
University of New Hampshire
University of New Hampshire Scholars' Repository

Center for Coastal and Ocean Mapping Center for Coastal and Ocean Mapping

6-3-2013

Characterization of optical communication in a
leader-follower unmanned underwater vehicle
formation
Firat Eren
University of New Hampshire, Durham, Firat.Eren@unh.edu

Shachak Pe'eri
University of New Hampshire, Durham, shachak.peeri@unh.edu

May-Win Thein
University of New Hampshire, Durham

Follow this and additional works at: https://scholars.unh.edu/ccom

Part of the Computer Sciences Commons, and the Oceanography and Atmospheric Sciences and
Meteorology Commons

This Conference Proceeding is brought to you for free and open access by the Center for Coastal and Ocean Mapping at University of New Hampshire
Scholars' Repository. It has been accepted for inclusion in Center for Coastal and Ocean Mapping by an authorized administrator of University of New
Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

Recommended Citation
F. Eren, S. Pe’eri, and M.-W. Thein, "Characterization of optical communication in a leader-follower unmanned underwater vehicle
formation," in Ocean Sensing and Monitoring V, SPIE-Intl Soc Optical Eng, 2013.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNH Scholars' Repository

https://core.ac.uk/display/72054226?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fccom%2F861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/ccom?utm_source=scholars.unh.edu%2Fccom%2F861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/ccom_home?utm_source=scholars.unh.edu%2Fccom%2F861&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/ccom?utm_source=scholars.unh.edu%2Fccom%2F861&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholars.unh.edu%2Fccom%2F861&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=scholars.unh.edu%2Fccom%2F861&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=scholars.unh.edu%2Fccom%2F861&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu


1 
 

Characterization of optical communication in a leader-follower 
unmanned underwater vehicle formation 

Firat Eren1, Shachak Pe’eri2 and May-Win Thein1 

1 Department of Mechanical Engineering, University of New Hampshire, Durham, NH 03824 
2 Center for Coastal and Ocean Mapping, University of New Hampshire, Durham, NH 03824 

 
ABSTRACT 

 
As part of theresearchto development an optical communication design of a leader-follower formation between 
unmanned underwater vehicles (UUVs), this paper presents light field characterization and design configuration of 
the hardware required to allow the use of distance detection between UUVs. The studyspecifically is targeting 
communication between remotely operated vehicles (ROVs). As an initial step in this study, the light field produced 
from a light source mounted on the leader UUV was empirically characterized and modeled. Based on the light field 
measurements, a photo-detector array for the follower UUV was designed. Evaluation of the communication 
algorithms to monitor the UUV’s motion was conducted through underwater experiments in the Ocean Engineering 
Laboratory at the University of New Hampshire. The optimal spectral range was determined based on the 
calculation of the diffuse attenuation coefficients by using two different light sources and a spectrometer. The range 
between the leader and the follower vehicles for a specific water type was determined. In addition, the array design 
and the communication algorithms were modified according to the results from the light field. 

Key words:Unmanned underwater vehicle, optical communication, light attenuation, water clarity, 
simulation 

 
1. INTRODUCTION 

 
Unmanned underwater vehicles (UUVs) play a major role in deep oceanic applications, such as underwater pipeline 
and cable inspection, bathymetry exploration as well as in military applications such as mine detection, harbor 
monitoring and anti-submarine warfare[1-5]. These applications mostly take place in deep sea environment and 
include heavy duty tasks that may take long time periods and therefore, are not suitable to be performed by divers. 
The use of multiple UUVs simultaneously for these types of tasks that can be controlled by one operator has been a 
research interest as a cost-efficient solution for large-scale surveys with minimum time. The focus of this paper is 
optical communication between multiple UUVs in a specified formation, such as a leader-follower formation. In 
typical UUV leader-follower formation systems such as [6-8] utilize acousticsas the main method of communication 
between the vehicles. However, hardware (e.g., acoustic transducers) can be very costly and are also limited by the 
logistics required in modifying the leader UUV [9]. Optical communication modules can provide an alternative cost-
efficient approach. In this research, we propose an optical communication link between the UUVs to form a 
formation. UUVs already use light sources to illuminate the seafloor and in this paper this hardware is used as a 
beacon for aligning follower UUVs.  

 
Preliminary work for this study included the development of a control design for distance detection of UUV 
usingoptical sensor feedback in a Leader-Follower formation [10]. The distance detection algorithms were designed 
to detect translational motion above water utilizing a beam of light for guidance. The light field of the beam was 
modeled usinga Gaussian function as a first-order approximation. This light field model was integrated into non-
linear UUV equations of motion for simulation to regulate the distance between the leader and the follower vehicles 
to a specified reference value. A prototype design of a photo-detector array consisting of photodiodes was 
constructed and tested above water. However, before an array can be mounted on the bow of the follower UUV, a 
better understanding of the underwater light is needed. The proposed system is based on detecting the relative light 
intensity changes on the photodiodes in the array. The size of the array strictly depends on the size of the ROV. This 
paper provides an overview on the experiments and simulations conducted to adjust the control design for 
underwater conditions.Underwater light is attenuated due to the optical characteristics of the water, which are 
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constantly changing and are not uniformly distributed.  As a result, applying distance detection algorithms 
underwateradds complexity and reduces operational ranges. Accordingly, the operation distance between the UUVs 
was limited to a range between 4.5 to 8.5 m for best performance. Experimental work in this study was performed in 
the Tow and Wave Tank at the Ocean Engineering facilities, University of New Hampshire (UNH). 

 
2. THEORETICAL BACKGROUND 

The basic concept for optical communication in this study is based on the relative intensity measured between the 
detectors within the photo-detector array mounted on the follower ROV. In addition to the beam pattern produced by 
the light source, the intensity of light underwater follows two basic concepts in ocean optics [11]:The inverse square 
law and Beer-Lambert law.  

2.1 Beam pattern 

The light field emitted from a light source can be modeled with different mathematical functions. In addition, there 
are a variety of light sources that can be used underwater that differ in their spectral irradiance (e.g., halogen, 
tungsten, and metal-halide). The spectral characteristics of the light source are an important issue that affects the 
illumination range, detector type and the detection algorithms. As in the case of the light sources, the photo-
detectors also have a spectral width in which their sensitivity is at a maximum value. By determining the spectral 
characteristics of the light source, it is possible to select the detector and filters for the photodetector array. We 
assume that the beam pattern can be modeled using a Gaussian function. This representation is valid for a single 
point light source. The Gaussian model used in this study can be representedasfollows[12]:  

𝐼𝐼(𝜃𝜃) = 𝐴𝐴 ∗ exp⁡(−𝐵𝐵 ∗ 𝜃𝜃2)                                                                      (1) 

In Equation 1, 𝐼𝐼  is the intensity at a polar angle, 𝜃𝜃,where the origin of the coordinate system is centered around the 
beam direction of the light source. A andB are constants that describe the Gaussian amplitude and width 
respectively.  

 

2.2 Inverse square law 

According to the inverse square law, the intensity of the light is inversely proportional to the inverse square of the 
distance: 

𝐼𝐼 = 𝑆𝑆
4𝜋𝜋𝑟𝑟2                                                                  (2) 

where𝐼𝐼 is the intensity at r distance away from the source and S is the light field intensity at the surface of the 
sphere. Thus, the ratio of the light intensities at two different locations at the same axis can be expressed in Equation 
3. 
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The light field S generated by a light source is assumed to show uniform illumination characteristics in all 
directions.In addition, the light intensity is such that the light source is assumed to be a point source and that its 
intensity is not absorbed by the medium. It should also be noted that although the inverse square law is the dominant 
concept in the development of control algorithms, for this research this is not the only dominant optical mechanism 
that affects the light passingin water. As the light travelsthrough water, its rays also get absorbed by the medium 
according to Beer-Lambert law. 

2.3 Beer-Lambert law 

Beer-Lambertlaw states that radiance at an optical path length𝑙𝑙  in a medium decreases exponentially depending on 
the optical length,𝑙𝑙, the angle of incidence, 𝜃𝜃, and the attenuation coefficient, 𝐾𝐾 [13]:Beer-Lambertlaw describes the 
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light absorption in a medium under the assumption that an absorbing, source free medium is homogeneous and 
scattering is not significant. When the light travels through a medium, its energy is absorbed exponentially[13].  

𝐿𝐿�𝜁𝜁, 𝜉𝜉�� = 𝐿𝐿(0, 𝜉𝜉�)exp⁡�− 𝜁𝜁
𝜇𝜇
�                                                                      (4) 

where𝐿𝐿denotesthe radiance, 𝜁𝜁  the optical depth, 𝜉𝜉�  the direction vector, and 𝜇𝜇denotes the light distribution as a 
function of angle𝜃𝜃 such that: 

𝜇𝜇 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                                                                                              (5) 

Defining a quantity l, (i.e. the optical path length in direction μ), 

𝑑𝑑𝑑𝑑 ≡ 𝑑𝑑𝑑𝑑
𝜇𝜇

= 𝐾𝐾(𝑧𝑧)𝑑𝑑𝑑𝑑
𝜇𝜇

                                                                                      (6) 

where𝐾𝐾(𝑧𝑧) is the total beam attenuation coefficient and 𝑑𝑑𝑑𝑑 is the geometric depth. 

 

In this study, the experimental setup is built such that the incidence angle 𝜃𝜃 is zero. As a result, combination of 
Equations 3 and 5 results in the Equation 6. 

𝐿𝐿�𝜁𝜁, 𝜉𝜉�� = 𝐿𝐿(0, 𝜉𝜉�)exp⁡(−𝐾𝐾(𝑧𝑧)𝑑𝑑𝑑𝑑)                                                                     (7) 

 
 

3. EXPERIMENTAL SETUP 

Experimental work in this study was performed in order to evaluate a proposed hardware design which was based on 
ocean opticsand the hardware restrictions for a given ROV system. The experiments included beam diagnostics, 
spectral analysis and intensity measurements from several light sources.These experiments were conducted in the 
Tow and Wave Tank at theOcean Engineering facilities, University of New Hampshire(UNH). The UNH tow tank 
has a tow carriage that moves on rails. Alight source wasmounted on a rigid frame to the wall in the tow tank and 
alight detector wasplaced underwater connected to a tow carriage(Figure 1). This experimental setup is based on the 
design configured by [11]. To characterize the interaction between the light source and the light array a 50 Watt 
halogen lamp powered by 12V power source is used. For the detector unit, a spectrometer (Ocean Optics Jaz)was 
used to characterize the underwater light field. These empirical measurements were used to adjust the detection 
algorithms and will be also used in the design of the photo-detector array.The light source in the tank simulates a 
light source that is mounted on the crest of the leader ROV. The design of the photo-detector array simulates the 
array that will be mounted on the bow of the follower ROV. The photo-detector array design depends on the size of 
the ROVand the light field produced by the light source mounted on the leader ROV. In this case, the size for an 
optical detector module was kept at 0.4m, which is the width dimension of the UNHROV as a test platform, a small 
observation class ROV which will be used as a future test platform. 
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Figure 1: Experimental schematic of UNH tow tank [11] 

Translational experiments in 1-D and 3-D (i.e., motion along and perpendicular to the center beam of the light 
source) were conducted in air and in water. The goals for the 1-D experiments were to characterize the spectral 
properties of the water and to determine the best spectral ranges for optical communication between the ROVs. In 
the underwater experiment, a submerged fiber optic cable with a collimator was connected to the spectrometer and 
was vertically aligned based on the peak value of radiance emitted from the light source. This alignment is 
considered the illumination axis (z-axis). The radiance emitted from the light source through the water column was 
empirically measured by the spectrometer at distances ranging from 4m to 8m at 1 m increments. It is important to 
note that the distances were measured from the tow carriage to the wall of the tank and an additional 0.5m offset 
distance was added in the calculation to take into account the offset mounting of the light and spectrometer with 
respect to the wall of the tank and the tow carriage. The spectrometer was configured to average 40 samples with 
anintegration time of 15 milliseconds. A 2° collimator was used to restrict the field of view collected by the 
spectrometer and to avoid the collection of stray light rays reflecting off the tank walls or from the water surface. 

The experimental setup in air was very similar, where the spectrometer was mounted on a tripod and aligned to the 
peak value of radiance,the illumination axis (z-axis). Because suchlight sources produce heat at high temperatures 
(up to 700 C) that can damage the waterproof fixing, the experimental setup in air required thatthelight source be 
submerged in an aquarium during operation. Similar to theunderwater experiments, the same distances between the 
light source and the spectrometer, including the offsets, were maintained.  

The 3-D translational underwater experiments utilized the same setup as that of the underwater 1-D 
experimentswhere additional radiance measurements were conducted along a normal axis (x-axis) that is located on 
a plane normal to the illumination axis (z-axis).The 3-D translational experiment maintainedthe same distances 
along the  illumination axis between the light source and the spectrometer (i.e., 4 m to 8 m), where additional 
measurements were conducted  along the normal axis at 0.1 m increments ranging from 0 m to 1 m. As mentioned in 
Section 2, it isassumed that the light source is producing a beam pattern that can be modeled using a Gaussian 
function. Accordingly, we assume that the radiance measurements along the normal axis are symmetric in all 
directions. The experimental setups for 3-D underwater experiments can be seen in Figure 2. 
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Figure 2: Experimental Setup for translational 3-D underwater experiments. (Left image) detector unit that includes a 
submerged fiber optic cable with a collimator that was connected to the spectrometer. (Right image) transmitting unit 

mounted to the wall of the tank.  
 

4. RESULTS 

Light attenuation underwater causes a significant loss of radiant energy over increasing distances. The diffuse 
attenuation coefficient, 𝐾𝐾, is used as a parameter to calculate the decreased amount of energy from the light source 
to the target. In this study, the diffuse attenuation coefficient is used to determine the spectral range of the light 
source and determine the photo-detector types that can be utilized in the array. For successful optical communication 
up to ranges of 9 m, the ideal spectral ranges should be maintained such that the diffuse attenuation coefficient 
values are smaller than 0.1m-1. At this distance, the signal loses about half its energy. As a first-order approximation, 
the diffuse attenuation coefficient values are assumed constant throughout the water column. This assumption 
reduces the number of parameters used in the distance detection algorithms and the processing time used in future 
controls applications. In the study, the diffuse attenuation coefficient values are calculated for a 50W light source. In 
Figure 3, the percentage loss curve for various distances is shown.  

Diffuse attenuation was calculated based on Equation 6. Measurements taken at a specific distance in water and in 
air are compared in order to account for the inverse square law. The light that travels in air also undergoes diffuse 
attenuation but it is ignored in this case. These values suggest that the UNH wave tank, where the experiments were 
conducted, contains algae and dissolved matter. The study results suggest that 500-550 nm band-pass filters in the 
range shouldbe used in the detector unit to provide better performance of the distance detection algorithms. 
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Figure 3: Percent attenuation graph. This graph shows the light percent attenuation per meter. It is seen that the spectral range 
between 500-550nm undergoes the least attenuation at any given distance. 

 

Based on the light attenuation results, the distance between the leader and the follower vehicles was calculated. The 
experimental results (Figure 4) show that the performance of the algorithms in the UNH water tank is expected to 
decrease after 8.5m. Beyond this range, the light intensity falls into the background noise level (i.e., < 20%). 

 

 

 

Figure 4: The intensity vs. distance plot. The intensity readings are collected between 500-550nm and averaged. In this plot, the 
experimental values are compared with the theoretical. Blue diamonds represent the experimental data and the green triangles 
represent the theoretical calculations from taking the inverse square and Beer-Lambert laws. The readings are normalized. The 

measurement at 4.5m was used as the reference measurement to normalize the intensity.  
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The light profile calculated from the 3-D experiments agrees with the assumption that the pattern of the light beam 
can be described using a 2-D Gaussian fit (Figure 5). Using a 50% intensity decrease as a threshold, the effective 
beam radius from the center (i.e., the illumination axis) is 0.3 m. Another key finding obtained from the 3-D 
experiments, is the dimensions of the light detector array. It can be seen that if the length of the array is kept at 0.6m, 
then different light detector elements can detect the light intensity change, which is useful information for control 
algorithms. It should be stated that the physical characteristics of the photo-detector array such as dimensions and 
the spacing between the array elements strictly depend on beam divergence. 

 

 

Figure 5: Plot of the cross-sectional beam pattern. The measurements were collected from 0 to 1.0m at x-axis and at 4.5m at the 
illumination axis for 50W light source. The measurements between 500-550nm are averaged. 

4. DISCUSSION 

The study results provide valuable environmental information for modifying a photo-detector array design according 
to light field. According to the diffuse attenuation, a 500-550 nm band-pass filter will allow the observation at the 
light field from a single source as a 2-D Gaussian beam pattern. At this spectral range is around 0.1 m-1, the peak 
power of the beam (along the z-axis) will change from 100% to 23% as the array moves away from light from 4.5 m 
to a distance of 8.5 m.The size of the beam pattern is a function of the divergence angle of the beam. In the current 
configuration, the FWHM radius expands from 0.3 m to 0.4 m as the array moves away from light from 4.5 m to a 
distance of 8.5 m. The beam divergence can be modified using reflectors and optic elements in case more acute 
changes in the light field are needed over a shorter distance of 0.4 m, the maximum length of the array.  

During the empirical measurements in the UNH Tow Tank depth, several error sources were identified that limited 
an accurate correlation between the models and its corresponding measurements.These errorsincludedalignment 
errors andmeasurement errors underwater.  Although the frame mounting all the elements was rigid and aligned, the 
internal alignment of the light source and of the detectorsmay not have been aligned perfectly along one axis. As a 
result, the profile measurementsof light along the z-axis and the along the xy-plane might be slightly skewed. 
Another factor is the water turbidity.  An accurate calculation of the water turbidity in a survey site is very 
challenging.  

Therefore, for more accurate distance detection algorithms, water turbidity should be taken into account.The focus 
of the current study emphasized 3-D translational motion. Future work will be towards expanding the research to 
characterize rotational motion. 



8 
 

The study can be also applied in other applications, such as underwater optical communication and docking.  
Underwater optical communication can provide rates of up to 10Mbits over ranges of 100m [14]. Several studies 
have investigated the use of omnidirectional sources and receivers in seafloor observatories as a wireless optical 
communication [15, 16]. Another application is underwater docking by using optical sensors. Currently, studies 
have shown that such an application is possible for docking vessels as far as 10-15 meters for turbid waters and 20-
28 meters in clear waters [17].  

 

5. CONCLUSIONS 

Experimental work in this study was performed in order to evaluate the feasibility of a control design for underwater 
distance detection. The experiments included beam diagnostics, spectral analysis and intensity measurements using a 
50Watt light source. A light source was mounted on a rigid frame to the wall in the tow tank and a light detector was 
placed underwater connected to a tow carriage that can move on rails along the tank. The study shows that a 500-
550 nm band-pass filter will allow the observation of a light field from a single source as a 2-D Gaussian beam 
pattern. In the current configuration, the FWHM radius expands from 0.3 m to 0.4 m as the array moves away from 
light from 4.5 m to a distance of 8.5 m. During the empirical measurements in the UNH Tow Tank depth, alignment 
errors and measurement errors underwater were identified that can limit the performance of the distance detection 
algorithms. In addition, the estimation of water clarity is a key parameter for the current distance detection 
algorithms. The focus of the current study took into account 3-D translational motion. Characterization of rotational 
motion between UUVs is planned in next steps of the research. 
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