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Design and Implementation of an Extensible
Variable Resolution Bathymetric Estimator

B. R. Calder, LT(JG) G. Rice, NOAA

Abstract—For grid-based bathymetric estimation techniques,
determining the right resolution at which to work is essential.
Appropriate grid resolution can be related, roughly, to data den-
sity and thence to sonar characteristics, survey methodology, and
depth. It is therefore variable in almost all survey scenarios, and
methods of addressing this problem can have enormous impact
on the correctness and efficiency of computational schemes of
this kind.

This paper describes the design and implementation of a
bathymetric depth estimation algorithm that attempts to address
this problem by combining the computational efficiency of locally
regular grids with piecewise-variable estimation resolution to
provide a single logical data structure and associated algorithms
that can adjust to local data conditions, change resolution where
required to best support the data, and operate over essentially
arbitrarily large areas as a single unit. The algorithm, which is
in part a development of CUBE, is modular and extensible, and
is structured as a client-server application to support different
implementation modalities. The algorithm is called “CUBE with
Hierarchical Resolution Techniques”, or CHRT.

Index Terms—Bathymetric Estimation, CUBE, CHRT, Variable
Resolution, Client-Server Algorithm, Data Density Estimation,
Data-driven Estimation

I. INTRODUCTION

RAPID processing of Multibeam Echosounder (MBES)
bathymetric data for hydrographic applications has been

a popular research topic for over two decades. A number
of different approaches have been proposed for the problem,
from methods that apply simple pointwise tests to data [1] to
methods that attempt to simulate the behavior of a human
data processor [2], methods that apply statistical tests to
collections of data points in an attempt to identify outliers
[3]–[6], methods that attempt to form Triangulated Irregular
Networks from data points directly [7], [8], and methods that
attempt to compute best-estimated depths within a given region
[9], [10], among many others.

Although comparisons between algorithms are rare, algo-
rithms such as the Combined Uncertainty and Bathymetry
Estimator (CUBE) [9] that estimate depths in a (most often
regular) grid can have a number of advantages over methods
based on selecting which measurements should be preserved in
the output, which has to date been the most prevalent paradigm
for processing algorithms (mainly because it better matches
manual methods for data processing driven by a traditional
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desire to use individual measurements on a chart product).
Grid-based methods using regular grids can be very compu-
tationally efficient, can be constructed to generate products
that retain the most likely estimate of depth constructed from
all available relevant data rather than the self-noise of the
individual measurements, and automatically generate products
that are easy to store, visualize, turn into other products and
distribute in various forms. They have also traditionally had a
key limitation: an essentially arbitrary choice of the resolution
at which depth estimates are computed and retained.

The correct choice of resolution is not, however, arbitrary.
The seafloor in any particular area has some, generally un-
known, level of detail in the topography, and a grid-based rep-
resentation must be capable of achieving the Nyquist sampling
rate [11, §1.4] for the area if an appropriate representation of
the seafloor is to be preserved. This is modified in the case of a
MBES system by the physical limitations of beamwidth, ping
repetition rate, pulse-length and sampling rate built into the
system so that the grid-based representation only has to meet
the sampling rate of the surface as observed by the MBES, but
this is still a complex function of seafloor character, MBES
system in use, system parameters and, particularly, depth.
To compensate for areas with extreme dynamic depth range
and rapid, unpredictable changes in depth, therefore, a grid-
based estimation method must provide some means to change
resolution spatially and, preferably, in a manner that adapts to
the data observed.

A trivial example of such a scheme is to split the depth range
being considered into bands of constant resolution based on
some estimate of depth and MBES abilities, and conduct the
estimation at fixed resolution in all areas that fall within the
appropriate band, Fig. 1. In this scheme, which was used in
the research code-base for CUBE, each band is represented by
a single resolution grid, and for robustness it is important that
only one resolution is used in each physical location. Although
simple, this can lead to difficulties in data management as
multiple grids have to be coordinated at one time and then
combined in some manner to provide the final output surface
estimate for any given location. As a design goal, the data
structure should be transparent to the user. The scheme can
also result in large areas that are processed at either too high
or too low a resolution due to the generally limited number
of resolution bands that are considered.

A common alternative is to utilize a quadtree approach [12],
[13], where the grid cells or estimation nodes are spaced in
dyadic multiples of a base resolution (i.e., ∆x = 2n∆x0, 0 ≤
n <∞ for some arbitrary base resolution ∆x0), with density
of nodes being determined by recursively sub-dividing the area
into four equal sections until some measure of consistency
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(a) Depth transition points and resolution band masks.

(b) Composing resolution bands for the final surface represen-
tation.

Fig. 1. Illustration of the resolution-band approach to multi-resolution
estimation. Based on an a priori estimate of depth, areas above depth z1−3

are estimated at 1m resolution; areas with depths between z1−3 and z3−5

are estimated at 3m resolution; and areas below z3−5 are estimated at 5m
resolution. Only areas where the r-m resolution mask are black are estimated
at r-m resolution, ensuring that only one resolution is used in each area.

within each section is satisfied. While this provides for a single
data structure that allows changes in estimation resolution, it
also, like the resolution band scheme, induces a structure in
the data that is not necessarily supported by the data itself.
That is, there is no reason why the data should be constrained
to any specific resolution level due to the algorithm; induced
structure usually reflects a limiting design decision.

More sophisticated methods, such as constrained irregular
quadrilateral grids [14], [15] or constrained unstructured (tri-
angulated) grids [16], [17] are also possible, and are used
extensively in finite element computational methods, com-
puter graphics, etc. While these more sophisticated methods
certainly offer more nuanced descriptions of the required
estimation resolution, and can be made to adapt to some metric
derived from the problem being attempted, their subtlety in
representation is bought at the expense of more complex
implementations and higher data storage and computational
cost per data point processed, particularly for the sorts of com-
putations required for the types of depth estimation algorithms

that we consider here. Given data volumes in the billions of
individual measurements per survey, cost per measurement
must always be a major driving factor in algorithm and data
structure selection.

Consideration of these alternative schemes suggest a set
of design goals for an algorithm to process data from raw
measurements to a finite sampled representation. First, we
require rapid, robust estimation of depth from raw data which
takes into account typical failure modes for MBES systems.
Second, we need some means to estimate the appropriate
resolution at which to process the data that is driven by
the data itself so that we adapt to the data, rather than
inducing structure that is not reflected in the dataset. This
resolution should correspond to the maximum resolution at
which the data can be reliably processed while balancing
robustness of estimation, fundamental resolution limitations of
the data collection system, and fidelity of representation of the
seafloor. Third, we need the data structure to support varying
resolutions, and to be transparent to the user’s requirements for
area covered. Fourth, we require that the implementation be
efficient and flexible in order to support potential differences
in computational structures that might arise in practice.

We therefore propose here a scheme for achieving a
piecewise-variable resolution representation of data within an
essentially arbitrary large area (limited only by disc space
available for storage), which adapts its resolution to local data
conditions based on a preliminary estimate of data density
whilst retaining the computational efficiency of a locally-
regular grid representation and the statistical robustness of
the CUBE algorithm, on which it is based. Although not
necessarily as flexible as more general schemes, we believe
that the algorithm will achieve the majority of the objectives of
such schemes, whilst being significantly simpler and therefore
more efficient. The algorithm is complemented by a memory
management and spatial referencing scheme that supports
efficient persistent handling of the data structures involved in
the estimation, and is implemented in a modular fashion so that
components of the algorithm can be replaced transparently.

This paper describes the design of the piecewise-variable
resolution scheme, the estimation methods used to compute
the resolution at which to work, and the workflow patterns
for this algorithm in different data capture and availability
scenarios. We also describe the implementation of the algo-
rithm, and in particular a client-server structure that is intended
to decouple the user interface and computational engine of
the algorithm allowing more flexible implementations. Finally,
the degree to which research-based code can, and should, be
used for commercial-grade implementations of this type of
algorithm is, we believe, still an open question, and we offer
some perspectives on this based on our experience with prior
algorithms.

II. ALGORITHM DESIGN

A. Variable Resolution with Locally Regular Grids

We consider first the problem of efficiently varying resolu-
tion within some generic area. We establish first a coarse grid
over the area of interest, with resolution R-m chosen such that
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Fig. 2. Geometry of the hierarchical super grid cell refinement used in CHRT.
The refined grid is constrained to be entirely within the cell, with maximum
area not covered less than the estimate node spacing of the refined grid.

R ≥ rmin, the coarsest resolution that we expect to use at any
point in the area; we refer to this as the “super grid”. (We
assume that the cells are square in some suitable but arbitrary
projected coordinate system.) Assume for the time being that,
given a first pass over the data, we can estimate an appropriate
resolution, r(p), p = [u, v]′ ∈ Z2, for each cell in the super
grid which we believe will be supported by the data. Within
each cell, which covers area A(p) ⊂ R2, we can then construct
another regular grid G(p) with resolution r(p) such that the
grid has

n(p) = bR/r(p)c+ 1 (1)

nodes on a side, and is centered at

x(p) = (p + 1/2)R (2)

so that we are guaranteed that the coverage of the refined grid,
Ar(p) is a proper subset of the cell, Ar(p) ⊂ A(p), Fig. 2,
since (n(p)− 1)r(p) ≤ R by construction. We also have that
b(p) = R−(n(p)−1)r(p) < r(p) so that the spacing between
outer estimation nodes in adjacent cells is at most b(p) < r(p)
and consequently there are at least enough estimation nodes
to maintain the designed estimation resolution, with typically
slightly higher density of estimation nodes in the boundaries
between cells. Fig. 3 shows an example of this in the case of
synthetic resolution estimates, where the variation in resolution
within an area is extreme enough to illustrate the change, while
Fig. 4 shows the algorithm applied to some real data.

By hierarchically nesting regular grids, this scheme allows
for piecewise-variable resolution estimation with the resolu-
tion tied to that estimated from the data. It also preserves,
however, the use of locally-regular grids, since the estimation
of stable resolution occurs on a regular grid of resolution

0 32 64 96 128 160 192 224 256 288 320
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Fig. 3. An example of the estimation node locations within the super
grid, using resolution estimates constructed from synthetic data. Note that
the density of estimation nodes is always at least the designed density, and
typically higher on the edges between the super grid cells. (Axes are arbitrary
projected units; cell resolution is R = 32 units.)

R-m, and the estimation of depth occurs on a piecewise-
regular grid G =

⋃
p∈Z2 G(p) of disjoint components (i.e.,

Ar(p) ∩ Ar(q) = ∅, p 6= q), so only regular grid estimation
techniques are required as long as the refined grids are treated
individually.

The choice of resolution for the super grid cells is to
some extent arbitrary, although there are some constraints. The
coarsest possible resolution that can be sustained by the grid is
R-m, and therefore we must ensure that, given the maximum
depth expected in the area and the sonar being used, we do not
expect to exceed this. At the other extreme, increasing R gives
more individual measurements over which to compute the
refinement resolution, but also means that we cannot change
resolution as quickly, since the adaptation rate is limited to the
cell size. If we allow the cells to become too large, therefore,
we risk inducing structure in the data representation that is
not supported by the data since the seafloor can change more
rapidly than the algorithm can adapt. This may result in some
proportion of the area being estimated at either too high or too
low a resolution. (The former can result in noisy estimates
or holes in the representation; the latter in poor fidelity of
representation.) If the cells are not large enough, however, the
estimation of resolution may become unstable. There are also
questions of implementation efficiency with small cells.

The optimal strategy for choosing the cell resolution may
be subject to a number of competing requirements for any
particular dataset. We expect, however, that for most cases the
driver for faster change in resolution will naturally push the
cell size towards the minimum constraint. This also has the
significant benefit that it is more likely that the data density
within the cell will be more closely a constant so that a
regular grid is a better approximation everywhere in the cell
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(a) Super grid background depth estimates with overlaid refinement resolution estimates at variable resolutions within the super
grid cells. Small red dots are missing estimates due to lower than expected data density in the local area.
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(b) As above, with overlaid points at the refined scale estimation node locations.

Fig. 4. Example of the refinement algorithm applied to standard hydrographic data (in this case a NOAA hydrographic survey courtesy of the NOAA Ship
FAIRWEATHER). The super grid cells are here set to 32 m width, and refinement was computed based on the analysis of (5) [section II-B] with nreq = 5,
ε = 0.05 and rmax = 0.25m. The resolutions predicted vary from ≈ 3m to ≈ 8m in the ≈ 100m dynamic range in the area. The variation is mostly driven
by depth, but is modulated by density of data due to swath placement, etc.
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to the optimal resolution at which to estimate. In areas where
this was not the case, it is possible that we might require a
more flexible refinement, using, e.g., a quadtree locally where
required. The disjoint nature of the refined grids naturally leads
to an encapsulated implementation, so there is no technical
limitation on having different refinement strategies on a cell-
by-cell basis if required. This would allow us to preserve
efficiency by using a regular grid where the extra flexibility is
not required.

B. Resolution Estimation

Although many of the techniques described here could
be used for general depth estimation algorithms or even
general gridding algorithms, we are interested particularly in
application of the CUBE [9] algorithm both because we have
access to the algorithm from previous work, and because of its
efficiency and robustness with respect to MBES data. Although
the algorithm itself attempts to estimate depths at a point, and
therefore does not require any particular organization of esti-
mation nodes, all current implementations use a regular grid
of nodes to organize the computation. Addition of CUBE to
the piecewise-variable resolution scheme outlined previously
is therefore straightforward.

CUBE’s basic assumption is that the goal of bathymetric data
estimation is to determine as well as possible the depth at a
given point. Since the positions of the individual measurements
from the MBES are effectively random with respect to any
given estimation node, however, a key component of the algo-
rithm is to determine which individual measurements around a
given node can be used to inform the depth estimation method;
since we typically use data in a closed ball of radius c-m about
the node location x, Bc(x), this distance is usually called the
“capture radius”. In previous versions of the algorithm the
capture radius was essentially a free parameter, although it was
typically set as c = max{cmin, scz} where cmin is a minimum
radius to avoid the estimation collapsing in very shallow water,
z is the expected depth in the area (usually approximated by
the declared depth of each individual measurement for lack of
further information) and sc is a fixed constant, typically in the
range [0.01, 0.10).

We have previously considered the problem of predicting
a resolution for CUBE nodes [18] where we suggested that
the resolution be set in terms of the data density observed in
the data, ρ(p) m−2, so that a node will receive an average of
πc2ρ(p) observations. After some manipulations we show that
this implies that we require

r(p) ≥ γ

√
nreq(1 + ε)

πρ(p)
(3)

based on the assumption that we need nreq individual mea-
surements for stable estimation, lose a proportion of the
measurements, ε, to noise, and have a ratio γ , r(p)/c of
node spacing to capture radius. Concerns for our ability to
represent an object with basic size L-m lead us to require the
upper limit

r(p) ≤ κL, 0 < κ ≤ 1

2
(4)

from the Nyquist theorem. The only remaining variable in the
resolution computation is the ratio γ, which was previously
considered independent. So that we do not miss any mea-
surements between the Bc(x), we arrange for c = min{δ :
Ar(p) ⊂

⋃
n∈G(p)Bδ(xn)} by setting γ =

√
2. (G(p) is the

set of all nodes in the refined grid at p.) We therefore have
the requirement that

κL ≥ r(p) ≥

√
2nreq(1 + ε)

πρ(p)
, 0 < κ ≤ 1

2
(5)

and therefore all we require to compute the resolution, given
suitable (user defined) values for nreq and ε is an estimate of
the data density within each super grid cell, ρ(p). Note that
we may set the capture radius relative to the resolution in this
case only because the resolution is computed from the data,
rather than being independently chosen.

Under most circumstances, we expect refinements to occur
at the finest resolution allowed by (5). It is possible, however,
that in some cases resolutions selected from a user-specified
set, or limited to a dyadic scale may be required. This is
simply a matter of mapping the resolution appropriately after
estimation, for example setting

r′(p) = 2blog2(r(p))+smc (6)

for dyadic levels, or constructing a lookup-table for a given
user-specified set. There are, however, draw-backs to this
approach, particularly that it again induces a structure not
found in the data, Fig. 5, and that it can lead to some cells
or parts of cells estimated at coarser or finer resolution than
is appropriate. This can be partially controlled by appropriate
choice of sm in the mapping equation, which can be used
to shift the transition points between resolution levels up to
one full level, Fig. 6, although the flexibility of this scheme
is limited in practice.

Linking the capture radius to the resolution allows for
simplifications to the standard CUBE algorithm. In particular,
since we know that the capture radius of any one node does
not extend past any other node, an individual measurement
can only be used by at most the four-nearest neighbors of its
nominal location, reducing the computation for distribution of
measurements to the nodes. In addition, any measurements
farther than maxq∈N(p) r(q)/

√
2 from the super grid cell

boundary cannot be used by any node in an adjacent cell
(here N(p) is the set of eight-nearest neighbor cells of the
cell at p), which limits how many measurements need to be
propagated between cells and therefore can be used to speed
up processing. In a tiled implementation of the algorithm (see
section III-B), propagation limits for internal cells can be
readily computed, but determining the minimal propagation
limit for the cells on the edge of a tile cannot be done without
access to the adjacent tiles. As a simplification, choosing
a propagation distance of R/

√
2 limits data transport with

minimal overhead in propagation costs.

C. Stabilization of Data Density Estimation

A simple, although naive, estimate of data density is to com-
pute ρ(p) = N(p)/||A(p)||, where N(p) =

∑
∀i[si ∈ A(p)]
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for measurement locations si ∈ R2. Given the arbitrary size
of the cells, however, we cannot guarantee that all of the
cell will be occupied by measurements and therefore this
estimate might underestimate the density of the data, and
consequently predict (by (5)) a coarser resolution than is
actually warranted by the data. This could readily result in

under-representing potentially significant detail in edge areas,
especially in shallow water.

We therefore approach the data density estimation problem
by computing an estimate of the area of each cell occupied
by the data observed, a variant of spatial point process density
estimation schemes based on nearest neighbor statistics [19].
Ideally, we would compute an effective area for each measure-
ment, and associate with it αi ⊂ R2, the section of the plane
occupied by the measurement. The effective area occupied
within a cell would then be α(p) , A(p)∩

⋃
i:si∈A(p) αi, and

we could estimate the density directly as ρ̂(p) = N(p)/α(p).
The computation of area intersections is complex, however,
and therefore computationally expensive.

As a more efficient, if approximate, solution, we compute
an alternative to the effective area by treating the measurement
locations as random data, and computing estimates of sample
mean and covariance of the positions,

m(p) =
1

N(p)

∑
i:si∈A(p)

si (7)

C(p) =
1

N(p)− 1

∑
i:si∈A(p)

(si −m(p))(si −m(p))T (8)

(to minimize the potential for numerical overflow during
accumulation of the statistics, we equivalently compute rel-
ative positions with respect to x(p)). The covariance matrix
eigenvalues, (λ1, λ2), correspond to the variance along the
major axes of a second-order approximation to the distribution
of the measurement positions, and therefore with appropriate
coverage factors sλ, an approximation to the effective area of
the cell covered by the measurements is

a(p) = πs2λ
√
λ1λ2 (9)



CALDER & RICE: DESIGN AND IMPLEMENTATION OF AN EXTENSIBLE VARIABLE RESOLUTION BATHYMETRIC ESTIMATOR 7

although in this case we can also compute the area directly as

a(p) = πs2λ

√
c11c22 − c212 (10)

= πs2λ
√
c11c22

√
1− r2λ (11)

rλ = c12/
√
c11c22 (12)

and we estimate

ρ(p) = N(p)/a(p) (13)

as the raw measurement density.
This estimate is straightforward to compute, and can be

accumulated as the measurements are read without having to
buffer them in memory. However it is also fragile when only
a small number of measurements are available, and indeed
degenerate when N(p) = 2. We stabilize the estimation
process in two ways. First, we observe that estimation of the
second eigenvalue becomes unstable as |rλ| → 1. We can
minimize this effect by constraining the aspect ratio of the
area ellipse, setting

λ′2 = λ2 + (srλ1 − λ2)f(rλ) (14)

with some appropriate blending function f(x). The choice of
f(x) is arbitrary although it should be even symmetric and
bounded such that 0 ≤ f(x) ≤ 1, −1 ≤ x ≤ 1 and monotone
increasing with |x|. In the implementation described here, we
use fsb(x) = |x|sb , with sb ≈ 5 − 15 to give relatively rapid
blending from the directly computed value to the conditioned
value as |rλ| → 1.

Second, we observe that the areas estimated by the method
when only small numbers of observations are available can
significantly over-estimate the effective area because the vari-
ance estimates are poor. This manifests as a heavy-tailed left-
skewed distribution of area estimates. We control for this by
making an empirical estimate of the degree of over-estimation
using a simulation of randomly distributed points within a
unit area. From the empirical distribution of areas estimated
for a given number of simulated observations, we compute the
scale factor, sa(n), that would cause the upper 99% centile to
match that from a sample with 100 measurements (for which
we assume that the variance estimation is stable). We then
compute the modified area as a′(p) = sa(N(p))a(p). The
corrections are applied sequentially.

The stabilized area, and therefore density, estimates are
observed empirically to reflect the density of the observed
data so long as the size of the super grid cells is sufficiently
large to allow for multiple beams from a swath to be observed.
Otherwise, Fig. 7, the algorithm estimates the area occupied by
a single beam along-track, and can compute erroneously high
data densities. This is essentially a form of across-track sample
aliasing, exacerbated by the beam geometry of equiangular
MBES, but the simple expedient of increasing the size of the
super grid cells is not always desirable due to concerns about
variable resolution adaptation rate.

The problem is one of scale and we address it by aggre-
gating, where required, the partial estimates of sample mean
and covariance of a neighboring group of super grid cells to
estimate the mean and covariance of the group, Fig. 8. (This
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Fig. 7. Example of under-estimation of effective area due to super grid cell
size. Increased spacing in the outer beams of an equiangular MBES mean that
the data density drops low enough that only a single beam is observed within
a cell. The algorithm estimates the effective area for the beam, but this does
not reflect the actual area in use.
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Fig. 8. Example of re-estimation of effective area by aggregation of individual
cell estimates in the eight-nearest neighbors of each cell. Aggregation allows
each cell to accumulate sufficient information to properly estimate the active
area of the composite neighborhood (red ellipse), albeit at coarser resolution;
estimates are still computed at each cell.

is essentially a matter of refactoring (7)–(8) for the whole
group into the mean and covariance matrices for the individual
cells.) The resulting estimates of resolution are necessarily
smoothed with respect to those done on each cell, although
they are significantly more stable. We therefore blend the two
estimates together, Fig. 9, by preferring the individual cell
resolution estimates where there is little difference between
them and the aggregated version, and replacing them with the
aggregated version where there is. (This is a good indicator
of instability in the initial estimates.) Our initial experiments
indicate that one level of aggregation (i.e., aggregating the
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Fig. 9. Blended estimation of resolution. The resolution estimates at the cell level (center) are replaced by the aggregated estimates (left) to form the
composite estimate (right) where there is a significant difference between the cell level and aggregated estimates. This preserves the cell level estimates (at
finer resolution) where possible, but stabilizes the estimates where required.

eight-nearest neighbor cells for any given cell) produces stable
enough estimates of resolution to use. Further aggregations
could of course take place, with stability being assessed by
tracking the change in resolution estimate across the different
levels of aggregation.

An immediate consequence of this aggregation scheme is
that increasing the super grid cell sizes is not required to
stabilize the resolution estimation scheme. That is, we can
by design use smaller super grid cells, possibly down to the
minimum limit outlined previously, and aggregate to generate
the finest usable resolution estimate of data density. This may
be advantageous in certain circumstances, since it could be
used to improve the variable resolution adaptation rates for
better modeling of complex areas.

D. Multipass Estimation Workflows

The requirement of a first pass through the data to estimate
resolution means that the workflow for algorithms of this type
is necessarily different than those of conventional grid-based
algorithms. In the simplest case, this would require that all
data is collected prior to any processing being conducted,
Fig. 10, a workflow only suitable for post-processing of
datasets. In the most general case of randomly distributed
data, there would be no means to determine when all data had
been collected, and therefore no means to determine when a
particular cell was ready for density and resolution estimation,
and thence refinement. Typical data capture methodologies are
not random, however, since they are tied to at most a small
number of capture platforms, and in most cases collect data
consistently within a relatively small geographical area at any
one time. This structure allows us to improve the efficiency of
processing, although it also requires that we allow that only
partial refinement of the grid may be possible at any given
time.
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Fig. 10. Workflow where all data is available before processing begins.
This allows for a simple two-pass system with a single resolution estimation
component, although repeat processing might be required to adjust the
resolution estimates or to re-CUBE the data to resolve signal-to-noise issues
in the data.

A typical data capture methodology, for example, is the
launch/mothership model where a number of hydrographic
launches capture data within a local area during the day
and return to a mothership at night to unload and process
the data ready for the next day. This model can be readily
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Fig. 11. Workflow where data becomes available in small chunks over
an extended period of time. Spatial coherence of typical data collection
methodologies mean that a limited amount of re-processing will be required
each day, typically on the edges of the current coverage area.

accommodated in a workflow, Fig. 11, since in most cases the
goal is that the area of coverage of each day’s data should
be considered “complete” at the end of the day. Since the
coverage is simple to track, the meta-algorithm monitoring
refinement can easily determine which cells have been modi-
fied and therefore require (re-)refinement. We expect that there
would be some occasions where some cells would have to be
revisited, for example on the edges of the extant survey area
being re-covered on the next day, or if the current coverage was
considered inadequate. Since each cell is independent of the
others with respect to the refined grid, however, local effects
remain local and easy to track, with limited recomputation of
fine scale resolution estimates.

A more complex situation is implementing an algorithm
such as CUBE in real time. The estimation algorithm itself
was designed to be a real time-capable system, meaning that
it can start to generate estimates of depth without having
all of the data available, and then refine those estimates as
more data is observed. The requirement for a preliminary pass
through the data makes this more complex, but a potential
workflow is sketched in Fig. 12. Here, suitable buffering is
used to capture sufficient data to allow for estimation, and
stability monitoring is used to determine when it is probably
safe to trigger a refinement and start fine scale estimation. Such
stability monitoring could be accomplished by observing that
no data had been added to a cell for some significant time
(e.g., by looking at how much data had been added to the
system as a whole since the last data point added to the cell)
or by looking for consistency in the estimates of effective area
within the cell as data is being added. The burdens of data
indexing and re-computation make this a potentially complex,
although possible, meta-algorithm to implement.

There is a hidden benefit in the requirement for a first pass
through the data. Since the CUBE algorithm does not require
any a priori setup to generate depth estimates, if we co-
locate a CUBE estimation node with the center of each super
grid cell, we can estimate an approximate depth associated
with each cell. Although these estimates will not be useful
for hydrographic purposes, they do provide valuable aiding
information, for example in estimating slope, determining
areas of particular depth complexity, or determining likely
bounds for egregious blunder detection and remediation, if
required. These estimates of depth may also be used to provide
aiding information in the data density estimation problem,
since an approximate estimate of density can be constructed
purely from depth given some appropriate assumptions about
the collection system and typical survey methodologies.

III. ALGORITHM IMPLEMENTATION

A. Memory Management

Efficient memory management is an essential component
of algorithms of this kind. We take a fairly conventional tile-
based approach to management of a large computational data
structure, since we expect that it will always be the case
that the whole data structure will not be able to fit into
core memory. Logically, our approach here uses a low-level
memory map-based management layer to abstract the system-
specific requirements in a type-safe manner, and provides a
middleware layer to proxy high level requests for memory
management of a particular data type within a tile. The
middleware layer also handles splitting the data structures
across multiple files, if required, and to provide for virtual ad-
dress space management, demand paging of persistent storage,
and least-recently-used cache replacement. The management
system also provides a global memory manager that monitors
the composite memory footprint of the whole system, and
triggers requests for middleware managers to unload mapped
resources if required in order for new objects to be constructed.
The structure is designed to ensure that mapping requests are
deferred as long as possible, and to minimize overhead when
the mapping has already happened.

The principal data structures used in the algorithm are
an object to accumulate the statistics associated with the
resolution estimation sub-algorithm, and an object to represent
the state required for a CUBE estimate node. The former is
small (generally 92B) and is only required at the level of the
super grid cells, so the memory overhead is small. This is
managed as a single file with 32-bit address space since it only
has to apply to a single tile. This configuration could allow tiles
up to 6832 cells on a side, or perhaps 50–200 km wide (total
area ≈ 730 − 11, 662 nm2) for practical cell sizes in shallow
water (and larger areas in deeper water), and is therefore not
expected to be a limiting factor for implementations.

The data structure for a CUBE node consists of a core
component of mc = 24 B/node, a data queue with elements
of mq = 8 B/elements/node and typical lengths of Q = 1 −
11 elements for 8–88 B/node, and a collection of zero or more
hypotheses of depth for mh = 40 B/hypothesis/node. The core
and queue data structures are fixed at construction, but the
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Fig. 13. Structure of the persistent files used for memory management. Each
tile maintains one cell file, and one or more file-groups for the CUBE nodes,
which consists of a file each for core data structures, queues and hypotheses.

number of hypotheses associated with a node is monotone
increasing with data. The three data structures are mapped in
individual files to improve the efficiency of new hypothesis
creation, but are handled as a file-group with linear indexing
within the group, so that all of the components are mapped at
the same time, Fig. 13. Core and queue data structures for the
same node have the same index number in a 32-bit space, and
the core data structure contains the index within the hypothesis
file for its first hypothesis; each hypothesis contains the index
for the next, forming a singly-linked list. Hypothesis indices
are also 32-bit integers, but the file is mapped in a 32-bit
address space, so at most ≈ 108 hypotheses could be supported
per file and other limits generally reduce this even further.

Depending on the finest refinement resolution allowed by
the user (typically 0.25–0.5 m), each tile may require more
CUBE nodes than may fit into a single 32-bit address space,
and hence into a single file; in order to preserve linear indexing
we require that all the nodes associated with a single request
appear in the same file-group. In addition, we do not know
a priori how many hypotheses will be required for any node,
and it is a requirement for efficient implementation that all

hypotheses associated with a node occur within a single file-
group. These constraints require that the middleware memory
manager split the requests for CUBE nodes among multiple
file-groups, generating new files automatically where there
is insufficient space for the expected number of nodes or
hypotheses within the current file-group. We implement this
by splitting the uniform 32-bit index space into a b-bit file-
group number and a (32− b)-bit index within the file-group.
Including the CUBE nodes at the super grid cell centers, if we
assume that in the worst case each cell will be refined to the
finest possible resolution, rmax, we will require

N = D2
0(1 + dR/rmaxe2) nodes (15)

per tile. (We assume that each tile is square with D0 cells on
a side.) We require a single value to represent “not valid” in
both parts of the index, and therefore we can address at most

Nmax = (2b − 1)
(
232−b − 1−max

{
D2

0, dR/rmaxe2
})

(16)

in all file-groups within one tile in the worst case. (We have to
allow that we might lose up to max

{
D2

0, dR/rmaxe2
}

indices
at the end of each file-group due to the requirement that all
nodes from one request are in one file-group.) We therefore
require Nmax < N or that

D0 ≤

√
(2b − 1)(232−b − 1−max {D2

0, dR/rmaxe2})
1 + dR/rmaxe2

(17)

Assume the value of b is such that this equation has a solution
D0 ∈ R, i.e., 232−b − 1 ≥ max

{
D2

0, dR/rmaxe2
}

. This
necessarily implies 232−b − 1 ≥ dR/rmaxe2 and therefore that
the solution to (17) depends on D0, but that the solution only
exists if

232−b − 1 ≥ dR/rmaxe2 (18)

⇒ b ≤ 32− log2(dR/rmaxe2 + 1) (19)

It is clear that if the solution exists, it only exists for D0 >
dR/rmaxe, and therefore (after some simplification), we can
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Fig. 14. Example of maximum tile sizes,D0, in one dimension for refinement
ratios dR/rmaxe ∈ [20, 200], assuming no other constraints. Increasing
refinement ratios generally reduce the maximum size of tile that can be
accommodated, although the effect is not expected to be as large in practice
due to other limits on allowable bit distribution within the file indices.

satisfy (17) if

D0 ≤

√
(2b − 1)(232−b − 1)

2b + dR/rmaxe2
(20)

and therefore guarantee that, given the user-defined refinement
ratio dR/rmaxe, the tiles are sized such as to avoid the potential
for index exhaustion, Fig. 14.

To establish a lower limit on b, note that the expected size
of a node is mn = mc + mqQ + mhE[nh] for the mean
number of hypotheses, nh. If we assume that conditions are
just right, a file-group could contain 232−b − 1 of them, so
that the total size of the virtual memory map for a file-group
is S = mn(232−b − 1) B/file-group. The worst case for the
number of file-groups that need to be mapped simultaneously
is generally when data occurs on the corner of four tiles, when
we will need to have at least four, and more likely eight file-
groups mapped simultaneously to avoid cache-swapping. We
also require a ninth file-group space to support load-before-
delete semantics, and therefore require 9mn(232−b−1) < 232

to successfully place all of the file-groups in a single 32-bit
virtual memory map. Consequently, we require

b > 32− log2

(
232

9mn
+ 1

)
(21)

or, given that 232/(9mn)� 1,

b > log2(9mn) ≈ 3.17 + log2mn. (22)

For the current configuration mn = 212 B (Q = 11, E(nh) =
2.5), giving b > 10.90 bits irrespective of other parameters.

Configuration of the indexing, then, is a matter of ensuring
that the maximum and minimum limits on the index partition

point are satisfied. That is, we require

32− log2

(
232

9mn
+ 1

)
< b < 32− log2(dR/rmaxe2+1) (23)

to satisfy both requirements. Clearly, we require

32− log2(dR/rmaxe2 + 1) ≥ 32− log2

(
232

9mn
+ 1

)
(24)

⇒ dR/rmaxe ≤

√
232

9mn
(25)

or dR/rmaxe < 1500 with mn = 212 B. For a fairly typ-
ically hydrographic choice of R = 30 m, rmax = 0.25 m,
dR/rmaxe = 120, and for a slightly more extreme case of
R = 50 m, rmax = 0.10 m, dR/rmaxe = 500; it is therefore
unlikely that most refinement scenarios will have difficulties in
achieving a stable configuration, and in most cases we expect
that there will be some range of index partition schemes that
could be chosen. Note of course that the lower limit is a
consequence of choosing a 32-bit memory model. If required,
we could readily adopt a 64-bit memory model (at modest
runtime costs), which would result in no effective lower limit,
and provide access to larger tile sizes.

The sizes of tiles in the stable zone range from 319–
1324 cells at b = 11 bits, for refinement ratios in the range
[20, 200]. For the scenario previously, then, we might expect
a tile of ≈ 510 cells (≈ 15.3 km) on a side, and for a more
aggressive refinement of R = 20 m, rmax = 0.1 m, we might
expect ≈ 319 cells (≈ 6.4 km). It is therefore likely that
any reasonable surveys will contain only a few active tiles,
and since tiles are indexed by a 32-bit signed integer, the
maximum addressable area within the data structure is many
orders of magnitude larger than the circumference of the earth.
Consequently the proposed data structure can readily represent
arbitrary sized pieces of the surface of the earth within a single
consistent data structure.

B. Global Grid Management

Any gridded data representation requires that we establish a
local coordinate frame indexed by the row-column indices of
the grid, and make a connection back to an absolute coordinate
frame with respect to a suitable datum. Often this is done by
defining a fixed bounding box with known georeference offset
with respect to the absolute coordinate frame, usually because
it is simpler to code algorithms with a fixed domain of support.

The combination of tiled data management, large address-
able domain and commit-delayed resource allocation imple-
mented here mean that this simplification is not required.
Instead, we define a priori the relationship between the tile lo-
cations and the local projected coordinate frame so that the tile
at (u, v) has projected coverage of {[u, u+1)×[v, v+1)}D0R,
and all tiles are square with area D2

0R
2 m2. This global grid

thus requires no user-defined bounding box or coordinate
frame, and can be established without reference to the data.

We cannot in general construct all portions of such a repre-
sentation, and in any case would likely prefer not to do so due
to the distortions that would occur in outlying areas from any
reasonable projection. In almost all cases, however, this will
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be unnecessary. The nature of data collection means that most
surveys are conducted within a small, geographically coherent
region, and therefore at most a small number of physically
close tiles will become active in the course of data ingestion.
We therefore monitor the tiles becoming active and maintain
a persistent estimate of a rectangular bounding box on the
active tiles as data is added. The rectangular bounding box is
wasteful in the sense that depending on the orientation of the
data collection to the primary axes of the projected coordinate
frame there may be many tiles in the bounding box that are
not actually active. Careful resource allocation, in particular
delaying the commitment of resources until data availability
is confirmed, minimizes this overhead. These principles are
also applied at the tile level, so that unused “edge” space that
derives from the relationship of the globally defined tile frame
to the data position consumes minimal resources. This empty
space can be readily detected and trimmed from the output data
estimates, at least at the level of the low-resolution cells, due to
the simple hierarchical relationship of the refined CUBE node
grids within the super grid cells. Sub-cell trimming would be
more difficult and computationally expensive, but with suitably
sized super grid cells we expect the overhead to be sufficiently
small to make this unnecessary.

C. Modularity and Extension

We intend the implementation of the estimator to be as
modular as possible, so that it may be extended with as little
disruption as possible. Object-oriented design that breaks the
problem down to the main piecewise-variable resolution grid,
a single tile within that grid, and a refined grid within one
cell of that tile provides encapsulation of methods as might
be expected. We have also established a common abstract
interface for CUBE disambiguation methods, and another for
resolution determination methods to allow new algorithms to
be added with no other changes to the core code. All resolution
computation sub-classes inherit the ability to map resolution
(Fig. 5) from the base class.

The fine scale estimator interface is currently fixed, since we
expect in almost all cases to use CUBE. Since the estimator is
implemented in its own object, however, and has an associated
memory manager that is derived from an abstract base class,
it would be possible to re-base the estimator and have higher
levels of the algorithm use the abstract interface instead. This
would allow for run-time selection of different algorithms,
as long as they supported the same basic geospatial data
organization. We have refrained from doing so currently only
due to efficiency concerns.

D. Client-Server Network Protocol

Code built in a research environment is typically designed
to illustrate the concept of the algorithm being demonstrated,
and is generally not required to be either efficient or stable
enough for general use. In the hydrographic context, however,
it is perhaps a legitimate question to ask whether it should.
That is: if the algorithm is going to be used in the field to
process data with inevitable safety of navigation concerns, how
do we otherwise demonstrate that the algorithm implemented

really is the algorithm that was demonstrated (and tested) at
the research level?

A simple expedient would be to have the research code
used for the field implementation, but the skill-set of most
researchers is generally not the same as software engineers
writing commercially-stable code, and although researchers
may pay close attention to the science, it would be unusual
for their code to be entirely supportable. At the same time,
effort expended on developing code that addresses only im-
plementation details might be considered wasted: if it must
be re-implemented anyway, why bother? We would argue
that, like it or not, research code should have a role in field
implementations, and that the effort is not wasted—and on the
contrary is actually required—for two primary reasons.

First, unless we consider the details of how the system might
be implemented for field use we are unlikely to flush out any
design problems that would adversely affect the efficiency of
the algorithm. For example, if we expect the algorithm to be
implemented on a multi-threaded CPU, or in a multi-processor
compute cluster but do not consider issues of code factoriza-
tion that minimize interaction between threads/processes and
limits inter-process communication as much as possible, it
will likely be difficult to effectively retrofit the abilities and
maintain efficiency. Although we might conclude these in the
abstract, only an implementation (even if it is not ultimately
used) is likely to actually select appropriate algorithms.

Second, unless we approach a version of the algorithm that
could be used as a field-ready implementation, we are unlikely
to be able to guarantee traceability of the algorithm in the
future without really extensive effort and collaboration with
implementation partners. In effect, it is more efficient to work
on the implementation details only once.

The extent to which this model can be used in practice is
still to be determined. However, we have used the develop-
ment here to consider the question in a practical example,
designing in addition to the core estimator libraries a client-
server architecture that allows clients to access computational
resources in a network-aware manner, Fig. 15. The client-
server pair implement an example of the command design
pattern [20], where the objects that represent commands (e.g.,
construct/load/save a grid, add data, refine the grid, extract
results) are constructed at the client side, passed across the
network, reconstituted at the server side and then queued
for execution when resources become available; acknowledge-
ments are returned to ensure reliable transport. When results
become available they are stored internally at the server and
an alert message is sent back to the client, triggering optional
user-defined actions. The whole process is event driven so that
it better maps to modern user interface design, and is made
opaque to the client application through a local stub-object
on which the user interface code calls local methods. Both
client and server are multi-threaded, which allows for staged
resource commitment at the server: commands can be executed
at reception, immediately on inspection at the executive, or in
parallel on the compute thread pool, as is appropriate for the
nature of the command and expected execution duration. The
server keeps statistics of execution time, memory committed,
etc. to allow for better real time adjustment of resources.
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Fig. 15. Client-server architecture to support the CHRT estimation algorithm. The client interface provides an object on which the user code calls local
methods for service; these are translated into network packets, transferred to the server, and executed at some later time either in the executive module, or in
the computation thread pool. When a command completes, the server sends an alert to the client, triggering a user-defined action; results are buffered at the
server until requested.

This implementation structure has a number of benefits.
First, it exploits and benefits from modern processor archi-
tectures that support multi- and hyper-threading. Second, the
separation of client and server at the network protocol means
that the same client interface can be maintained across multiple
different server back-end implementations, so long as they
implement the protocol correctly. It is therefore possible to
have the same client interact with a local server, remote
computer, or computational cluster, Fig. 16, with no client
modification. In fact, the current implementation supports a
broadcast discovery of local network computational resources
and can select the resource most appropriate for its needs based
on metrics provided by the server in its response packet. Third,
a standard network protocol mandated by the code means
that implementations may choose to support just the client,
the server, or both, depending on needs and (commercial)
goals. By the same token, users may choose to select a client
application because of its user interface, and a separate server
application because of its efficiency or supported hardware,
rather than be tied to a tightly coupled implementation from
a single vendor. Finally, and perhaps most importantly, es-
tablishing a network protocol means that it is possible to
observe the operation of both sides of the algorithm without
requiring any details of the internal implementation, and it
is possible to exercise the implementation directly and in
isolation. These capabilities allow for external debugging and
algorithm verification, even after field deployment.

The arguments for this approach to implementation testing

are, unfortunately, somewhat circular. That is, we assume that
the research code may not necessarily be sufficiently robust
for field use and might need to be modified; modified code,
however, may not necessarily implement the same algorithm
as the research code, and might be difficult to verify. There
are several possible solutions to this, including obtaining third-
party expertise within the research environment to “industri-
alize” the code-base before field use, and partnering with one
or more implementation entities to reach a common consensus
on the code-base as part of the later stages of development.
Which is likely to be more successful has yet to be determined.

IV. CONCLUSIONS

We have outlined the requirement for, and the design of,
a piecewise-variable resolution bathymetric estimator, and
considered some of the questions inherent in implementation
of same. The core observation here is that the data structure
should be optimized for computational efficiency, which here
means controlling the cost per sounding processed, but must
still support resolution changes at arbitrary resolutions as
indicated by the data itself. We approach the problem with a
hierarchically nested grid scheme where initially coarse cells
are refined to the appropriate resolution supportable by the
data based on an initial estimate of data density extracted
from the observations. The data structure is therefore a data-
driven union of disjoint locally-regular grids, allowing variable
resolution while maintaining computational efficiency. Use of
locally-regular grids also allows us to use common robust
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(a) Local implementation model for client
and server on the same computer.
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(b) Remote implementation model for server on a separate computer to
offload computational effort.
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(c) High-performance implementation model for a compute cluster with separate aggregator.

Fig. 16. Possible models for client-server implementation. The local model, (a), is appropriate for stand-alone computers, laptops, etc.; the remote model,
(b), allows for one machine to offload the computational costs (for example where it is also responsible for data capture); the high-performance model, (c), is
appropriate for post-capture computations in a shared environment and has the advantage that it allows for optimization of I/O bandwidth and computational
load through a dedicated connection to the data store. Note in all cases that the application interface to CHRT at the user’s local machine is identical: to the
user, the back-end implementation can be transparently changed, and indeed could be changed dynamically in real time if required.

estimation algorithms designed for this configuration; in this
case, we use a re-implemented version of CUBE. The algorithm
is supported by a network-aware client-server implementation
that is multi-threaded in both control and processing.

Variable resolution estimation comes at a cost. Apart from
the slightly increased complexity of the data structure, we
require a full first pass through the data to determine the data
density and therefore the appropriate estimation resolution.
Although we simultaneously make a low-resolution estimation
of depth to assist the algorithm, this is a non-trivial cost. We
are convinced that the benefits justify the expense, however,
and it is hard to imagine how an algorithm of this type could
be made data adaptive without a similar effect.

Estimation of data density is theoretically simple, but is
made more complex by edge cases where cells are only par-
tially filled by the data, or where only a few data observations
are available. This can be exacerbated by choice of cell size
and wide dynamic depth range (or equivalently data density)
within the survey area. Estimation of effective area within a
cell, combined with multi-scale analysis of the data density
estimates, can tackle these problems, although we are actively

pursing alternative techniques and co-estimation strategies to
robustify the estimates.

We have hypothesized that the piecewise-variable resolution
grid is sufficient representation for the sort of data that we typ-
ically have to process in the hydrographic context, but accept
that this may not be the case everywhere. The independence
of the file scale refinements of the cells, however, means that
more complex but flexible representations could be substituted
where required without changing the fundamental structure of
the algorithm. How often this is likely to be necessary is an
interesting, although still open, question.

The proposed algorithm’s use of a two pass approach to
data processing will require some reconsideration of typical
data workflows. We have shown, however, that the most com-
mon data capture and processing scenarios can be relatively
readily incorporated, and real time processing is still possible,
although the control meta-algorithm might prove complex to
implement.

Research and development of these sorts of algorithms
necessarily involves some consideration of the implementation
details of the algorithm. Serious consideration of these prob-
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lems, however, has traditionally been deferred until after the
research phase has completed, and are often passed along to
the field implementation stage. We believe, however, that they
may need to be tackled at an earlier stage of the process if the
algorithms being developed are to avoid later difficulties due
to design decisions that ignore the eventual implementation.
A more stable research code-base, and such features as a
client-server decoupling of control interface and computational
structure, could result in better traceability of algorithms from
research to field and ease all stages of testing, but likely
requires resources in excess of those typically available at
the research stage. It is possible therefore that some form
of robustified research code-base might be a better approach
for field implementation, although this also implies questions
of code-sharing, cooperative development and stability that
are themselves challenging. The optimal interaction pattern
remains, therefore, an open—and very interesting—question.
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