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Abstract 

LiDAR tells the user where surfaces are, not what they are.  In this study we investigate the 
potential for waveform LiDAR to provide more information on the nature of the returns over 
forestry.  Waveform LiDAR was acquired for ten Pinus radiata plots in a New Zealand plantation, 
along with comprehensive leaf area sampling in 2m vertical bands.  The decay rate of each 
waveform peak was shown to be a useful tool for estimating foliage density, and has potential for 
identifying regions containing ground and understorey. 

Leaf Area Density (LAD) is an expression of foliage density per unit height, and a relationship 
between waveform decay rate and LAD was developed with an R2 of 56%. Incorporating the 
proportion of discrete LiDAR that fell in that band (which itself has an R2 of 50%) improves this 
model to explain 69% of the variation in LAD.  This is a good result, especially given the costs and 
difficulties in measuring leaf area directly.  As foliage density varies dramatically on a fine scale it 
was not possible to differentiate the nature of every single LiDAR return – but by averaging over a 
small area local variation in LAD could be easily mapped. 

Ground returns could be distinguished as having short decays, and broad leafed understorey 
typically had values between those of the canopy and ground, although surface roughness and slope 
make it impossible to robustly identify single returns.  This study produced a useful model for 
estimating LAD in Pinus radiata which could easily be extended to other coniferous species. 
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1. Introduction

1.1 Foliage measurement 

Foliage is the engine that drives tree growth.  Foliage may be used as a good measure of tree 
growth and carbon sequestration, but also of tree form and fire risk.  Knowledge of the 3D 
distribution of foliage can be used for many applications, such as carbon accounting (Stephens 
2007), growth and yield forecasting (Naesset 1997), fire modelling (Morsdorf et al. 2004) and 
biodiversity estimation (Hofton et al. 2006). 

Direct measurement of foliage location for individual trees is time consuming, costly and not 
overly representative at a stand scale (Bongers 2001).  More spatially integrated measures of 
foliage distribution have emerged with simpler formulations which can be easily included in further 
analyses.  The most common of these are canopy cover, Leaf Area Index (LAI) and Leaf Area 
Density (LAD).  Canopy cover is the projected area of canopy – as viewed from above - per unit 
area of ground.  The maximum canopy cover value of 1 indicates that the canopy completely 
obscures the ground, or is ‘closed’.  Leaf Area Index goes further, and is the one-sided area of leaf 
tissue per unit of ground surface area (Watson 1947).  Leaf Area Density extends this once more, 
and is defined as the total leaf area per unit ground area per unit height.  Essentially, LAD is the 
vertical distribution of leaf area that in summation will equal the LAI.   



LAI and LAD can only be measured exactly through destructive sampling of single trees.  LAI can 
be estimated through litter collection and known tree-allometry, ground-based hemispherical 
photography and LiDAR, although none of these methods offer high levels of accuracy or have 
been used to resolve LAI into LAD (Forster and Nairn 2010).  Of these methods LiDAR appears to 
offer the greatest potential because it provides a three dimensional characterisation of canopy 
(Lefsky et al. 1999). 

1.2 LiDAR 

LiDAR – or Light Detection and Ranging - has long been used for mapping large, continuous 
surfaces such as ground and buildings.  Often aerial imagery is acquired at the same time to assist 
in surface identification.  Recently LiDAR has found a home in forestry, where returns from the 
canopy add valuable information on the vertical structure of the forest as well as the ground 
beneath.  For a thorough explanation of the function and application of LiDAR in forestry the 
reader is directed to Hyyppä et al. (2004), Lim et al. (2003) or Adams et al. (2011). 

LiDAR systems can be separated into two classes: discrete-return and full-waveform.  Discrete-
return systems use hardware-based subsystems (e.g., a constant fraction discriminator and time 
interval meter) to extract and record ranges and intensities in real time for a few individual returns 
per transmitted pulse (typically less than 5).  Full-waveform systems on the other hand, digitize the 
backscattered laser echo sampled over a set period (typically around 1ns), providing a complete 
record of received signal amplitude over time.  These digitized waveforms are stored for 
subsequent processing and analysis, thereby enabling additional information to be extracted.  This 
information can include not only additional ranges, but also metrics related to surface roughness, 
slope and other characteristics.  Figure 1 gives an example of a digitized waveform.  Note how the 
discrete returns occur slightly before the waveform peaks; this is due to the fact that the discrete-
return ranging is based on identifying a point on the leading edge at which the amplitude is a 
constant fraction of the peak (e.g. the 50% point).  In both discrete-return and full waveform 
systems, georeferenced point clouds can be produced using the extracted ranges, sensor position 
and orientation data, scan angle data, sensor model, and associated calibration parameters.  

Figure 1 – An example of waveform and discrete-return LiDAR data 

Canopy is not a flat impermeable surface like the ground, and it is this fact that allows us to collect 
information throughout its depth.  Unlike in urban environments, where each return results from a 
single large surface, the scale of foliage is much less than that of the beam width (~0.2m) and 
vertical sampling interval (0.15m).  Thus each return is due to the integrated reflections from a 
large cylinder of foliage.  If the waveform digitizer has a nanosecond sampling period, then the 



waveform at that point is due to the reflections from a biscuit tin sized volume of foliage of around 
0.005m3.  It should be noted that the return signal from each ‘biscuit tin’ depends not only on the 
foliage in that volume, but also on the attenuation of the beam by foliage above it.  Multiple 
scattering events have been shown to be of negligible importance (Blair and Hofton 1999). 

Some authors have attempted to investigate foliage density by considering the proportion of 
discrete returns per unit height.  Morsdorf (2006) found a correlation between LAI measured by 
hemispherical photography and the proportion of discrete returns that hit the ground with an R2 of 
69%.  This correlation was also found by Riaño (2004) on two sites in Spain.  However, these 
studies give no information on the vertical distribution of the foliage, or LAD.  Vertical canopy 
information from discrete LiDAR always suffers from the fact that the transmitted laser pulse width 
can be  greater than 10ns, and there is typically a ‘blind-spot’ between returns of 1.2 - 3m during 
which no other returns can be counted (Reitberger, Krzystek, and Stilla 2008).   

1.3 Full waveform LiDAR analysis 

Full-waveform LiDAR can greatly reduce this blind spot by post-processing the waveform data to 
identify proximal peaks which would otherwise be treated as one (Parrish et al. 2011).  Chauve et 
al. (2009) found 40-60% additional points in an Alpine coniferous forest.  The most common 
approach is to approximate the waveform as a series of Gaussians, fitted by a non-linear least-
squares approach (Hofton, Minster, and Blair 2000; Reitberger, Krzystek, and Stilla 2006), or 
expectation-maximisation (Persson et al. 2005).  Wagner et al. (2006) found that fitting Gaussian 
peaks to the data could account for 98% of waveform shapes, although this was over an urban 
environment and he notes that Gaussians may not always be appropriate over vegetation.  

Additional canopy points are not the only benefit of working with full-waveform data.  The signal 
shape itself may yield information on the nature of the target.  Whilst discrete LiDAR returns are 
given an intensity, the value is a function of transmitted power, range, atmospheric transmittance, 
system transmittance, receiver aperture, beam divergence, surface roughness, relative geometry 
between the sensor and target, and any attenuation due to foliage higher in the canopy.  Studies 
have corrected for range and scan angle to derive a back-scattering cross section (Wagner et al. 
2006), and for species identification between Lodgepole Pine and Sitka Spruce in Scotland 
(Donoghue et al. 2007).  Reitberger used peak width and integral as clustering parameters to 
segment individual trees and group them according to species.  The study achieved 80% accuracy 
in identifying deciduous and coniferous species (Reitberger, Krzystek, and Stilla 2006).  Lin and 
Mills (2010) found pulse width less noisy than intensity for identifying surface roughness and 
slope.  Like Wagner (2006), Chauve et. al. (2009) note that the waveform is often skewed, and that 
a Gaussian may not be appropriate in all cases.  Experimentation with a lognormal distribution 
provided a better fit for some pulses over a forest, although a standard Gaussian was found to 
provide the best fit in 99.3% of cases.  Generalised Gaussians were also used, which theoretically 
should provide a better fit than standard Gaussians, although this didn’t occur due to the extra 
degrees of freedom and limitations of the optimisation algorithm. 

Whilst other authors have noted this skewness of the waveform, in this study we use it to categorise 
returns.  If we assume that the needles and branches within a sampled volume are sufficiently small 
and randomly orientated, then - as a simple model - the canopy can be imagined as a volume of 
semi-transparent gas.  Whilst this is not a physical reality, it allows us to employ some modelling 
simplifications that allow a quantitative insight into the canopy’s average properties.  We can then 
assume that the canopy has – as a gas would – a reflectivity R, transmissivity T, and absorbance A.  
Thus transmission through the canopy can be modelled with the Beer-Lambert law 

 (1) 

Where IT is the transmitted intensity, I0 is the initial intensity, α is the absorption coefficient and x 
is the distance travelled through the gas.  Note that whilst transmissivity and reflectivity are both 



 

functions of wavelength, lasers are fundamentally limited to a single wavelength so we can ignore 
this and define our parameters at a wavelength of 1064nm.  For an interesting investigation into 
multi-spectral LiDAR the reader is directed to Morsdorf et al. (2009). 
 
At a depth x into the canopy, a constant proportion (R) of the incident light will be reflected.  We 
assume Lambertian reflectance, and that this is further attenuated by the foliage-gas as it leaves.  IR 
at the surface is then given by 
 
            (2) 
 
Thus we see that if the canopy is of a constant density and distribution, we can expect an 
exponential decay in intensity characterised by a decay constant of 2α.  For simplicity this decay 
constant will be called λ. 
 
IR as measured at the receiver is also a function of range as defined by the radar equation 
 
            (3) 
 
Where σ is the target scattering coefficient, F is the propagation factor which accounts for 
atmospheric loss, and ρ is the distance to the start of the foliage.  So we may also see a fall off in IR 
in the form of x-4.  However our study site was flown at a height of ρ~1000m, whereas x~2m, so 
x<<ρ and it is reasonable to ignore this effect. 
 
Jutzi and Stilla (2006) note that the return waveform y(t) is a convolution of the surface response 
v(x,y,z), the transmitted waveform o(t), the response of the measurement unit m(t) and the spatial 
beam distribution p(x,y).  If the pulse is timed and we know the plane position and scan angle in 
three dimensions (i.e. we can describe x,y and z as a function of t) then we can describe v(x,y,z) as 
v(t).  Furthermore, based on our simple isotropic gas model of the canopy locale, we can ignore 
p(x,y) but add in a background noise n(t) leaving 
 
          (4) 
 
Comparison of the outgoing waveform o(t) (sampled as standard with some waveform digitisers) 
with the return waveform y(t) for large flat surfaces (a pond on a windless day) shows that m(t) is 
negligible compared to o(t).  Thus we have 
 
           (5) 
 
The surface response v(t) is what we are interested in determining, and equation (5) may be solved 
by a Wiener deconvolution where we estimate g(t) to minimise the error in our estimation of v(t) so 
that 
 
            (6) 
 
The Weiner deconvolution filter can be used to find g(t), shown here in the frequency domain 
 
            (7) 
 
Where S(f) is the mean power spectral density of the outgoing signal o(t).   N(f) is the power 
spectral density of the noise n(t).  This may be solved to obtain , which will from hereon in be 
referred to as the deconvolved waveform.  
 
The skewness of waveform profiles over foliage has been noted by several authors (Wagner et al. 
2006; Chauve et al. 2009; Jutzi and Stilla 2006). In this study we define this skewness as an 



exponential decay, which will be more apparent in the deconvolved waveform than the original as 
the blurring function of the outgoing pulse has been removed.  In this study we test the hypothesis 
that the decay constant of the deconvolved waveform will correlate with the local foliage density, 
expressed as an LAD. 

2. Method

2.1 Field data collection 

The field data collection for this project was shared with that of Beets et al. (2011).  Ten 0.16ha 
field plots of nine year-old Pinus radiata were selected for study.  Each plot was planted with the 
same stocking in 1997, and had received the same silviculture.  Five representative sample trees per 
plot were felled from 21st August - 8th September, 2006.  Tree crowns were weighed fresh in the 
field by 2m height zone, measured from the base of each tree. Fifty needle fascicles were sampled 
randomly from each height zone and stored in polythene bags with water. Sample branches from 
each 2m height zone were weighed fresh in the field, and partially dried to aid with separation of 
needles from branches. Needles were oven dried to constant weight at 65 degrees C and weighed. 
Leaf area of the 50 fascicles per 2m height zone was determined on an all-surfaces basis from 
fascicle length and volume, using methods described in Beets and Lane (1987), and then oven-
dried and weighed. LAD by 2m height zone was calculated for each zone by multiplying the 
fascicle dry weight by the specific leaf area of the 50 fascicles. The leaf area index per plot was 
obtained using the basal area ratio method, where the sum of zonal leaf areas of sample trees per 
plot is multiplied by the plot basal area divided by the sample tree basal area (Madgwick and 
Service 1981). 

2.2 LiDAR data collection 

The study site was flown by New Zealand Aerial Mapping on 9th June 2007, and measured with an 
Optech ALTM 3100EA LiDAR system and waveform digitiser with a sampling rate of 1ns.  Raw 
GPS data and discrete LiDAR information was processed with REALM software into a Corrected 
Sensor Data (CSD) file.  The waveform data was measured at 1ns intervals and provided as five 
swathes in Optech’s NDF binary format with an IDX index file.  Matlab code was adapted from 
Parrish (2007) to suit the updated NDF format and to georeference the waveforms according to 
New Zealand’s NZGD2000 coordinate system. 

2.3 Waveform analysis 

Much work has been done on identifying and resolving peaks in waveform data (Chauve et al. 
2009).  In this work we are investigating the decay of the waveform, so separating closely-spaced 
peaks is of no use.  For efficiency we use the discrete LiDAR dataset to identify peaks, and the 
waveform LiDAR to determine the decay rate.  This process is detailed below. 

Step 1 

Read and georeference LiDAR data.  Using adapted code from Parrish (2007) each sample in the 
waveform is assigned an xyz coordinate and compared with the field plot locations.  Waveforms – 
or sections of waveforms – that fall within the field plot are written to a new file with their 
respective locations.  In comparison with Parrish, the waveform is not deconvolved at this point, 
and all points within the sample areas are written to a text file.  In addition the CSD file is read and 
the discrete LiDAR point cloud is extracted for the whole of Puruki forest. 

Step 2 

Subtract ground surface from LiDAR data.  By subtracting the ground surface from the data we 
determine heights above ground instead of heights above sea-level, which is standard practice for 
determining information on canopy as opposed to terrain.  In this paper we refer to this process as 



‘degrounding’.  The discrete LiDAR data for the whole forest is used with FUSION’s 
GroundFilter.exe function (McGaughey 2010) to determine a ground surface on a 1m grid.  This 
gives a better result than using the clipped data for individual plots.  This grid is then used to 
linearly interpolate a ground height for every waveform sample saved in the text file produced in 
step 1, and every discrete return that falls within the plot areas.  For every plot a georeferenced 
degrounded waveform file is produced, along with a corresponding degrounded discrete point 
cloud. 

Step 3 

Deconvolve waveform.  Each degrounded waveform file is read, and each waveform line 
individually analysed.  A Wiener deconvolution (see introduction) is used, using the outgoing 
waveform as the deconvolution kernel.  Note that the deconvolution increases the amount of noise, 
particularly away from peaks. 

Figure 2.  Original waveform and deconvolved waveform. 

Step 4 

Separate peaks and fit exponential decay.  Peaks are identified as the nearest local maxima to each 
discrete return.  As the discrete return is determined on the leading edge of a pulse, the local 
maxima should always be just after this point.  In the instances where a waveform contains 
multiple peaks, the data between peaks is sampled from local maxima to local minima to find the 
exponential decay.  The decay is found using a weighted least squares approach, where samples are 
weighted by their height (to encourage curve fitting to match the peaks as opposed to the 
background noise).  Figure 3 shows a waveform with two returns and two fitted exponential 
decays.  Note that the x axis is measured in time, not in height.  If the decay were measured in 
height, waveforms travelling non-perpendicularly to the ground would appear compressed and 
hence have artificially increased decay constants (λ).  Once the decay constants are found they are 
added to a point cloud output that includes xyz coordinates, intensity and λ. 



Figure 3.  Example of multiple peak waveform with two exponential decays fitted. 

3. Results

3.1 LAD vs. proportion of returns. 

Extending the work of Morsdorf et al. (2006), we initially use the degrounded discrete LiDAR data 
to compare LAD with the proportion of LiDAR returns that occurred within each height band. 
Figure 4 shows the results provide a reasonable model (R2 of 50%). This R2 is not as good as the 
69% found by Morsdorf et. al., although their model considered net LAI as opposed the LAD at 
different height bands.  Our model is also flawed in that it does not go through the origin – a LAD 
of 0 should lead to no returns. 

Figure 4 – Leaf Area Density vs. proportion of hits per height band 

3.2 LAD vs. average decay rate 

Within each height band there are many LiDAR returns.  If our approximation of foliage being an 
isotropic gas were true, then we would expect all of the returns to exhibit the same decay. 
However this is only a simple model, and some pulses will hit dense areas of vegetation whereas 
others will find a gap and only receive a glancing blow.  So each individual decay rate is not of 



much use, but the average over the whole height band should be informative.  Experiments with the 
mean and median showed that the mean is slightly more related to LAD, with an R2

 of 55.8% as 
opposed to 54.1% for the median.  The correlation for the mean is illustrated in figure 5. 

Figure 5 – Deconvolved waveform decay rate vs Leaf Area Density 

This is a good result and shows that waveform decay rates are representative of LAD.  It also yields 
the question whether this model could be improved by using the proportion of LiDAR returns as 
well as the mean decay constant.  Assuming a simple linear model 

 (8) 

Where L is LAD,   is mean decay constant, p is proportion of hits, c is a constant and β and γ are 
constants of proportionality.  Solving this for a least-squares solution, we obtain the model shown 
in Figure 6, with a R2 of 69%.  This is a great improvement in accuracy, although it is apparent that 
the relationship is not perfectly linear, leading to underestimation at lower LAI values. 

Figure 6 – Model for Leaf Area Density based on average decay constant and proportion of hits. 



4. Discussion

The results show that modelling foliage as a semi-transparent gas and applying the Beer-Lambert 
law for transmittance enables reasonable estimates of the parameters of interest.  A good 
correlation between Leaf Area Density and average decay rate  was found, with an R2 of 56%. 
Unfortunately, this simple model does not work for individual pulses.  If it did, the decay rate could 
easily be used to differentiate returns from foliage to those from branches, the stem, understorey 
and the ground.  Unfortunately - just like intensity - decay constant is still a function of slope, 
roughness and size.  For each surface type there are so many variations and ways in which the light 
can hit it that only the mean of a large number of hits is useful.  For example, light hitting a 
particularly dense patch of foliage would yield a shorter decay than light hitting hard ground at an 
oblique angle.  The crucial difference between decay constant and intensity is that decay constant is 
not affected if the light beam has been attenuated prior to hitting the target.  Figure 7 shows an 
attempt to correlate LAD with mean intensity within a height band, and the R2 value of 2% shows 
that there is little or no correlation. 

Figure 7 – Discrete return intensity vs. leaf area density. 

When considering the average decay constant within a height band, there is a distinct change 
between foliage and ground.  Figure 8 shows how LAD inferred from  varies with height for plot 
10, in 1m height bands, along with the measured LAD.  Two trends are clear:  The LiDAR method 
underestimates LAD at the very top of the tree, and grossly overestimates it at the base.  The 
underestimation at the top of the tree is likely due to the fact that LiDAR does not sample 
everywhere, and the beam footprints are prone to missing the very tops of trees (Hyyppä et al. 
2004).  The overestimation at the base (where the measured LAD was 0) is due to the fact that 
understorey and ground returns also feature.  Due to the broad-leafed nature of the understorey 
(ferns, grasses, and broad-leafed shrubs), these are likely to attenuate incident light faster than 
dispersed needles, and have a higher decay rate.  The ground will attenuate light almost instantly, 
so can be expected to have an even higher decay rate.  Understorey was recorded for plot 10 as 
approximately 70% cover up to a height of 4m.  This result would be consistent with the increase in 

 from this height onwards. 

Unfortunately, as we have already mentioned, for each height band there exists a wide range of λ 
due to its dependence on surface roughness and slope.  We cannot expect to separate out individual 
returns from understorey as distinct from canopy foliage, but an increase in  can be used as an 
indicator of where understory begins.  Higher values of  could also be used to identify ground 
returns, but it is unlikely this method would be as effective as the well-researched surface fitting 
methods employed for digital terrain model extraction (see Hyyppä et al. (2004) for a history of 



methods).  Further research is necessary for applying this method in mixed species forests – it may 
for example be possible to gauge the species mix by the range in λ, particularly if it is a mix of 
coniferous and deciduous species. 

This study has determined that – like intensity – waveform decay is a useful addition to a discrete 
LiDAR point set.  Whilst each individual value does not determine the surface type for each 
individual return, when taken as a population over an area they can be useful – along with 
geometry and aerial photography – for identifying surface traits.  A model for foliage density from 
LiDAR will be of use for carbon accounting, growth and yield, and fire risk modelling. 

Figure 8 – Leaf Area Density (measured and inferred from mean decay model) vs. height in plot 10. 

5. Conclusion

Foliage density is a useful characteristic for describing forests.  It can be used for measuring 
growth and yield, carbon sequestration, health, biodiversity and fire risk.  Directly measuring 
foliage density by destructively sampling trees is expensive and unrepresentative over large areas. 
Photographic methods – such as aerial and hemispherical photography – provide reasonable 
estimates of Leaf Area Index (LAI), but are generally unable to resolve these data into a vertical 
distribution. 

Aerial LiDAR gives a full 3D representation of the canopy and can provide this information for 
large areas in a short time.  Waveform and discrete LiDAR over a New Zealand radiata pine forest 
was obtained and compared with Leaf Area Density (LAD) measurements made in 2m height 
intervals across ten 0.16ha sample plots.  Returns in foliage were generally characterised by a 
skewed shape, and the hypothesis that this skew was related to foliage density was tested. 

By deconvolving the waveform with the outgoing pulse shape, an expression of the surface 
response can be found (Jutzi and Stilla 2006).  A simple model of the canopy as a semi-transparent 
gas was assumed, which dictates that reflectance would follow an exponential decay as per the 
Beer-Lambert law.  By fitting exponential decays to each deconvolved waveform peak, values for 
the decay constant λ were obtained.  In this study we tested the hypothesis that λ will characterise 
the density of the foliage at that location. 

λ is also a function of surface slope and roughness, as is the case for intensity.  λ is preferential to 
intensity for surface identification since it is not affected by beam attenuation higher in the canopy. 
Although λ cannot be used to identify each individual return, the mean value for λ shows a strong 
relationship to surface type when averaged over a volume.  Highest values were obtained for areas 
of predominately ground, medium values for understory and lower values for canopy.  Within the 



canopy, λ can be used to estimate LAD with an R2 of 56%.  The proportion of LiDAR returns to 
fall in each height band can describe LAD with an R2 of 50%, and a model utilising both decay rate 
and proportion of returns described 69% of the variation in LAD.  This model can be used for 
remotely sensing foliage density in Pinus radiata forests above the understorey, but could be 
calibrated for other species and potentially even mixed species forests. 
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