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Climate change is not uniform geographically

Average T for 2001-2005 compared to 1951-80, degrees C

2 -16 -12 -8 -4 -2 2 4 4 L2 le 2.1

J. Hansen et al., PNAS 103: 14288-293 ( 2006)



And T is not the only factor that’s changing
Annual precipitation trends: 1900 to 2000

Trends In percentage pet century
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NCDC, 2000
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Effect is not uniform; most places getting wetter, some getting drier.



Mitigation and Adaptation to Climate
Change By Design

o Carbon dioxide is primary greenhouse gas, but
methane, nitrous oxide, CFC’s, ozone, and black
soot also contribute to climate change.

o Significant climate change mitigation benefits
can be derived by reducing nitrous oxide and
methane emissions from agriculture.




Effective Climate Forcings (W/mz): 1750-2000
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Inefficiencies in fertilizer nitrogen use offer
important opportunities for mitigation of
nitrous oxide emissions

N Fertilizer N Fertilizer N N N
Produced Applied in Crop In Feed in Store Consumed

‘7‘7‘7@?@7@

4% of the N produced in the Haber—Bosch process and used
for animal production enters the human mouth.

Galloway JN and Cowling EB. 2(



DNDC: A Computer-aided Tool for
Precision Land Management

DNDC Reveals the mechanisms that drive
ecosystem change by tracking movement of
chemical elements between life and its environment

DNDC allows users to construct scenarios that
penefit land managers and enhance environmental

orotection.

DNDC can stimulate innovation and information
sharing relevant to creating better landscape
management for people and nature
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The DNDC Model
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DNDC bridges between inputs and outputs

INPUT PROCESSES OUTPUT
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DNDC

Simulating carbon in soils and

ecosystems




S0C in0-20 cm, kg Ciha

160-year soil organic carbon dynamics at a winter wheat field with different treatments
in Rothamsted Agricultural Station in UK from 1840-1990
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SOC, kg Cikg (0-10 cm)

86-year SOC dynamics at 3 plots with different crop rotations in the Morrow

Plots, Urbana, IL, 1904-90
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CO2 flux, kg C/ha/day

Model performance can be tested based

on short- or

long-term observations on C fluxes

Observed and DNDC-modeled photosynthesis, ecosystem respiration and NEE
fluxes from a cultivated peat soil in Linnansuo, Finland in 2005
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DNDC

Simulating nitrogen In soils and

ecosystems




N20 flux, g N/ha/day

N20O Fluxes from a Organic Soil at Glades, Florida, 1979-80
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Observed and Modeled N,O and NO Emissions from a Spruce
Stand at Hoglwald Forest in Germany in 1995-1997
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Modeled N20 flux, kg N/halyear

Observed and DNDC-Modeled N20O Fluxes from Agricultural Soils in the U.S., Canada,

the U.K., Germany, New Zealand, China, Japan, and Costa Rica
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Sensitivity of N,O flux to environmental factors
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Goal: Predicting impacts of management alternatives
on C and N dynamics In terrestrial ecosystems

A change in management

Climate Vegetation

Other
management

C storage Trace gas




A scenario of best management practices
was composed with

(1) no-till,

(1) increased depth of fertilizer application,
(3) three splits of fertilizer application, and
(4) non-legume cover crop.




Impacts of conventional tillage (CT), no-till (NT) and best
management practices (BMP) for a crop field
at Story County, lowa

CT NT BMP Unit
Fertilizer use 120 kg N/ha

Crop vield 4138 kg C/ha
dSOC 996 kg C/ha

N leaching 8 Kg N/ha
N20O 16 Kg N/ha




Summary

Precision management of fertilizer use can provide
significant reductions in nitrous oxide emissions while
maintaining crop yields. Co-benefits can include
reductions in water pollution that results from leaching of
nitrate.

Soil carbon and nitrogen must be treated as an integrated
management issue to achieve maximum benefits.

The DNDC precision management tool can also be applied
to the management of timber, pastures, rice, and other
landscapes.

A market-based fertilizer reduction program could offer a
fast-track approach to reductions in nitrous oxide
emissions and nitrate pollution.




Summary

Uncertainties, unclear signals, and long
time scales are characteristic of climate, water,
and ecosystem interactions. We argue that there
IS a strong rationale for enhanced policy
flexibility and innovation using a portfolio of
reactive, adaptive, and precautionary land
management strategies.
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