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on demarcation of the coastal zone. Of the 95,000 miles of U.S. shoreline, to date only 
two-thirds are mapped and only a small portion were mapped using modern methods 
(Woolard et al., 2003).   
 There is a current need in the United States for efficient and cost effective ways to 
map the coast and near-shore areas (NOAA, 2007). The coastline is in a perpetual state of 
flux. The constant tidal influence interacts with topography and bathymetry to create a 
dynamic margin, and delineations along this margin vary with the stages of tide.  The 
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Abstract 
 

Though the use of airborne lidar bathymetry (ALB) is not new, there
for more reliable results using ALB in defining the shoreline. Previous al
defining the land–water interface have used either the presence of a satura
infrared-channel waveforms, or a ratio between the green-channel, red
infrared-channel waveforms to make a shoreline determination. R
development for both algorithms were applied to older SHOALS-400 l
varies in dynamic range and waveform record length from the curre
1000/3000 lidars. Observations of the red-channel waveforms show a stron
between the waveform and the presence of water. Different waveform char
found from water and land returns (bare earth and vegetation coverage). W
lidar observations from different land and water surfaces and an algorithm
for distinguishing land o

from the 2
OALS-400 lidar system and the NOAA survey in the Isles of Shoals, N

the SHOALS-1000.  The algorithm shows good preliminary results for both
the current SHOALS systems.  
 
Introduction 
 
 The determination of the shoreline plays a major role in coastal 

re the land-water interface is a critical component. Accurate and consis
determinations are necessary for defining federal and state boundaries inc
territorial limits such as the Exclusive Economic Zone (EEZ).  Hydrograp
and coastal management for storm modeling and damage assessment also 
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National Ocean Service (NOS) of NOAA uses data from a 19-year tidal e
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 surveying tool into a shoreline mapping tool. This idea is not novel and was 
suggested in the past by Parker et al. (2001) and Woolard et al. (2003), however reliable 
results require careful interpretation of subtle features in the lidar data. A shoreline 
algorithm was developed based on observations from three generations of Scanning 
Hydrographic Operational Airborne Lidar Survey (SHOALS) lidar systems across the 
coastal profile (from water into the land). Preliminary results using this algorithm are 
presented here. 
 
 
 
 
 
 
 

recordings. 
 Aerial and satellite imagery can be used with modern stereographic
derive digital elevation models (DEM). These DEMs allow for the d
shorelines such as MHW and MLLW (Parker et al., 2001). The limitations o
arise from the variation introduced from individual operator interpretation
the current technique and correlation with the statistical definitions. There
computerization of shoreline determination to combat these inconsisten
2003). The sensor technology used for shoreline mapping is passive im
requires daytime acquisition and optimal weather conditions. As with 
sensors, imagery relies on the collection of signals from the ambient 
therefore dependent on and affected by environmental factors such as haze
illumination conditions (Molander, 2001).  In contrast, active sensors produc
and receive from a remote location (Cracknell and Hayes, 1991). An acti
be designed and tuned for optimum remote sensing making it less sensiti

 lighting levels, although the effectiveness of the active sensor is 
outgoing source level and attenuation through the medium. The limitation
sensors and the need for tide coordination limit the capacity for producing s
(NOAA, 2007).   
 Airborne lidar bathymetry (ALB) is an active sensor that is used f
bathymetry and topography in the coastal area. ALB is an airborne, scanning
that emits infrared and green wavelengths. The ALB technology is being
various groups worldwide in the coastal zone. Some examples of this 
coastline mapping (Graham et al, 1999); rapid military reconna

0); and coastal monitoring and management (Irish, 2000 and Stockdon 
An ongoing survey project of the Joint Airborne Lidar Bathymetry Techn
Expertise (JALBTCX) is using ALB technology (SHOALS-1000 and SH
systems) to map the United States coastline. The project area include
seaboard, Great Lakes, and Hawaiian Islands (Wozencraft, 2007) (Figure 1)
 The authors propose extending ALB capabilities from a bath
topographic
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ng the depths of 
mo ircraft using a 

5). The ALB 
) the natural 
ncy doubling 

t al., 1994). 
 fraction (less 
s the “surface 
refracted into 
es cause it to 
ser beam has 
ed (elastically 
ly due to Mie 

scattering from suspended particulates (Browell, 1977). Inelastic scattering is caused by 
two main processes: the Raman Effect and fluorescence. The first of these processes is 
when the high energy of the laser beam induces vibrational modes of the O-H stretch in 
the liquid water. The energy is re-emitted as photons at a different wavelength than was 
initially emitted by the laser. This effect is called the Raman Effect. The second inelastic 
process occurs when photons are absorbed by phytoplankton pigments found in the water 
column and re-emitted as fluorescence in a wavelength indicative of the host (Exton et 

d planned lidar coverage area by JALBTCX. Th
the coastal zones that were surveyed up to 2006. The green lines are the coastal zones 
t

Figure 1. Current an e red lines are 

Airborne Lidar Bathymetry 
 

ALB is a technique that traditionally has been used for measuri

hat are planned to be surveyed in 2007. 

derately clear, near shore coastal waters and lakes from a low-altitude a
scanning, pulsed laser beam (Hickman and Hogg, 1969; Guenther, 198
systems uses a Nd:YAG laser that emits pulses at two wavelengths: (1
wavelength of the Nd:YAG laser at 1064 nm in the infrared, and (2) freque
of the Nd:YAG laser at 532 nm in the green (Penny et al., 1986; Guenther e

When the green laser pulse strikes the surface of a body of water, a
than 2%) is reflected back into the air and may be sensed by the receiver a
return” (Guenther, 1985). The remaining portion of the green laser pulse is 
the water column, where scattering from entrained microscopic particulat
spread out into a cone of continuously increasing angle. Once the la
efficiently entered the water column, each individual photon may be scatter
or inelastically) or absorbed (Exton et al., 1983). Elastic scattering is main
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al., 1983). The water column backscatter for a 532 nm laser pulse is summarized in figure 
2. 

 
 
 
 
 
 
 
 
 
 
 

 
.0 nm (based 

y commercial 
least two channels to 

ed pulses. Some systems, such as SHOALS use four channels: (1) an 
annel (IR), (2) a green channel for shallow water using an Avalanche Photo 

Dio ultiplier Tube 
).  

LB systems: 
s difference 
nd 3000 Hz, 
d the logging 

-3000 systems. 
different lidar 
 system. Two 
ke Michigan 

les of Shoals, 
errish Island, 

Each study area was divided into land and water using aerial imagery that was 
collected during the time of the survey. The aerial imagery in the study was video data in 
the SHOALS-400 survey and digital images in the SHOALS-1000/3000 surveys. Based 
on aerial imagery, the red-channel waveforms from each lidar system were grouped 
according to land and water coverage. A subdivision of the land waveforms to vegetation 
coverage (grass, schrubs, and trees) or bare earth (sand, rock, asphalt, and concrete) was 
done also using the aerial imagery. This division is based on the possibility that the lidar 

 
 

Figure 2.  Backscattered spectra from natural water sample excited at 532
Exton et al., 1983). 

 
Most bathymetric lidar-waveform research has been conducted b

lidar companies (LADS, SHOALS, HAWK-EYE) that use at 
receive the return
infrared ch

de (APD), (3) a second green channel for deeper water using Photo M
(PMT), and (4) a red channel for receiving Raman-response pulse (RAMAN
  
 
Methodology 
 In this study we investigate red-channel waveforms from three A
SHOALS-400, SHOALS-1000, and SHOALS-3000. The most obviou
between the three systems is their scanning rates (400 Hz, 1000 Hz, a
respectively). Also, the type of digitizer used in the SHOALS-400 system an
procedure is different than in the SHOALS-1000 and SHOALS

The red-channel waveform observations were collected from four 
surveys that represent the three different generations of the SHOALS lidar
USGS lidar surveys were conducted in Lake Tahoe, CA (2000) and La
(2001) using the SHOALS-400 lidar system, one NOAA survey in the Is
NH-ME (2005) using the SHOALS-1000, and one USACE survey around G
ME and Portsmouth Harbor, NH (2005) using the SHOALS-3000 system.  
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pulses may penetrate the vegetation coverage canopy, whereas the bare ea
opaque. The water red-channel waveforms were subdivided into water-
Depth values corresponding to each of the red-channel waveforms were a
the depths determined by the APD channel. The water red-channel wavefo
1.0 m, 1.5 m, 2.0 m, 2.5 m, 3.0 m, 4.0 m, 5.0 m, 6.0 m, and 7.0 m. In dep
than 1 m, the waveforms were divided further according to their wavefor
shallow and extremely shallow waveforms. An average digital va

rth surface is 
depth groups. 
ssigned using 
rm groups are 
ths shallower 
m shape into 

lue (8-bit and 10-bit for 
the SHOALS-400 and the SHOALS-1000/3000 systems, respectively) and a standard 
deviation were calculated for each time bin in the waveform group (Figure 3). 

 

ems that the 
on should be of three types of red-channel waveform groups (“deep”, “shallow”, 

ups (land and 
wat mmarized as 
foll

 

Observations 
According to the observations of red-channel waveforms, it se

divisi
and land), rather than a division into two types of red-channel waveform gro

er). The characteristics of these three groups of red waveforms may be su
ows: 

• “Deep” waters – These waveforms are also known as “basic” r
(Pe’eri and Philpot, 2007). The common characteristic is that the
shape is not water-depth d

ed waveforms 
 waveform’s 

ependent and is the same for each sounding in the same 
e similar. The 
he SHOALS-
S-400 differs 

survey line. The SHOALS-1000 and SHOALS-3000 waveforms ar
basic red-channel SHOALS-400 waveform has the same shape as t
1000/3000 waveforms, but the digital value peak of the SHOAL
from the other two lidar systems.  

• “Shallow” waters – These waveforms have also been called “shallow-water” and 
7). The shape 
 of a second 
served in the 
forms. This 

 2005).  

“extremely shallow-water” red waveforms (Pe’eri and Philpot, 200
of these waveforms is water-depth dependent. Also, the generation
peak that shifts to earlier time bins as the depth decreases was ob
SHOALS-1000/3000 and the SHOALS-400 Lake Michigan wave
second peak is attributed to fluorescence contribution (Wang,

• Land – The waveforms in all three lidar systems showed simi
characteristics. The bottom-return peak is weak and it is sometim
distinguish the bottom-return peak from the other local returns pres
channel-waveform. Also, no major difference in the wav
characteristics were noticed between the bare earth and vegetatio

lar waveform 
es hard to 

ent in the red 
eform shape 

n groups. 

The threshold between “shallow” and “deep” water varies between the lidar systems and 
the environment. In cases where aquatic vegetation is present, fluorescence occurs and 
may contribute to the red-channel waveforms (Wang, 2005; Pe’eri and Philpot, 2007). 
The fluorescence contribution generates a second peak that shifts to earlier time bins as 
the depth decreases. This second peak is noticed in water depths deeper than the Raman 
Effect. A schematic division of the waveform-group regions is presented in Figure 4. 
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e IR-channel 
 at saturation 
l return from 

en uncertainty 
) channel is 

t can provide the information needed to 
refi

lgorithm that 
e in the red-

 compares the 
aveforms to 

SHOALS-400, 
and some were not directly applicable to the later SHOALS systems because of 
differences in dynamic range and waveform record length. The SHOALS-400 system 
used a 10-bit digitizer with 41-bin waveforms, whereas the SHOALS-1000/3000 systems 
used an 8-bit digitizer with an 80-bin waveform. In addition, the difference is affected by 
the SHOALS-400 waveforms being linearly logged, whereas the waveforms from the 
SHOALS-1000/3000 were logarithmically logged. Red-channel waveforms from land 
measurements show a very weak Raman peak or even no peak at all in all three systems. 

 
Land\water discrimination 
 
The idea of using ALB as a land/water discriminator for shoreline mapping
one. The most commonly used algorithm with SHOALS lidar data uses the
saturated peak in the infrared-channel waveforms (Guenther et al., 199
2001). The definition of a land sounding is that at least 5 time bins in th
waveform should have an extremely high value (digital number), almost
levels. The difficulty with this approach is that, because the green channe
very shallow waters is very similar to that from the land return, there is oft
about the location of the land/water boundary.  Because the red (Raman
extremely sensitive to the presence of water, i

lidar bottom-detection limit. 

Land Shallow Deep 

0 m 

3 - 5 m 

20 - 60 m 

Figure 4. Coastal zones divided according to the lidar capabilities: Land – land 
ater surface; Shallow – from the water surface to the water depth 
is insensitive; Deep – from red-channel insensitivity depth to the 

 
topography to the w
that the red channel 

ne the discrimination in the shallow-water zone. Based on SHOALS-400 data from 
Lake Tahoe and Lake Michigan, Pe’eri and Philpot (2007) modified the a
uses the saturation of the infrared-channel waveforms with the peak valu
channel waveforms. Another published algorithm is an index algorithm that
ratio between the green-channel, red-channel and infrared-channel w
discriminate land from water soundings (Sosebee, 2001).   

The algorithms mentioned above were designed using the older 
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(a) (b)

Preliminary results 

 conceptually 
ctive with all 
discriminator 
m is intended 

ystems. Figure 5 presents preliminary results from Stateline Point, 
Lake Tahoe, CA-NV SHOALS-400 soundings classified as land or water based on the 
red-channel waveforms.  

 

 of the steps 
ioned in the 
d bathymetry. 

rred shoreline vector from the land/water discriminator and the DTM from 
the topography and bathymetry measurements, MHW and MLLW lines can be produced.  
 The authors plan future work on further understanding lidar capabilities as a tool 

line mapping.  This work plan includes a comparison of the produced vectors 
her available 

al 01; Sosebee, 2001). Also, the accuracy of the produced vector 
will be assessed.   
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