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Introduction

RV Falkor is equipped with Kongsberg Maritime (KM) EM302 and EM710
multibeam echosounders (MBES). Both systems were the subject of an annual
system checkup conducted over March 1-4, 2013 in the vicinity of the Bahamas (Fig.
1) with the intention of verifying that performance levels of the systems had not
degraded during the first year of operation.

In our experience, multibeam system performance can degrade in terms of:

Efficiency (swath coverage): Transducer degradation and changes in self-
noise levels can compromise the maximum range/depth performance. What
this means to the end-user is that the system achieves less coverage than
expected and is thus less efficient as a mapping platform. Monitoring various
subsystems, along with assessing coverage abilities, gives an idea of the
overall acoustic health of the system as a whole.

Bathymetric data quality: Bathymetric measurement artifacts can result
from a number of sources, including faulty configuration of the multibeam
and/or ancillary sensors or degradation in performance of the same.
Geometric calibration and follow-up accuracy testing is an important set of
tests that confirm the quality of the bathymetric data that is acquired.
Acoustic imagery quality: Acoustic imagery, either of the seabed or of
water column scatterers, is another data product commonly available from
multibeam systems. Acoustic noise levels can degrade the quality of imagery,
especially in cases of transient noise events. Other potential sources of
artifacts include incorrect sector/swath normalization that can be difficult to
correct in post-processing. Imagery products should be examined to identify
and correct problems.

To assess RV Falkor's two multibeam systems, the following test procedures were
done during the cruise:

1.

oUW

Transducer and System Health
Noise Evaluation

Coverage Evaluation

Geometric Calibration

Accuracy Evaluation

Acoustic Imagery Quality Evaluation

It is the intent of this report to document the outcome of the evaluation trials and to
provide an assessment of the capabilities of both systems with respect to the
original baseline assessment conducted during the sea acceptance tests (SAT)
conducted in May and July of 2012 (Beaudoin et al., 2012).
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Figure 1. Overview of cruise track with EM302 bathymetry collected during the trials.

System Overview and Ancillary Instrumentation

The EM302 is a 30 kHz MBES capable of full ocean depth mapping though it is most
optimally used in depths from 1,500 to 3,000 m. The EM302 system is available in a
number of transmit/receiver configurations; the system aboard Falkor provides
1°x1° angular resolution, yielding seafloor sounding resolution on the order of 1.7%
of oblique range. Though the system is nominally 30 kHz, the full frequency range is
26.5-33.6 kHz.

The EM710 frequency range spans 73-97 kHz; the system aboard RV Falkor is
capable of 0.5°x1.0° transmit and receiver angular resolution, respectively. The
EM710 system is well suited for continental shelf mapping with maximum coverage
being achieved at depths typically between 500-1,000 m. Maximum depth
performance is typically less then 2,000 m.

Both systems allow for seafloor mapping over a swath of 140°, giving a roll
stabilized coverage up to 5.5 multiples of water depth (5.5 x w.d.). The systems are
capable of multiple sector transmission, this allows for pitch/yaw motion
stabilization and also multi-ping capabilities. The latter functionality doubles the



along-track sounding density and permits surveying at higher speeds without loss of
data density. Both systems use the manufacturer’s software to configure, monitor
and acquire the data, namely Seafloor Information System (SIS), v.3.8.3.

The ancillary components of the two mapping suites aboard RV Falkor are listed
below:

* SeaPath 320 heading, attitude and positioning sensor

¢ CNAV positioning correction service

* Seabird 9 Conductivity Temperature Depth (CTD) profiler

¢ Valeport SV profiler

* Turo XBT

¢ Valeport miniSVS surface velocimeter

e SBE38 and SBE45 thermosalinograph

All of the above systems were installed in 2011/2012 and were tested extensively in
May and July of 2012. All systems were found to be operating correctly and overall
results from the 2012 testing indicated that RV Falkor multibeam systems were well
calibrated and were not noise limited. The initial 2012 tests provide a baseline
against which long term monitoring of system performance can be compared to
assess system degradation with time.

Transducer and System Health

A full Built-In Self Test (BIST) diagnostic routine was run dockside on both the
EM302 and EM710 with both systems passing all tests prior to sailing. Among other
tests, the BIST provides the ability to perform impedance measurements of the RX
and TX array, these being useful in establishing the health of the transducers as
these components of the mapping system can degrade with time. Itis important to
note that the BIST impedance measurements do not provide a full characterization
of transducer properties as a function of frequency as performed by Ifremer in 2012
(Le Gall and Pacault, 2012), however, they are believed to be good indicators of
overall transducer health over their lifetime, especially when conducted on a
routine basis.

The EM302 and EM710 receiver impedances and receiver transducer impedances,
as measured through the BIST routines, were compared to measurements made
during the system acceptance tests in 2012 and were found to be within the nominal
acceptable range expected by the manufacturer (Fig. 2 and 3 for EM302 and Fig. 4
and 5 for EM710). The BIST output lists two sets of impedance measurements for
the EM302 and the EM710, the first set being referred to as the receiver impedance
and the second set being the transducer impedance. Clarification is being sought
from the manufacturer as to the distinction between these two sets of
measurements. From this point forward, we will refer to the first as the receiver
channel impedance and the second as the transducer impedance.



EM302 impedances, for both receiver channels and receiver transducers were
consistent with previous BIST output dating back to 2012-03-14. The same can be
said of the EM710 receiver channel impedances, however, there are inconsistencies
between the 2012 and 2013 results for the transducer impedances (Fig. 5). Despite
the inconsistencies, the values reported are within the legal range specified in the
BIST test and the test thus passes these values. Discussions with the manufacturer
regarding the EM710 transducer impedance values indicate that changes in the
overall impedance levels can occur due to differing environmental conditions under
which the impedance tests are done and that the impedance of modules relative to
each other is a better metric for monitoring health of the transducers. Upon
reviewing the results for the EM710 with the manufacturer, we do not feel that
there is warrant for concern seeing as all modules have approximately the same
impedance within a given test, i.e. there are no modules with significant differences
in impedance across the array. Documentation regarding the BIST output and
procedures is being sought from the manufacturer to increase our understanding of
the BIST operations and to facilitate interpretation of these, and future, BIST results.

The transmitter channel impedance tests (not to be confused with receiver
transducer impedances tests discussed above) passed for both systems, however,
module level granularity of impedance values are not available through the BIST
routines when run in SIS. It is our understanding that these values can be obtained
through telnet BIST routines. A standard operating procedure is being developed
and tested with the intent of providing instructions to MTs on how to add these
additional testing procedures to their standard BIST schedule such that the
transmitter impedances can be monitored at the module/element level.
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Figure 2. EM302 receiver impedance measurements. Historic measurements are in grey, red are from
the 2013 test.
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Figure 3. EM302 receiver transducer impedance measurements. Historic measurements are in grey, red
are from the 2013 test.
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Figure 4. EM710 receiver impedance measurements. Historic measurements are in grey, red are from
the 2013 test.
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Figure 5. EM710 receiver transducer impedance measurements. Historic measurements are in grey, red
are from the 2013 test. The values greater than 700 ohms are from tests acquired during the 2012
acceptance and sea trials in the North Atlantic. The values in middle group (~400-500 ohms) are from
the 2013 tests done in the Bahamas. The low values (~300 ohms) were acquired on 2011-06-12,
presumably during early factory testing.

Noise Levels

A potentially major limiting factor in multibeam coverage performance is the effect
of self-noise, either mechanical or electrical, on the system’s ability to detect and
track the acoustic signal reflected from the seafloor. Comprehensive acoustic
testing is possible for problematic installations (Gates and Yearta, 2012), however
as RV Falkor was initially assessed as a quiet platform (Le Gall et al,, 2012), a
minimal set of acoustic test routines can be performed through the BIST noise
testing routines to determine if significant changes have occurred in terms of noise
levels.

A short series of noise tests, as a function of vessel speed, were conducted in 1,275
m of water on a course of 20° (Fig. 1). Sea conditions throughout the noise test
were:

* Wind: 17 kts at 290°T, 270° relative to ship’s head

* Sea state: Beaufort 3 from 290°T, 270° relative to ship’s head
All acoustic instrumentation, including bridge echosounders, was secured as was all
deck work. Power plant configuration was set to “Science Mode”:

“In this mode, the engine RPM and propeller pitch are firstly tuned at
their minimum values (respectively 85 RPM and 5% pitch). Secondly,
the propeller pitch raises (to the maximum value of 85%) to increase



the vessel speed. And when the propeller pitch has reached 85%, the
engine RPM is boosted to more increase the vessel speed.” (Le Gall et al.,
2012)

The receiver broadband noise level was measured using the BIST functionality with
at least twenty tests being conducted at each speed. The output from one BIST noise
test consists of the broadband noise level as measured across the typical reception
bandwidth spectrum by each receiver channel, reported as dB ref. 1pPa/VHz (Fig.
6).

Figure 6. Broadband noise level for EM302 receiver modules at vessel speed of 12 knots.

The distribution of the data points in Fig. 6 is shown in Fig. 7 along with the median,
geometric mean and linear mean. The geometric mean is the mean of the dB values
in their natural logarithmic units, i.e. an arithmetic mean of the dB values. The
linear mean is the mean of the noise levels in linear intensity units and then
expressed in dB. Refer to Appendices A and B for equivalent plots for both sensors
at all speeds investigated in this work.
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Figure 7. Distribution of noise level measurements for EM302 at 12 knots.

The complete noise measurement data set is plotted as a color image for both the
EM302 and EM710 in Fig. 8 and Fig. 9, respectively. This allows for examination of
all data points and for a better appreciation of the likelihood and nature of transient
noise events such as the event observed in test 20 for the EM710 (Fig. 9).

The series of speed tests allow for construction of platform noise level versus ship
speed for both the EM302 and EM710 (Fig. 10 and Fig. 11). In these figures, the data
points from all receiver modules and for all tests at a given speed are plotted as
black dots, along with the summary statistics across the speed range, indicating the
mean (linear and geometric) and the median values for each speed. Noise level
characteristics with speed were consistent with those observed in previous trials
performed by Ifremer (Le Gall et al., 2012):

1. The EM302 increases in noise level from approximately 41 dB to 43 dB from
speeds of 6 to 12 knots in “Science Mode”.

2. The EM710 noise level is independent of speed and is instead controlled by
electronic self-noise on the order of 38 dB in “Science Mode”.
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Figure 8. EM302 broadband noise level results for all receiver modules over the course of the entire
noise test. Transient noise events were observed at lower speeds on the port side of the array (ranging
from module 0 to roughly module 24), this coincides with the side of the vessel facing the direction of the
seas. Some modules exhibit systematically increased noise levels (~10 dB) relative to the lowest levels
observed on any given test. This is inconsistent with previous results observed in 2012 noise trials
based on discussion with T. Gates and could be indicative of a slight change in the noise characteristics of
the EM302 that should be monitored.

Note that Ifremer noise measurement protocols differed slightly in the number of
tests taken at each speed (they took three) and that the mean results computed
from each triplet of tests is computed as a linear mean without any mention of the
underlying distribution or whether or not outlier measurements were excluded
from their analysis. The tests conducted in these trials involved more tests per
speed (we took twenty) and several summary statistics are presented to ease
comparisons between tests by different parties (e.g. Ifremer, Gates Acoustic
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Services, etc). These comments are not made to point out deficiencies in the
methods used by other parties, it is our intent simply to highlight that different
parties approach the problem of noise evaluation in different manners and this must
be appreciated if one is to compare results from differing methods. We are
currently collaborating with the manufacturer and other parties to arrive at a
prescribed set of best practices for the acquisition and treatment of noise level

measurements.

Test #
25 50 75 100 125 150 175 200 225 250 275 300 325 350 375
|

| | | | | | | | | | | | | |

Speed (kts)
(0]

R
)

RX Module

30 35 40 45 50 55 60 65 70
Self Noise (dB re 1uPa/\NHz)

Figure 9. EM710 broadband noise level results for all receiver modules over the course of the entire
noise test.
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RV Falkor EM302 Self Noise vs Speed
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Figure 10. EM302 broadband noise level versus speed.

10 11

Several noise transients can be observed during the testing in 2013; without the
ability to monitor the noise environment with speakers, it is not possible to
determine the source of these transient noise events. The summary statistics
computed in this work include these transient events, this is most notable in the
increase of the linear mean in some of the tests, particularly for the EM710. For

12

example, note the dispersion of noise levels in Fig. 11 where some of the 20+ tests
run at 0 knots reported noise levels as high as 57-65 dB. The geometric mean and

the median are not affected nearly as much by the infrequent transients and thus
provide a closer estimate of the true platform self noise level.
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RV Falkor EM710 Self Noise vs Speed
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Figure 11. EM710 broadband noise level versus speed. Note effects of transient noises on the linear
mean.

Coverage Evaluation

The noise and impedance evaluations test only some factors that control the
performance, in terms of swath coverage, of a multibeam sonar. There are other
factors at play and an overall assessment can be done by evaluate the achievable
coverage and to compare this to a baseline performance level. This is sometimes a
straightforward comparison, for example, when a ship always returns to the same
home port, it is possible to build up a long time-series of coverage performance as it
leaves and returns to port over the same track line. Coverage can be compared from
differing areas of similar water depths, however, one must recall that environmental
conditions can affect the achievable coverage and caution must be exercised when
interpreting or comparing results from areas with different oceanographic regimes
and/or seafloor composition.

Following the methods used in the 2012 sea trials (Beaudoin et al., 2012), system
swath coverage was evaluated over a set of test lines running perpendicular to

14



depth contours down to abyssal depths (~4,800 m) just off the northern tip of
Eleuthera Island (Fig. 1). Additional data were acquired over the Great Bahama
Canyon in the Northeast Providence Channel between Eleuthera Island and Great
Abaco Island (down to 4,500 m) during the transit to and from the coverage testing
site. Both the EM710 and EM302 were run with the depth mode set to automatic
where the systems chooses the depth mode automatically based on water depth.

Coverage was similar to that achieved during previous trials (Beaudoin et al., 2012)
with differences likely due to environmental parameters (oceanographic conditions
affecting refraction and attenuation and differing seafloor backscatter). The EM710
maintained maximum angular swath coverage to depths of ~500 m (Fig. 12)
whereas the EM302 held to ~1,500 m (Fig. 13).

Figure 12. EM710 coverage evaluation.

Previous investigations with the EM302 in 2012 were limited to ~3,000 m depth
and the increased depth in these trials allowed for an initial assessment of
achievable coverage at near full ocean depth. At 4,700 m depth, the system tracked
a swath width of nearly 10 km on the high backscatter (-15 dB) foot of the slope.
Coverage reduced to 8 km in the lower backscatter (-25 dB) abyssal plain. Coverage

15



at depth is slightly greater than that predicted by coverage performance monitoring
done by Lurton as part of the 2012 sonar trials (Lurton, 2012).

Figure 13. EM302 coverage evaluation. Deepest depths encountered were approximately 4,800 m in
which the system achieved 2x w.d. coverage for a total swath width of nearly 10 km in the high
backscatter seafloor at the foot of the slope and roughly 8 km in the lower backscatter areas in the
abyssal plain.

Sensor Geometry Verification and Calibration

System calibration was done over three sites on the southern side of Northwest
Providence Channel (Fig. 1) with both systems being calibrated simultaneously.
Prior to calibration procedures, the linear and angular offsets of all seabed mapping
system components (EM710, EM302, SeaPath 320) were compared to the
previously documented settings to verify the configuration of the MRU and
multibeam echosounder systems. Linear and angular offsets agreed in all cases.

The EM302 and EM710 systems were configured with the angular offsets from the
original survey report to provide a fresh baseline for the calibration. The mount
angles for the MRU, as configured in the SeaPath software, were not modified. A
standard “patch test” procedure was used to determine the residual angular

16



misalignment angles between the MRU and the EM710/EM302 arrays. Calibration
lines were run with both systems operating simultaneously while fully synchronized
with the EM302 as the master. Offsets were determined one at a time and were
immediately evaluated and applied in SIS. This was immediately followed by a
repeat of the calibration lines to confirm correct application of the offset from the
first pass prior to moving to the next offset solution. Patch test seafloor imaging
geometry was much more favorable compared to the original 2012 calibration done
in Sognefjord, Norway and thus we have higher confidence in the offsets determined
from this particular calibration.

Residual angular offsets were nearly negligible (<0.10° for roll, pitch and heading)
and were applied to the MRU angular offset fields for pitch and roll and the
gyrocompass heading offset field for heading. This procedure differs from what was
done during the previous calibration where the patch test offsets were applied to
the multibeam arrays. This was done for a number of reasons:

1. This is the recommended practice by the manufacturer.

2. The reverse mounting of the 710 RX array requires a change in sign
convention for application of pitch and roll patch test offsets; this can
introduce human error.

3. The offsets are only entered once (for the MRU) instead of having to be
entered twice (once for the TX array and again for the RX array). The latter
method can introduce human error.

4. The offsets can be evaluated in the SIS calibration tool and applied
immediately to the installation after acceptance without need of
transcription. This protects against human error in transcriptions, sign
conventions, etc.

5. After calibrations, it is easy to verify the transmitter and receiver installation
angles against the original survey data since they remain unchanged from
year to year.

Final system installation results are summarized in Table 1 below, items in bold
differ from the previous system installation geometry summarized in Beaudoin et al.
(2012). Note that the heading offset is applied to the standalone-heading (typically
a gyrocompass) since this is the location that the SIS calibration tool applies the
heading offset. This is counter-intuitive and more information is being sought from
the manufacturer as to whether or not this is indeed the best practice.

Table 1. Summary of Installation Geometry as configured in SIS.

Parameter EM710 EM302
Transmitter X 18.84 m 18.89 m
Transmitter Y -2.12m -1.32m
Transmitter Z 6.09 m 6.09 m
Transmitter roll 0.10° 0.02°
Transmitter pitch 0.30° 0.26°
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Transmitter heading 359.69° 359.85°
Receiver X 17.45 m 16.94 m
Receiver Y -2.28 m -1.61 m
Receiver 7 6.10 m 6.11m
Receiver roll 0.04° 0.07°
Receiver pitch 0.44° 0.54°
Receiver heading 179.90° 359.82°
MRU X 0.00 m 0.00 m
MRU Y 0.00 m 0.00 m
MRU Z 0.00 m 0.00 m
MRU roll 0.11° 0.03°
MRU pitch -0.10° 0.00°
MRU heading 0.00° 0.00°
Stand-alone heading 0.03° -0.05°
Waterline Z 0.57 m 0.57 m
Positioning time latency 0.00 sec 0.00 sec

Accuracy Evaluation

Accuracy testing was conducted over two areas (Fig. 1), with average depths of 525
m and 1,275 m for the southern and northern sites, respectively. For both sites,
reference surfaces were constructed over a flat seafloor by running 5 survey lines of
8 w.d. length, with 1 w.d. spacing. Vessel speed was limited to 5-6 knots in both
cases. Prior to acquisition of the reference survey lines, an XBT profile was acquired
and uploaded to the echosounders after processing with the SVP Editor software
(discussed below).

Both reference surface surveys ran with both echosounders running in a
synchronized manner with the EM302 as the master. The EM710 and EM302
systems were run with the following configuration for the shallow and deep sites,
respectively:

* DEEP mode with FM waveforms disabled
* Dynamic dual swath

¢ Pitch and Yaw stabilization enabled

* Angular sector limited to +/-60°

For the shallow site, the EM302 main line settings were the same as above except
that the depth mode was SHALLOW.

All soundings were corrected for tide using a global tidal model described in Florent

etal. (2006). The reference surfaces were constructed using an inverse distance
weighting gridding scheme with grid resolutions of ~1% of water depth. Soundings

18



contributed to the gridded solutions with a 1° beam footprint radius of influence
and beam weighting scheme that provided more weight to soundings in the nadir
region with beam weighting decaying linearly with beam number from nadir
(loosely equivalent to a beam angle weighting scheme).

Cross lines, run orthogonally to the main lines, were acquired with soundings from
the cross lines being compared to the reference surfaces constructed from the main
lines. Note that time constraints did not allow for testing of EM710 SHALLOW and
VERY SHALLOW modes or of thorough examination of dual-swath/single-swath
modes in those modes that support dual-swath. The EM302 cross lines were
compared to the EM302 reference surface at the shallow site and the EM710 cross
lines were compared to the EM710 reference surface. EM710 cross line data at the
deep site were compared to the EM302 surface due to the limited coverage attained
by the EM710 during the main line survey. In all cases, bathymetric slopes were
computed from the reference surface and used as a mask to exclude areas of
significant topography (>5°) from the crossline analysis.

Example results are shown for EM710 Medium mode (dual swath) in Fig. 14 with a
scatter plot of the depth differences between a cross line and a reference surface as
a function of beam angle. The mean depth bias is computed in 1° angular bins
across the swath and is shown as the solid lines, these being color coded by sector
and by swath number in the dual swath geometry (blue-red is swath #1 of 2,
magenta-cyan is swath #2 of 2). The dashed lines, using the same color-coding,
indicate the standard deviation in each 1° angular bin; these are also plotted as a
function of beam angle in Fig. 15. Similar plots are presented in Appendix C and D
for the various sounder modes investigated during the accuracy tests.

Referring to the accuracy plots in Appendices C and D, both systems show beam
depth biases less than 0.05% w.d. across the majority of their achievable swaths
with small residual refraction-like artifacts in the outer portions of the swath. The
shallow site crossline statistics highlight a slight directional dependence to the mean
bias with a slight refraction artifact being observed in the outermost sector
corresponding to the side of the vessel facing to the west (Fig. 14). The crosslines
were acquired in the north-south direction at a speed of 5-6 kts and crabbing of
~15° was observed in both directions due to an easterly setting current. Yaw
stabilization was configured to stabilize based on mean relative heading (instead of
the survey line heading), thus aggressive yaw stabilization cannot be blamed since
the mean heading remained more or less constant throughout the line regardless of
the crabbing. The same effect is observed in both the EM710 and EM302 though it
appears more pronounced in the EM302 due to its ability to sound over its full
swath in those water depths (the EM710 was signal-to-noise limited in its outer
sector in the water depths chosen for the shallow reference area). Given the
directional dependence and consistency of the artifact with the direction of the
current, this effect is likely environmental.
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Figure 14. Accuracy analysis results, EM710 MEDIUM mode (dual swath). Note the slight upward curling
artifact in the outer port side sector.

Standard deviations about the mean bias are within +/-0.15% w.d (1-c0) across the
majority of the swath with higher uncertainties at the limits of the swath as
expected. Noisy soundings do occur in the usual cases: a deeper mode is used than
what is recommended for a particular water depth, etc.

It is notable that the EM302 and EM710 reference surfaces differ by about 0.5 m
(0.1% w.d.) at the shallow site (the EM302 surface is the deeper of the two). This
could point to a slight vertical offset discrepancy between the two systems
(unlikely) or that the EM302 routine tracks slightly deeper than the EM710 due to
its lower frequency. This depth difference is on the order of the EM302 range
resolution for the shallow site (1.1 ms pulse width).

The accuracy testing also confirmed that the EM710 FM related data artifact

identified in 2012 has been rectified by increasing the output rate of the FM Doppler
corrections from the SeaPath from 1 Hz to 100 Hz.
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Figure 15. Accuracy analysis results, EM710 MEDIUM mode (dual swath).

Acoustic Imagery Quality

The multibeam systems were exercised through several depth modes during the
accuracy trials. Acoustic imagery products were prepared for each mode and are
included in Appendix E and F. Sample seabed and water column imagery for the
EM302 in DEEP mode with FM waveforms enabled is shown in Fig. 16 and 17,
respectively. The seabed imagery appears to remain well balanced between the
swaths of the dual swath geometry. Sector balancing of the EM302 is satisfactory
with only a few exceptions (Fig. 16, for example). These residual signal offsets are
easily removed in most commercial software applications.

Water column imagery is satisfactory with only occasional artifacts due to transient
noise events and slight interference between the EM302 and EM710. Note that this
interference does not affect the bottom tracking abilities of either system when run
in a synchronized configuration but it may prove undesirable for water column
mapping missions.
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Figure 16. Raw seabed imagery from EM302 in DEEP mode with FM waveforms enabled. Vertical axis is
ping and horizontal is across track distance (port side is on the left of the image). Note the bright band
on the starboard side due to a sector source level imbalance.

nu|lumlmum}mmmummmwmnwmwuuuumnuuuguugmuunnuumlmumuuuuumuutmuuulmguuuuuummmnanmLnmumlumuuuumu -muuuu:l
ol i e e e G G i S i

EM302 DEEP FM ENABLED, beam 215

Figure 17. Water column imagery from center beam for EM302 in DEEP mode with FM waveforms
enabled. Returns beyond the minimum slant-range are not included.

Software Installation

SVP Editor

SVP Editor is an application that provides pre-processing tools to help bridge the
gap between sound speed profiling instrumentation and multibeam echosounder
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acquisition systems. This software was developed and is maintained by the
Multibeam Advisory Committee (MAC) under NSF grant 1150574 (Beaudoin, 2013).
The software is freely available online at http://mac.unols.org. Version 1.0.2 of the
software was installed in 2012 on the CTD processing machine. The most recent
version (1.0.4) was installed during the ship visit with training in new functionality
provided to one of the MTs. The new version of the software was used throughout
the trials described in this report and appears to be functioning correctly.

Recommendations

Follow-Up of 2012 Recommendations

Recommendations from the 2012 final report on the multibeam status are repeated
below along with follow up discussion as appropriate in bold text.

1. Avyearly check up on the status of the system should be done either by the
manufacturer or by a third party. This is obviously being followed.

2. Maintenance contracts should be sought with the manufacturer if these have
not been pursued already. It is our understanding that this is still in
progress and that arrangements for support are being sought with the
US office (KUTI).

3. The configuration files should be loaded prior to every survey project to
ensure a safe starting configuration. Any changes in system configuration
(e.g. changing data ports, etc) should start by the import of the last known
good settings, followed by the required changes and followed by an export of
the updated settings as a new set of parameters. No system configuration
changes were noted during the 2013 visit. This recommendation still
applies, however.

4. A project file naming convention should be established for the multibeam
data. The following format is suggested:
CRUISEID_INSTRUMENT_SEQUENCE_SURVEYNAME

Where:
* CRUISEID is the cruise identifier
* INSTRUMENT is either EM302 or EM710
* SEQUENCE is zero-padded three digit integer that increments with
cruise subprojects
* SURVEYNAME is a descriptive name for the particular project

The CRUISEID allows for easy sorting of cruises. The INSTRUMENT field
helps manage data by instrument. The SEQUENCE field helps keep cruise
sub-projects sorted in the order that they were acquired. The SURVEYNAME
helps keep track of the purpose of the survey. Here are some examples:
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FK003_EM710_000 PatchTest
FKO003_EM710_001_TransitToArea
FK003_EM710_002_MainSurvey
FK003_EM710_003_ReturnTransit

We have noted that a naming convention has been established and is
being followed.

. An automated backup and data transfer system for MBES data should be
implemented. Data are currently copied manually (drag and drop) to the
network data drive. This is HIGHLY error prone and will eventually result in
loss of data. Common errors are: (1) copying data files while they are still
actively being written to and (2) forgetting files. Further aggravating this is
the fact that hand-made directory structures on the network may differ from
the local directory structure. This makes it extremely difficult to ensure that
all data have been transferred and backed up. Commercial software does
exist to automate these tasks and should be sourced. Backup and transfer
scripts, run perhaps from a Linux machine with access to both network
directories, are another option but these rely heavily on all personnel being
able to understand, modify and update the scripts. Automated backup
procedures have been put in place.

MTs should prepare a set of standard operating procedures for the
multibeam systems. The familiarity with the mapping systems varied
between the technicians and such documentation will prove helpful in
maintaining the level of service and knowledge in operating these systems as
technicians rotate on and off the ship for crew changes. We were unable to
assess technical competency of technicians during our visit due to time
constraints.

It was found that the IP addresses of the two multibeam systems had
changed between the two cruises. Upon investigation, it was found that the
two machines were configured for DHCP network address assignment. This
is acceptable, however, it is strongly recommended that the science
computers be assigned static [P addresses by the DHCP server. This has
been rectified.

The video matrix display has at least on occasion during the FK003 cruise
contributed to loss of data. In this particular case, the last operator had left
the mouse icon position over the “Logging” button in SIS. When the next
operator wiggled the mouse to see what screen was active (a very common
occurrence in such an installation), the overly sensitive built-in mouse pad
on the keyboard reacted to the operator’s touch as a mouse click event and
subsequently caused the computer to stop logging data without the operator
even realizing what they had done. During the second cruise, we all slowly
learned to “leave the mouse pointer somewhere safe on the screen” when
leaving the video matrix. The video matrix is likely most useful for
monitoring of systems during which computer interaction is minimal. If
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watch standing is to be done with the multibeam systems, or for any other
system for that matter, it is recommended to use the dedicated workstations
at the aft end of the lab. This recommendation still applies.

Recommendations from 2013 System Review

1. Anupgrade to a more recent version of SIS is recommended for the next visit.
This would ideally entail a visit from a Kongsberg technician to perform the
upgrade and also would be timed to occur during a 2014 system check up
visit from UNH/CCOM.

2. MTs should familiarize themselves with new features of SVP Editor v.1.0.4.
Currently, only one of them has been shown the new features.

3. BIST tests should be routinely conducted (at least monthly). Meta data
should be noted at the time of the BIST if noise measurements are to be of
any use, e.g. ship speed, sea state/direction, wind speed/direction, water
depth, other acoustic equipment in operation at time of test. A file naming
convention should be established and followed. BIST output files should
automatically be backed up along with other multibeam data.

4. An investigation into whether or not the second Seapath MRU could be used
as a backup for the multibeams, without compromising its primary purpose,
should be done. A patch test should be conducted if this is possible such that
the angular offsets are known for this system in the event that it must be
used for the multibeams.

Conclusion

The transducer impedances are similar to baseline measurements with exception of
the EM710 transducer impedances. This latter potential issue is being examined
with the manufacturer but we do not feel, after consultation with the manufacturer,
that there is any cause for concern. Noise levels have not changed significantly since
the 2012 trials in “Science” mode. Review of the noise results by Tim Gates
indicates that there are some modules reporting higher noise levels compared to
measurements taken by Gates in early 2012 and may warrant a closer investigation
even though the system performance does not appear to have degraded. Despite
the uncertainty associated with the EM710 transducer impedances, the consistency
of achievable coverage relative to the 2012 results is a strong indicator that both
systems, as a whole, have not experienced any acoustic degradation over their first
year of life in terms of acoustic performance.

Calibration of the two systems was performed with much more ideal seafloor

imaging geometry compared to the 2012 patch test. The systems have been
updated with the new calibration results.
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Both multibeam systems provide bathymetric measurements that are in agreement
with the expected performances of the systems and that are consistent with
previous examinations. There is no evidence of degradation of ancillary sensor
performance since the previous accuracy tests. Furthermore, the EM710 “FM
wobble” data artifact identified in 2012 has indeed been corrected by increasing the
MRU'’s data output rate for the Doppler velocity corrections required for FM
waveforms.

Seabed imagery quality is good and is generally artifact free. There are residual
inter-sector imbalances with the EM302 despite the signal balancing routines
undertaken in 2012. The EM710 has slight signal imbalances, however, it is not
currently possible to correct for this using the same mechanism that is used for the
EM302. In both cases, the residual offsets are easily corrected in commercial
processing software.

As a whole, the two multibeam systems are in satisfactory working condition and
we do not anticipate any problems with either system for the 2013 mapping season.
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Appendix A — EM710 Noise Measurements

All figures in this section show self-noise level for the EM710 as measured using the
receiver hydrophones. The upper plots show the output as a function of receiver
module. The lower plots show the distribution of the same data along with the
median, geometric mean and linear mean. The geometric mean is the mean of the
dB values. The linear mean is the mean of the noise levels in linear intensity units
and then transformed back to dB.
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Appendix B — EM302 Noise Measurements

All figures in this section show self-noise level for the EM302 as measured using the
receiver hydrophones. The upper plots show the output as a function of receiver
module. The lower plots show the distribution of the same data along with the
median, geometric mean and linear mean. The geometric mean is the mean of the
dB values. The linear mean is the mean of the noise levels in linear intensity units
and then transformed back to dB.
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Appendix C— EM710 Accuracy Testing

All figures in this section show a scatter plot of depth differences between cross line
soundings and a reference surface in the lower half of the figure. The mean and
standard deviation is computed in 1° bins across the swath with the mean plotted as
a solid line and the standard deviation (1-0) plotted as dashed lines. Color-coding
corresponds to the transmission sectors, alternating in red-blue or magenta-cyan
across the swath. Red-blue indicates data from the first swath of the dual-swath
geometry and magenta-cyan is for the second swath of the dual-swath geometry.
The upper half of each plot shows the standard deviations (the dashed-lines in the
lower plot).
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Appendix D — EM302 Accuracy Testing

All figures in this section show a scatter plot of depth differences between cross line
soundings and a reference surface in the lower half of the figure. The mean and
standard deviation is computed in 1° bins across the swath with the mean plotted as
a solid line and the standard deviation (1-0) plotted as dashed lines. Color-coding
corresponds to the transmission sectors, alternating in red-blue or magenta-cyan
across the swath. Red-blue indicates data from the first swath of the dual-swath
geometry and magenta-cyan is for the second swath of the dual-swath geometry.
The upper half of each plot shows the standard deviations (the dashed-lines in the
lower plot).
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EM302 MEDIUM SINGLE

o
»

=
w

\ A L/

WUMW\/‘V \\ /\NN\

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70
Beam angle (deg)

o
—i
<

Depth Std. Dev (%w.d.)
P

0.0

| |
o -
(00} o

|
o
o

S

~
o

A

S
(¥
i
?
¢
Y
>

£
L

~ —
~—
-~ .’J// \
Ml ~ %4 AL s NN~
T ——— g

-
'ﬁ,\u-v‘ﬂh/ e i (Sadbba A

2 & !
PN N

o
o

Depth bias (%w.d.)
¢
}

0.8

1.0

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70
Beam angle (deg)

61



©
o

&
w

Depth Std. Dev (%w.d.)

0.0

Depth bias (%w.d.)

1.0

EM302 MEDIUM DUAL

/i

MW
RQ\\\M““\\/VuQ/PfV wﬁkXENXQ&\A

e N

4

'4(_‘\/

/|

-70 -60 -50 -40 -30 -20 -10 0O 10 20 30 40 50 60 70

Beam angle (deg)

A
/\
/ A
P 7 A
/./ 7
‘I\ A 'l’/' Va
M T R L AL Ll ~
- | :--:——- ““ !E\ Po =4 /
,’,é’ e _:’ X ‘.\ e RN
7 P RN
./ N

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70

Beam angle (deg)

62



©
o

EM302 DEEP CW DUAL

=
w
!

o
—_—

A
Al

Depth Std. Dev (%w.d.)

0.0

W‘\/\

i

KVJ\\/J ‘A,\ ’_,f

el Vit

-1.0

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70

Beam angle (deg)

-0.8

-0.6

-0.4

w.d.)

Yo

o™, <02

\
> Bl

-

0.0
0.2

H

NS
r’,-—

L~

// —JV
[ BN et A J""\P‘\"\"N-\-\--( /,‘/
T e o

0.4

e S—
™
N

0.6

Depth bias

0.8
1.0

-70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70

Beam angle (deg)

63



Depth bias (%w.d.)

Depth Std. Dev (%w.d.)

©
o

&
w

£
N

o
—

0.0

1.0
-0.8
-0.6
~0.4
0P
0.0
0.2
0.4
0.6
0.8
1.0

EM302 DEEP FM DUAL

\

N

AA

YA M Lo

4

L2
\asi

-70 -60 -50 -40 -30 -20 -10 O
Beam angle (deg)

10 20 30 40 50 60 70

A
G SRR
A P s vl
~ b S R ol =5 " /H‘\J
—V ik RN s e ,2 ‘JW.. i~ ""/'V
L e r. ,,.__‘—VA‘ .M“"‘\/-‘K - /::,7_,.~ B B e \
y M-‘ w\‘"v\.»l- ﬁal"‘/ \
/
v

-70 -60 -50 -40 -30 -20 -10 O
Beam angle (deg)

64

10 20 30 40 50 60 70



EM302 VERY DEEP FM
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Appendix F — EM710 Acoustic Imagery Quality

EM710 MEDIUM DUAL, beam 199
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EM710 DEEP CW DUAL, beam 199
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EM710 DEEP FM DUAL, beam 199
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EM710 VERY DEEP, beam 199
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EM710 EXTRA DEEP, beam 199
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Appendix G — EM302 Acoustic Imagery Quality

EM302 SHALLOW SINGLE, beam 215
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EM302 SHALLOW DUAL, beam 215
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EM302 MEDIUM SINGLE, beam 215
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EM302 MEDIUM DUAL, beam 215
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EM302 DEEP FM ENABLED, beam 215
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EM302 DEEP FM DISABLED, beam 215
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EM302 VERY DEEP FM, beam 215

77



	University of New Hampshire
	University of New Hampshire Scholars' Repository
	4-2-2013

	R/V Falkor Multibeam Echosounder System Review
	Jonathan Beaudoin
	Paul D. Johnson
	Ashton F. Flinders
	Recommended Citation


	REPORT_COVER
	20130304_Falkor_EM710_EM302_report.pdf

