in a very clear water for a 
sufficiently long frame sequence. 

Fig. 2. An example of stacking video frames in a movie. 
 

The developed application allows for automatic detection of 
beam lines from the stacked image (based on assumptions 
that number of beams is known, and the vanishing point is 
near the middle of a frame), but it is often simpler for the 
user just to point-and-click on ends of beam lines, and these 
parameters are then used in the processing. The user also can 
specify the width (in pixels) of the belts around beam lines 
where the laser dots will be searched for. The example of 
detection with these constraints taken into account is 
presented in Fig. 3. 
 

There is also an important application when the above 
mentioned constraints are not essential. When video frames 
have to undergo registration process (for example, for 
construction of video mosaic), bright laser dots act as strong 
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features that seriously hinder the registration process. To 
remove these features, pixels that form laser dots are detected 
in the same way as described above and then simply replaced 
by pixels colored with background colors. There is no need 
to detect blobs (as is done below); pixels in the area around 
laser dots are classified using SVM, and all the pixels that are 
classified positively are replaced by other pixels randomly 
drawn from the negatively classified pool. 

Fig. 3. An example of pixel classification with geometrical constraints 
applied (greenish pixels were classified as parts of laser dots) 

 
B. Pixel Processing 

Once individual pixels are classified, they could be 
joined in clusters representing potential locations of laser 
dots. Often these clusters are dense and straightforward 
calculation of their centroid provides a reasonable estimate 
for laser dot location (Fig. 4, a-b). With a poor SVM model 
(due to changing visual conditions) clusters have holes 
and/or complex shapes (Fig. 4, c-d). The application of 
morphological operations (closing) helps to improve the 
cluster shape. 
 

Laser light propagating in water is affected by two major 
phenomena: absorption and scattering. With the distance 
traveled, the former decreases brightness of laser beam and 
the latter increases its diameter. Scattering on particles 
suspended in water column results in appearance of several 
bright spots along the beam (which in fact allows for 
detection of beam lines, described above). These processes 
are discussed in details in, for example, [4, 8]. 

 
Typically it is desirable to detect an intersection of laser 

beam with an object that does not allow the light to propagate 
any further. Hence in the case of several detected blobs along 
the same beam line, the algorithm chooses the blob closest to 
the vanishing point.   
 

V. EXPERIMENTAL RESULTS 
 

In our experiments we have trained the model and 
performed detection in RGB color space. Experiments have 
shown that in this case the robustness of laser dots detection 
is mostly affected by video data compression and water 

clarity.  The most popular video compression algorithms 
such as MPEG, DV, etc., reduce the size of video by 
discarding information not important for casual human 
perception. However the important color information is being 
lost at the process. Clarity of water is responsible for 
scattering. The more turbid is the water, the more false blobs 
appear due to scattering. One of the possible ways to improve 
results is to use green laser, as its light scatters less in water. 
The example of detection is presented in Fig. 5. 
 

Fig. 4. Examples of pixels classified as laser dots. a), b) show good detection, 
c), d) inadequate detection. An example of pixel classification with 

geometrical constraints applied (pixels that had been classified as parts of 
laser dots were colored bright green). 

 
VI. UNDERWATER VIDEO SPOT DETECTOR GUI 

 
Once the laser dots are detected in separate frames, their 

locations can be considered as a function of time. It is 
reasonable to assume that the distance from the camera to the 
seafloor is changing slowly. Hence location of a laser dot in 
an image frame must be changing slowly as well, so large 
jump indicates either that the dot location was detected 
incorrectly, or that the laser beam was intercepted by some 
object far away from the seafloor (for example, blade of 
grass). In both cases this data point is considered to be an 
outlier and is rejected. 
 

Robust outlier detection is implemented using RANSAC 
algorithm [9]. Sequence of laser dot locations is chosen to 
represent 3 seconds (i.e. with 3 frames per second is 9 frames 
long). At every step two data points are chosen randomly, a 
linear model is built, and other points are checked against the 
model. Number of tries is chosen sufficiently high, to 
guarantee that at least one of linear models has been built 
from uncontaminated data. The estimate of this number is 
calculated using the formula from [10]. The solution with the 
lowest standard deviation of inlying residuals is chosen, and 
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the data points lying further than 5 pixels from the line 
representing the best solution are considered to be outliers. 
 

a) 
 

b) 
Fig. 5. An example of a low quality video a) and results of  its processing 

b). Both water quality and compression problems (near field saturation) 
present challenges to the algorithm. 

 
 
The gaps in the data due to undetected laser dots or 

rejected outliers are filled in using quadratic interpolation 
(higher degrees may lead to over-fitting). 
 

One of the applications that stimulated the development 
of this software was the need to estimate distance traveled by 
a submersible from video footage taken from the vehicle. 
Detailed description of the technique will be published 
elsewhere; here we will just outline it. Sequential frames 
from video footage (possibly sub-sampled) are co-registered 
using simple translational model. This provides an estimate 
of traveled distance (in a period of time between these two 
frames) in pixel space. This space, however, can be related to 
a real space using the information obtained from laser dots 
processing. Estimates of traveled distance (around 10 
minutes at 2 knots speed) obtained with this technique were 
compared with three other independent estimates, and were 
found to be always within the range between the lowest and 
highest bounds. 
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