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Multibeam volume acoustic backscatter imagery
and reverberation measurements in the northeastern
Gulf of Mexicoa)

Timothy C. Gallaudet and Christian P. de Moustier
Marine Physical Laboratory, Scripps Institution of Oceanography, Mail Code 0205,
8602 La Jolla Shores Drive, La Jolla, California 92037-0205

~Received 4 June 2001; revised 16 November 2001; accepted 4 February 2002!

Multibeam volume acoustic backscatter imagery and reverberation measurements are derived from
data collected in 200-m-deep waters in the northeastern Gulf of Mexico, with the Toroidal Volume
Search Sonar~TVSS!, a 68-kHz cylindrical sonar operated by the U.S. Navy’s Coastal System
Station. The TVSS’s 360-degree vertical imaging plane allows simultaneous identification of
multiple volume scattering sources and their discrimination from backscatter at the sea surface or
the seafloor. This imaging capability is used to construct a three-dimensional representation of a
pelagic fish school near the bottom. Scattering layers imaged in the mixed layer and upper
thermocline are attributed to assemblages of epipelagic zooplankton. The fine scale patchiness of
these scatterers is assessed with the two-dimensional variance spectra of vertical volume scattering
strength images in the upper and middle water column. Mean volume reverberation levels exhibit a
vertical directionality which is attributed to the volume scattering layers. Boundary echo sidelobe
interference and reverberation is shown to be the major limitation in obtaining bioacoustic data with
the TVSS. Because net tow and trawl samples were not collected with the acoustic data, the analysis
presented is based upon comparison to previous biologic surveys in the northeastern Gulf of Mexico
and reference to the bioacoustic literature. ©2002 Acoustical Society of America.
@DOI: 10.1121/1.1490597#

PACS numbers: 43.30.Ft, 43.30.Sf, 43.30.Vh@DLB#

I. INTRODUCTION

Demographic pressures, overharvesting of marine fish
stocks, and pollution are threatening marine ecosystems
worldwide and provide incentives to focus fisheries manage-
ment and plankton research efforts on conservation mea-
sures, thus requiring comprehensive knowledge of popula-
tion dynamics and habitat variability.2 Such knowledge may
be gained through ocean volume acoustic backscatter mea-
surements that have been used to study populations of fish
and plankton since the deep scattering layer was identified by
Eyring et al.3

Sonar echoes from volume scatterers are usually quanti-
fied using target strength~TS!, which is the ratio of the in-
tensity scattered by an object at a reference distance of 1 m,
to the incident intensity, and volume scattering strength
(SV), which is the target strength of a unit volume.4 For
volume scattering fromnV scatterers per unit volume each
with a mean differential scattering cross section^sbs&, SV

and TS are related by

TS510 log10̂ sbs&5SV210 log10~nV! ~dB!. ~1!

Typically, measurements ofSV with a high frequency sonar
are used to estimate abundance and/or biomass by estimating

^sbs& from trawl or net tow samples with an appropriate
scattering model, and using Eq.~1! to computenV . Such
efforts are difficult because marine ecosystems contain
multi-species, multi-size assemblages of organisms.

Another problem affecting these types of measurements
is the spatial variability of zooplankton and fish, which may
lead to large errors in abundance and biomass estimates ob-
tained with single beam sonars. Single beam, vertically ori-
ented echo-sounders have seen the most use in bioacoustic
applications,5 but horizontally directed sonars have been
used to characterize fish school structure, shape, and
movement,6–9 as well as zooplankton distributions.10,11

Multibeam echo-sounders have been used in only a few bioa-
coustic studies to observe the swimming behavior of indi-
vidual zooplankters,12 to demonstrate that vertical and lateral
vessel avoidance by fish negatively bias abundance estimates
derived from vertical echo-sounding sonars,13 and to provide
more precise mapping and abundance of pelagic fish stocks
in near-surface schools than can be obtained by vertical
echo-sounding.14 The use of multibeam sonars in place of
single-beam sonars for future bioacoustic surveys is war-
ranted by their increased coverage, which can improve
acoustic estimates of biomass and abundance and better char-
acterize spatial distributions of organisms.

In this context, we present volume acoustic backscatter
and reverberation measurements derived from data collected
by the U.S. Navy’s Toroidal Volume Search Sonar~TVSS!, a
68-kHz multibeam sonar capable of 360-degree imaging in a
vertical plane perpendicular to its axis. We take advantage of

a!Portions of this paper were presented in talks at the Fourth Annual Sym-
posium on Technology and the Mine Problem1, 13–16 March 2000,
Monterey, CA, the First Oceanic Imaging Conference, 2000, 3–5 May
2000, in Newport, RI, and Acoustical Society of America Meetings in
Seattle, WA, 20–26 June 1998, Berlin, Germany, 15–19 March 1999, and
Newport Beach, CA, 3–8 December 2000.
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the unique synoptic three-dimensional perspective afforded
by this sonar system to explore and characterize the spatial
and temporal structure of pelagic fish schools and the patchi-
ness of epipelagic zooplankton found in the northeastern
Gulf of Mexico. The data were collected during engineering
tests of the TVSS conducted by the U.S. Navy’s Coastal
System Station, Panama City, FL, in a 2-nm2 area centered at
29°308N, 86°308W. This is a relatively flat area on the con-
tinental shelf, with water depths ranging from 190 to 200 m,
situated roughly 65 nm southwest of Panama City, and 20
nm southeast of De Soto Canyon.

The TVSS includes separate cylindrical projector and
hydrophone arrays, with the same 0.53-m diameter, mounted
coaxially on a cylindrical tow body. The projector array has
32 elements equally spaced 11.25 degrees apart around the
cylinder and designed to produce a ‘‘toroidal’’ beampattern
that is meant to be omni-directional in the plane perpendicu-
lar to the cylinder’s axis~usually across-track! and 3.7 de-
grees wide at23 dB in any plane containing the cylinder’s
axis ~usually along-track!. The hydrophone array consists of
120 elements equally spaced every 3 degrees around the cyl-
inder. In the work presented here, beamforming of the hy-
drophone array yielded 120 receive beams, each 4.95 degrees
wide at23 dB and spaced 3 degrees apart to cover the full
360 degrees around the array in the plane perpendicular to
the array’s axis.

Using this multibeam geometry, we have adapted exist-
ing oceanic imaging techniques to construct acoustic back-
scatter imagery of horizontal and vertical planes in the ocean
volume ~Fig. 1!. Only vertical imagery is presented in this
study to characterize the spatial distributions of bioacoustic
scatterers and to partially discriminate between desired bioa-
coustic signals and volume or boundary reverberation. This

is not possible with conventional single- or dual-beam echo-
sounders because of the temporal lags introduced by the suc-
cessive transects required to cover a volume of ocean com-
parable to that sampled by the multibeam sonar on one track.
However, multibeam echo-sounders have important limita-
tions due to the beamforming process and our intent is to
demonstrate some of the capabilities and limitations of
multibeam sonars in bioacoustic applications.

We begin by describing the TVSS data and signal pro-
cessing methods that help to interpret the acoustic backscat-
ter images. Because net tow or trawl samples were not col-
lected in parallel with the acoustic data, our interpretations of
these images rely on comparison and reference to previous
biologic surveys in the northeastern Gulf of Mexico, and on
the general bioacoustic literature.

II. TVSS DATA

A. Data collection

The acoustic data presented here were collected on 9
November 1994 between 1026AM and 1131AM local time.
The wind speed and sea state recorded at 0658AM were 6
knots ~3 m/s! and 1.5, respectively. A CTD cast, taken at
0658AM approximately 100 m north of the location for run 1
~Fig. 2!, revealed the presence of a 24.8 °C isothermal mixed
layer extending to a depth of 49 m, a thermocline between 49
and 150 m depth, and a nearly isothermal layer above the
bottom with a temperature of 15.6 °C. The surface salinity
was 35.1 PSU, and the surface sound speed was 1534 m/s.
Historical data indicate a relatively weak circulation in the
region during fall months,15 which, with the light winds, sug-
gests that the surface currents were either weak or absent.

FIG. 1. The TVSS is designed for mine-hunting while deployed on an autonomous or unmanned underwater vehicle~AUV/UUV !. In this study, a towed
vehicle was used.~a! After transmission of a ‘‘toroidal’’ pulse, the sonar extracts the returned signal in directions spanning 360 degrees about the TVSS’s axis
~b!. This geometry is used to construct undersea imagery for multiple horizontal and vertical planes using data collected over successive transmit-receive
cycles~pings! ~c!. Only vertical imagery is presented in this study, wherex, y, andz correspond to across- and along-track directions relative to the towfish
and depth relative to the sea surface. The resolution of the TVSS data is defined by the dimensions of the ensonified volume in each direction~DXV , DYV ,
DZV!, which depend upon the range from the TVSS~R!, the transmitted beamwidth (uT), the receive beamwidth (uR), and the beam angle~u!.
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The TVSS was towed at a depth of 78 m, approximately
735 m astern a ship moving at a nearly constant speed of 4.1
m/s. Three runs of 100 consecutive pings of acoustic back-
scatter data, from a 200ms CW pulse of 68 kHz transmitted
at 1 Hz recorded during the tests, are analyzed here. Towfish
roll, pitch, heading, speed, and depth were sampled at 1 Hz
~once per ping!. Further information regarding the TVSS, the
data collection, and the signal processing is described in Ref.
16.

B. Environmental context

Because we lacked the net tow and trawl data required
to verify that biologic sources are responsible for scattering
features seen in our data, we rely on historical and concur-
rent data for evidence. The abundance and distribution of
pelagic fish in the Gulf of Mexico~GOM! were investigated
by the US National Marine Fisheries Service~NMFS! during
15 cruises in the spring and fall seasons between 1988 and
1996.17 Trawling was performed only during daylight hours
near the bottom, with the highest concentration of sampling
stations centered approximately 10 nm northwest of the
TVSS experiment site. For several species, the highest abun-
dances were sampled at four sites within 1 nm of the TVSS
experiment site. Thus, the NMFS survey encompassed the
year, season, time of day, geographic location, and depth
corresponding to the collection of the TVSS acoustic data.

Zooplankton species known to scatter sound near 68
kHz, such as euphausiids, have been observed in the north-
eastern and central GOM as well. Hopkins’ observations in a
region about 120 nm south of the TVSS experiment showed
that zooplankton biomass was concentrated in the upper 50
m of the water column.18 Zimmerman and Biggs observed
acoustic scattering due to zooplankton in warm- and cold-
core eddies in the eastern central GOM during June 1995
using a 153-kHz acoustic Doppler current profiler.19 Also in
the eastern central GOM, Hopkinset al. examined the land-
ward distributions of zooplankton between May and June
1977, and found many oceanic species distributed across the
Florida shelf.20 Ortner et al. investigated the vertical distri-
butions of zooplankton during January and February 1981,
and found zooplankton distributions to be closely tied to
mixed layer depth.21 Ortner et al. reported observations of
euphausiids and decapod shrimp in a region about 50 nm
southeast of the TVSS experiment site.22

C. Processing methods

The processing scheme that we have developed for the
TVSS acoustic data is designed for conformal arrays and
includes quadrature sampling, resampled amplitude shading,
element-pattern compensation, and broadside beamforming
on phase-compensated, overlapping subarrays with asym-
metric projected element spacings.23 This procedure permits
split aperture processing of the beamformed output, which is
performed because the processed data also were used to
study acoustic backscatter from the ocean boundaries, and
the phase zero-crossing of the output phasor is the most ac-
curate means to detect the arrival time of boundary reflec-
tions on the maximum response axis of the beam.24,25

For each ping, the split aperture process is used to form
a phasorP(u,t) for a given beam directionu and time
sample t every 3 degrees for directions spanning the 360
degrees around the TVSS axis. The magnitude ofP(u,t) has
units of volts2, and is converted to squared echo amplitude
according to

10 log10~EL2~u,t !!510 log10~
1
2uP~u,t !u!

2RVR2FG2DI2TVG, ~2!

where RVR52168 dBre:1 Vrms/mPa is the receive voltage
response of each hydrophone, FG529 dB is the preamplifier
fixed gain, DI513 dB is the array gain associated with the
beamforming and split aperture processing, and TVG is the
system time-varying gain. The left side of Eq.~2! is equiva-
lent to the plane wave reverberation level~RL! in the active
sonar equation,4 which we use to compute volume scattering
strength:

SV5RL2SL12TL210 log10V

with TL520 log10R1aR, ~3!

whereR is the range from the TVSS determined fromt andu
using constant gradient ray-tracing techniques, SL
5216.8 dB re:1 mPa@1 m is the calibrated TVSS source
level,a50.024 dB/m, andV is the volume ensonified by the
transmitted pulse within the receive beam.

Volume scattering strength images were constructed by
first computingSV from Eqs. ~2! and ~3! for each beam-
formed sample in each ping, yielding 120 backscattering
strength times series. These may be displayed together as a
vertical slice of volume acoustic scattering strength in polar
coordinates of angle versus time~Fig. 3!. In this representa-
tion, echoes from the sea surface and seafloor appear as the
high backscatter, horizontal features. Scattering from reso-
nant microbubbles in the towship’s wake and from bubble
clouds formed by breaking ship waves are responsible for the
high backscattering strength features near the sea surface.
Other scattering structures are apparent upon adjusting the
dynamic range of the display, and these will be discussed in
Sec. III.

Volume scattering strength images in the plane parallel
to the towfish’s direction of travel were formed by extracting
SV data recorded over successive pings. Echo-integrated ver-
tical volume backscattering strength images on either side of

FIG. 2. TVSS track lines for three consecutive runs. The data presented in
this paper are processed from pings 100–199 in each of the three runs. In the
figure, north is upward.
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the towfish were constructed with a time gatedt correspond-
ing to a 1.4-m depth interval, and an along-track averaging
interval of three pings.

D. TVSS beam geometry

The sampling and resolution characteristics of the back-
scattering strength images are determined by the acoustic
geometry of each TVSS ping. The angular sample spacing
between the maximum response axes of adjacent beams in
Fig. 3 isus53 degrees, whereas the quadrature sampled time
increment within each beam ists5160ms, which corre-
sponds to a 12-cm sampling interval assuming a sound speed
in seawaterc51500 m/s. With the TVSS pulse lengthtp

5200ms, the bandwidthW50.88/tp54.4 kHz yields a
nominal range resolutionDR5c/2W517 cm.

The volumetric resolution in each ping is determined by
the spatial dimensions of the volume (V) ensonified by the
TVSS transmit pulse within each receive beam~Fig. 1!. We
computeV as the ellipsoidal shell section formed from the
intersection of the pulse, the transmit beam pattern, and the
receive beam pattern at each sampling point:

V5 2
3 uT sin~uR/2!@R832R3# ~m3!, ~4!

whereR is the range from the center of the TVSS in meters,
R85R1DR, the23-dB receive beamwidth (uR) is 4.95 de-
grees, and the23-dB transmit beamwidth (uT) is 3.7 de-
grees. The spatial dimensions ofV in the across-track, along-
track, and vertical dimensions~DxV , DyV , DzV , Fig. 1!
vary with range. The along-track dimension is the same for
all beam anglesu:

DyV52R8 sin~uT/2!. ~5!

However, the across-track and vertical dimensions ofV vary
with range andua , which is defined in relation tou in Fig. 1
asua5u for u50 to 90 degrees;ua5u1802uu for u591 to
270 degrees; andua5(3602u) for u5271 to 359 degrees.
Thus, for volume cells in beams directed towards zenith and
nadir, (ua50 degrees)

DxV52R8 sin~uR/2! ~m!,
~6a!

DzV5DR1R~12cos~uR/2!! ~m!,

and for volume cells in horizontal beams, (ua590 degrees)

DxV5DR1R„12cos~uR/2!… ~m!,
~6b!

DzV52R sin~uR/2! ~m!,

whereDxV exceeds the range resolution atua590 degrees,
and DzV exceedsDR at ua50 degrees because of the cur-
vature of the wavefront. For angles between the horizontal
and vertical, thex andz dimensions ofV can be expressed as

DxV52R sin~uR/2!cosua1DR sin~ua1uR/2!,
~6c!

DzV52R sin~uR/2!sinua1DR cos~ua2uR/2!

for 0 ,ua,902uR/2.

Samples in adjacent beams overlap becauseus,uR/2.
The overlapping volume increases with range:

Vol5
2
3uT sin„~uR2us!/2…@R832R3# ~m3!

(adjacent beams), ~7!

whereas the percent overlapping volume is

VPol5@sin„~uR2us!/2…/sin~uR/2!#3100%

(adjacent beams), ~8!

yielding a range-independent volume overlapping percentage
of 39.4% between adjacent TVSS beams within the same
ping. Volumes ensonified on successive pings in the same
beam angle overlapped and increased with range beyond 62
m due to the towfish’s speed ofVtvss54.1 m/s and23-dB
transmit beamwidthuT53.7 degrees.

The backscatter images in this study were constructed
using the sidescanning techniques described in Ref. 24,
where samples of acoustic backscatter are extracted for the
time and angle pairs that correspond to the desired horizontal
or vertical plane~Fig. 1!. Between discrete beam angles,
samples are interpolated in time increments corresponding to
the quadrature sampling intervalts . Thus, the sample spac-
ings in the images depend uponts , as well asR, Vtvss, and
ua . The along-track sample spacing is the ping separation
distance dyV5Dyping, whereas across-track and vertical
sample spacings are

dxV5cts/2 sinua , ~m! for ua.uR ,
~9!

dzV5cts/2 cosua , ~m! for ua,90°2uR.

A consequence of the sidescanning procedure is that the
number of samples per beam angle increases asua decreases.

FIG. 3. One TVSS ping displayed as a vertical slice of acoustic volume
scattering strength (SV) in polar coordinates of angle versus two-way travel
time ~t!. Labels refer to the following features: TW—towship’s wake;
OW—towship’s wake generated during previous run; BC—bubble cloud
generated by a breaking bow wave from the towship; B—seafloor echo;
S—sea surface echo; SB—surface-bottom~multiple! echo; BS—bottom-
surface~multiple! echo; SBS—surface-bottom-surface~multiple! echo. The
maximum two-way travel timet represented by the data in this figure is 0.54
s.
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E. System-related sources of error

A large source of error in our measurements was the
angular variation in the transmitted beampattern. A maxi-
mum deviation of29 dB from the calibrated source level
existed when hydrostatic tests were performed on the TVSS
a year before the data collection. We were unable to correct
for these variations because the actual beampattern may have
changed slightly during the year between the hydrostatic
testing and the TVSS deployment.24

The beampatterns of the 120 individual hydrophones in-
troduced another source of error, because they were not iden-
tical, and their RVRs, FGs, and TVGs varied as much as62
dB from average values. To simplify the beamforming, we
used an average of the calibrated hydrophone sensitivity val-
ues of 2168 dB re:1Vrms/mPa, and we approximated the
beampatterns of individual hydrophones with a cardioid-
shaped magnitude response that closely matched that pro-
vided by the manufacturer. In the absence of hydrophone
phase response data, we approximated the phase pattern for
each element with a function proportional to the sin2 of the
angle between the maximum response axes of the element
and the subarray containing it. We used these response pat-
terns because they successfully removed pointing errors
which were observed in previous beamforming efforts with
the TVSS.23

Computer simulations, which used the TVSS transmit
pattern and towfish attitude data for each run, indicated that
the TVSS array beampatterns produced a maximum bias er-
ror of 27 dB and a maximum random error of63.3 dB in
the TVSS data. After echo-integrating and averaging over
successive pings, these values were reduced to approxi-
mately25 dB for the bias error and61 dB for the random
error.

Another important limitation of the data presented here
is that boundary echoes at normal incidence~u50 or 180
degrees, Fig. 3!, received through the sidelobes of beams
directed towards the volume, contaminated the volume back-
scatter received in their mainlobes. This problem is illus-
trated in the returns for a single ping~Fig. 3! and for a
97-ping average@Fig. 4~a!#, where boundary echoes appear
as high backscatter circular features tangent to the sea sur-
face and seafloor.

The linear bands extending diagonally from the bottom
into the volume in Fig. 4~a! also result from bottom sidelobe
returns. We verified through computer simulations that their
unique structure is a consequence of the uniform 3-degree
spacing between the receive beams, and of the nonuniform
sidelobe spacing within each receive beampattern. The simu-
lation results appear in Fig. 4~b! as dashed lines that match
closely the underlying linear bands and represent the times
and angles of each volume beam with a sidelobe directed at
the bottom during the time of the bottom echo arrival. Minor
differences probably result from uncertainties in the tow-
fish’s attitude.24

This sidelobe interference is somewhat enhanced by our
choice of a resampled Dolph–Chebyshev amplitude shading
window designed to produce a nearly uniform sidelobe level
between228 and230 dB for all the receive beampatterns.23

Lower sidelobe levels are achievable, but the corresponding

increase in mainlobe beam width would degrade the spatial
resolution in the images. Due to the strong boundary echo
sidelobe returns in the TVSS data, sidelobe cancellation
methods are necessary to use data in the upward looking
beams beyond slant ranges equal to the towfish’s depth~;78
m!, and in the downward looking beams beyond slant ranges
equal to the towfish’s altitude~;115 m!.

One additional limitation of the data presented here is
the void region with a radius of;40 m around the TVSS
~Figs. 3 and 4! caused by a fixed 53-ms blanking delay be-
tween transmission and the start of digitization. This was
done because the TVSS deployment was conducted prima-
rily to evaluate the sonar’s mine-detection capability be-
tween 50 and 750 m, so the void region helped to reduce the
large amount of data collected by the sonar. This feature of
the TVSS is not a problem for future bioacoustic applications
because the time interval between transmit and receive is
adjustable, so that the void region may be reduced.

III. IMAGERY RESULTS AND INTERPRETATION

A. Fish schools

Along-track images@Figs. 5~a! and~c!# were formed by
using a vertical echo-sounding procedure to extract backscat-
ter data in the down-looking beams at each along-track sam-
pling point. Across-track sections@Figs. 5~b! and ~d!# were
formed by using the same procedure as that used to create
Fig. 3. Based on the nearly concurrent NMFS trawl data, the
prominent backscatter features centered at (y5285 m, z
5190 m) in Fig. 5~a! and (y5340 m, z5200 m), in Fig.

FIG. 4. ~a! and~b! Average volume acoustic scattering strength of 97 pings
collected during run 2.~b! Computer simulations determined the time-angle
pairs ~dashed lines! for which a sidelobe of a beam pointing in the ocean
volume was directed towards the bottom at the time of arrival of each
bottom echo.
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5~c! are attributed to schools of small pelagic fish. Together,
the orthogonal image pairs in Fig. 5 characterize the size and
scattering characteristics of the two fish schools~Table I!.
Although the images are limited by surface echo sidelobe
interference and saturated samples, these artifacts were dis-
tinguished from biologic scatters by their arclike across-track
structure@Figs. 5~b! and ~d!#. Had we only constructed the
along-track sections@Figs. 5~a! and~c!#, these samples might
have been incorrectly attributed to the acoustic backscatter
from individual fish.

We constructed a 3D shape representation of the school
in Figs. 5~a! and~b! by processing multiple along-track~x,z!
sections over successive pings. Bottom detection processing
was used first to discriminate between acoustic backscatter
from the seafloor and from the school.24 A threshold of 5 dB
over the ambient scattering strength level was applied to de-
tect samples in the school, and their corresponding~x,y,z!
positions were determined using constant gradient ray trac-
ing. The result@Fig. 6~a!# resembles a ‘‘stack’’ of elongated
‘‘tubes’’ extending across-track, with a few apparently sus-
pended above the ‘‘stack.’’ These features are a consequence
of the TVSS sampling and resolution characteristics that are
fundamental limitations for any sonar~cf. Ref. 7!. The reso-
lution of each sample is defined by the spatial dimensions of
the ensonified volume@Fig. 1~c!#, which areDxV59.9 m,
DyV57.4 m, andDzV50.28 m at the school’s center. There-
fore, the elongated features in Fig. 6~a! are most likely re-
turns from individual fish above the center of the school,
because ensonified volumes in adjacent beams overlap by
39.4%, and beams adjacent to those directed towards large
scatterers or boundaries exhibit a significant sidelobe re-
sponse. Sidelobe response from the fish school appears in
Fig. 6~b! as light blue samples at depths of 180–185 m, 40 m
across-track on either side of center. These samples are about
5 dB above the ambient level and immediately precede the
arc corresponding to the bottom echo sidelobe response.

FIG. 5. Vertical volume acoustic backscattering strength (SV) images of two near bottom fish schools in run 1@~a!, ~b!#, and run 2@~c!, ~d!#. The seafloor is
the high backscatter, horizontal feature atz5193 m in~a! and~b!, and 202 m in~c! and~d!. The horizontal feature with moderately high backscatter at 158-m
depth in~a! is the sidelobe response of the sea surface echo, seen also in the individual~Fig. 3! and averaged~Fig. 4! ping data. The randomly distributed
samples in~a! whereSV.240 dB in the water column are signals that were saturated in the TVSS data acquisition system electronics. These appear as the
thin arcs in Fig. 5~b! above and below the sea surface echo sidelobe return.

TABLE I. Fish school data corresponding to Figs. 5 and 6. The seafloor
backscattering strengthSB was computed and analyzed in Ref. 24. The
target strength~TS! values are for ensonified volumes, and not individual
fish.

Run 1 Run 2

Maximum height above seafloor~m! 7.1 4.7
Maximum along-track dimension~m! 42 32
Maximum across-track dimension~m! 31 26

Maximum TS~dB! 224.3 228.9
Mean TS~dB! 245.5 247.3
Maximum SV ~dB! 231.9 240.1
MeanSV ~dB! 256.1 259.8

MeanSB ~dB! at normal incidence 28.0 29.7
Standard deviation ofSB ~dB! at normal incidence 2.3 2.0
Normal incidenceSB ~dB! below fish school 28.1 29.9
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To compensate for these artifacts and produce a shape
characterization potentially more representative of the actual
fish school, a 33333-sample moving average filter was ap-
plied to the scattering strength samples in and around the
school. Filtered samples with scattering strengths greater
than 5 dB above the ambient scattering strength were re-
tained, yielding an oblong volumetric shape that extends
slightly diagonally to the across-track direction@Fig. 6~b!#.
The shape’s maximum length is three times its maximum
width and over six times its maximum height~Table I!. In
this representation, the school appears to be concentrated
near the bottom, which was generally flat with a mean depth
of 193 m in this run. Although the thresholds and filter di-
mensions were subjectively chosen and the representation

does not account for relative motion between the school and
the TVSS, the school shape in Fig. 6~b! is generally similar
to those observed for other schools of small pelagic fish near
the bottom during daytime~cf. Ref. 26!.

With our limited data, we have no way of identifying the
species of fish responsible for the enhanced volume acoustic
backscatter seen in Fig. 5. However, three species represent-
ing 73% of the total catch between 150 and 200 m in the
NMFS trawls could be considered candidates: the round her-
ring ~Etrumeus teres!, the rough scad~Trachurus lathami!,
and the Gulf butterfish~Peprilus burti!. The latter is the least
likely candidate because it does not have a swimbladder for
sizes greater than 75 mm.27 The rough scad is a good candi-
date because its maximum observed length was 75.8 cm, and
there was a tendency for the largest fish of most species to be
found deeper than 150-m depth. Nonetheless, we favor the
round herring~E. teres! as the most likely candidate because
it was the most abundant species caught in the NMFS trawls
near the TVSS experiment site and over all stations between
150- and 200-m depths, with an average catch rate of 2341/h
for the entire GOM. Similar inferences were made by Nero
et al.26 in their detailed acoustic study of schooling fish
about 3 nm southwest of the TVSS experiment site with a
38-kHz echo-sounder. They concluded thatE. tereswas re-
sponsible for the features in their acoustic backscatter data
because of the tendency of this species to form compact
schools near the bottom during the day, and ascend to the
middle of the water column and disperse at night.

The acoustic characteristics of the schools in the TVSS
data are generally comparable to those expected from small
pelagic fish. For example,E. tereslengths recorded during
the NMFS survey averaged 13.2 cm~L/l56 at 68 kHz! and
had a maximum of 51.2 cm, corresponding respectively to
mean and maximum target strengths of242 and231 dB
according to Love’s model,28 or 249.5 and237.5 dB using
Foote’s29 empirical relation for clupeoids~herring and sprat!
(TS520 log10L271.9 dB). The mean and maximum target
strengths of ensonified volumes within the two schools
~Table I! span these model predictions, suggesting that small
pelagic fish within individual volume cells are a possible
source for the observed data. However, this is only conjec-
ture because physical capture was not performed during the
acoustic data collection.

The two- and three-dimensional~2D/3D! characteriza-
tions of near-bottom fish schools derived from the TVSS data
demonstrate the potential advantages and limitations of
multibeam sonars in fisheries acoustics. Two-dimensional
characterizations of schooling,7 diel migration,30 seasonal
migration,6 and feeding26 have been useful in understanding
fish behavior. But, as far as we know, the economic and
scientific advantages of multibeam sonars for 3D character-
ization of fish schools have only been suggested and not
documented.31 Because fish distributions are heterogeneous,
further 3D analyses may provide important information
about the structure and composition of aggregations not
available in 2D studies.

FIG. 6. ~a! Three-dimensional representation of the fish school detected in
run 1 @Figs. 5~a! and ~b!#. The thin, elongated features are volume cells in
adjacent, overlapping beams in which fish were detected.~b! Volumetric
representation of the school after filtering the samples in and around the
school with a 33333 moving average filter and thresholding the output 5
dB above the ambient scattering strength values.
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B. Volume scattering layers

We constructed two types of volume backscattering
strength images from the TVSS data collected in the middle
and upper water column, and both revealed distinct scatter-
ing layers in the upper thermocline and at the base of the
mixed layer. The first type of these images@Fig. 7~a!# was
formed by averaging 97 pings along the length of run 2~Fig.
2!. The figure also shows the sidelobe response of the surface
echo for beams directed away from zenith, and the high
backscatter near zenith due to resonant microbubbles in the
towship’s wake.25

The second type of image consisted of vertical slices of
volume acoustic backscattering strength formed along-track
on each side of the TVSS by echo-integrating between 30-
and 130-m depth, and then averaging in three-ping intervals
along-track~Fig. 10!. In the absence of net and trawl data,
historical data suggest that epipelagic zooplankton, and to a
lesser extent, micronekton, are the sources for the scattering
layers, particularly the previously cited studies which
showed that zooplankton distributions in the GOM are cen-
tered near the mixed layer depth and upper 50 m of the water
column.18,21

Outside the Gulf of Mexico, the results of other acoustic
studies using single-frequency sonars near 68 kHz generally
support our hypothesis. Pluddemann and Pinkel30 observed
the diel migration of scattering layers in the eastern North
Pacific with a 67-kHz Doppler sonar, and used Johnson’s32

fluid sphere model to reason that the majority of scattering in
their data was due to organisms with equivalent spherical
radii 0.1 to 0.4 cm, and lengths 0.5 to 2.0 cm, which includes
micronekton and large zooplankton such as decapod shrimp
and euphausiids. However, their reasoning assumed that the
animals were well described by the fluid sphere model be-
cause they also lacked coincidentin situ data.

The 70-kHz results of Stantonet al.33 are more insight-
ful because they collected mid-water trawl samples and com-
pared them to their acoustic data. The peak scattering
strengths in their data were 1–5 dB lower than those ob-
served during the TVSS experiment~Table II! and were at-

tributed to fish or large numbers of arthropods, including
euphausiids and shrimp. Their scattering strength predictions
were based on Love’s34 model for fish and Johnson’s32 model
for arthropods and were within 5 dB of those measured
acoustically. Because their scattering strengths were compa-
rable to those measured in the scattering layers by the TVSS,
it is likely that the TVSS data also were influenced by zoop-
lankton and micronekton.

One of the largest sources of error in biomass estimates
of oceanic zooplankton is their fine-scale patchiness~i.e.,
spatial variability on scale of 1 m to 1 km!, so we examined
this aspect of the scattering layers in the TVSS data. Most
studies of zooplankton patchiness have relied on one-
dimensional variance spectra or patch-finding methods,
where ‘‘patch’’ is defined by some arbitrary criteria.35,36

Wiebe’s37 definition of a patch as ‘‘a concentration of indi-
viduals exceeding the central value in the data set’’ implies
that patch sizes vary with the length scales covered by the
data set, the ‘‘window’’ of samples over which the patch is
determined, and the threshold concentration beyond which a
patch is defined. Nero and Magnuson36 used two-
dimensional acoustic transects of the Gulf Stream to illus-
trate the dependencies of patch size and internal patch char-
acteristics on threshold values and window size. With
knowledge of the water mass boundaries and characteristics
in their data set, they were able to determine the thresholds
and window sizes which produced patches that best repre-
sented the finescale features of interest. The limited coverage
and in situ data in our experiment prevented us from using
their approach without a large degree of subjectivity, so we
characterized the patchiness of the scattering layer data by
estimating the 2D variance spectra from the volume scatter-
ing coefficients corresponding to the sixSV images in Fig. 8
~see the Appendix!.

The average 2D variance spectrum~Fig. 9! reveals the
dominant scales of variability in the TVSS scattering layer
data. Vertical variability is distributed over a relatively wide
portion of the available range of spatial frequencies, with
corresponding length scales of 8–33 m. These values are
close to the scattering layer thicknesses in Figs. 7 and 8.

FIG. 7. ~a! This 97-ping average for
run 2 reveals scattering layers between
40- and 80-m depth. These depths
comprised the base of the mixed layer
and upper thermocline, which was
well described by the sound speed pro-
file ~b! obtained 100 m north of the
location for run 1.
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Horizontal variability is confined to a relatively narrow por-
tion of the range of available spatial frequencies, with corre-
sponding length scales of 30–100 m. These values are con-
sistent with other upper water column observations of
zooplankton patch lengths~cf. Refs. 36 and 37!. The two
dominant peaks in the region near the horizontal spatial fre-
quency ~m! of 0.02 m21 and between the vertical spatial
frequencies~n! of 0.03 and 0.09 m21 may indicate a coupling
between the vertical and horizontal variability at the domi-
nant horizontal scale of 50 m. Greenlaw and Pearcy38 used a
20-kHz sonar to suggest that such a phenomenon affected the
distributions of mesopelagic micronekton off Oregon, but
they based their hypothesis on separate one-dimensional ver-
tical and horizontal variance spectra. The two-dimensional
spectrum in Fig. 9 provides evidence for this type of cou-
pling in the TVSS scattering layer data.

The average variance spectra for each run~Fig. 10!
show that the patterns in the individual images are similar,
but the magnitudes vary with mean scattering strengths. The
spectral levels from imagery on the left side of the TVSS
always exceed their counterparts on the right side because a
hydrophone on the right side of the TVSS failed during the
experiment, yielding a decreased gain on the right side of the
array. The spectral levels for run 2 were half an order of
magnitude lower than those for runs 1 and 3, suggesting that
a larger scale of variability might exist which could not be
resolved by the spectra in each run. These differences are
most likely due to patches longer than 1 km because the
three parallel runs were roughly 3.6 km long and spaced 200
m apart~Fig. 2!, and coarse scale@O(1 – 100 km)# horizontal
patchiness of zooplankton is common.36,39

Despite the limitations of boundary echo sidelobe inter-
ference, we contend that the multibeam geometry of the
TVSS provides a bioacoustic remote sensing capability su-
perior to that of the conventional single beam echo-sounder.
Because distributions of marine organisms vary in four di-
mensions~x, y, z, t!, they can be sampled more completely by
a multibeam sonar system that provides quasi-synoptic cov-
erage through simultaneous horizontal and vertical sound-
ings.

Multibeam systems such as the TVSS also are perfectly
suited for the type of three-dimensional visualizations of bio-
logical scattering fields presented in Greenet al.40 Valuable
qualitative and quantitative bioacoustic assessments, which
have been mostly studied with single-beam systems, could
be obtained from images like those in Fig. 8 with their 2D-
point-kriging/3D-gridding techniques. TVSS data collected
over the same track at various intervals~hours, days, weeks!
could be used to characterize the 4D spatiotemporal dynam-
ics of diel migration, interaction with dynamic features, and
seasonal migration. In the future, we envision merging the
multibeam geometry with a multifrequency or broadband ca-
pability to provide information regarding the 4D dynamics of
species interactions and community structure that is pres-
ently unobtainable.

C. Mean volume reverberation

High-frequency acoustical scattering from zooplankton
is important in non-bioacoustic applications because it can
be a significant component of the total volume reverberation
level. To quantify this for the TVSS experiment site, we used

TABLE II. Data computed from the mean profiles of echo-integrated volume scattering strength in Fig. 8,
wherex,0 m was left of the towfish’s track. The target strength~TS! values are for ensonified volumes, and not
individual scatterers.

Run 1 Run 2 Run 3

x5247 m x547 m x5247 m x547 m x5247 m x547 m

Layer 1

depth~m! ¯ ¯ 30 31 33 35
thickness~m! ¯ ¯ 9 11 14 18
maximumSV ~dB! ¯ ¯ 267.5 264.1 263.2 264.1
depth of maximumSV ~m! ¯ ¯ 29 35.5 30 30
maximum TS~dB! ¯ ¯ 262.3 258.5 257.5 258.0
depth of maximum TS~m! ¯ ¯ 29 35.5 29 30

Layer 2

depth~m! 40 41 47 49 58 60
thickness~m! 28 25 21 16 29 22
maximumSV ~dB! 261.5 261.5 264.1 263.5 261.5 262.0
depth of maximumSV ~m! 49 33 50.5 53 55 60
maximum TS~dB! 262.1 256.3 259.5 259.5 257.4 258.1
depth of maximum TS~dB! 39 33 50.5 53 50.5 60

Layer 3

depth~m! 70 76 70 74 ¯ ¯

thickness~m! 27 22 23 22 ¯ ¯

maximumSV ~dB! 259.5 259.0 264.4 266.2 ¯ ¯

depth of maximumSV ~m! 69 81 69 75 ¯ ¯

maximum TS~dB! 256.5 256.5 261.5 264.3 ¯ ¯

depth of maximum TS~m! 69 81 69 75.5 ¯ ¯
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Eq. ~2! to compute reverberation levels~RL! in each beam
angle and averaged them over all pings and samples prior to
the first echo from the township’s wake. Pings which suf-
fered from saturation at recording time were not used in
computing the averages, so the number of pings used to av-
erage RL was less than 100 in each run. The average rever-

beration levels (RL) for the three TVSS runs~Fig. 11! ex-
hibit a similar angular dependence, with reverberation levels
over 10 dB higher in the beams directed towards the sea
surface than those directed towards the bottom~Table III!.
Comparison between the image in Fig. 8 and the plots in Fig.
11 indicates that the scattering layers between 40- and 80-m

FIG. 8. ~a!–~c! Along-track vertical sections of echo-integrated volume acoustic backscattering strength (SV) from data 47 m across-track to the left and right
of the towfish~respectively top and bottom image in each run!. The corresponding mean (^SV&) profiles averaged over the number of usable pings (Np) in
each run are displayed to the right. Pings in which an excessive number of samples were saturated were removed from the images and not used in the averages
to prevent upward biases in theSV values.Np598, 97, and 99 for runs 1, 2, and 3, respectively.
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depth, directly above the TVSS are the primary cause for the
vertical directionality of the mean volume reverberation lev-
els, as well as the relative peaks near 290 and 70 degrees in
each run. The smaller peaks and nulls inRL correspond to
peaks and nulls in the transmit beampattern.

Figure 11 directly quantifies the angular-dependent noise
floor for non-bioacoustic applications of these TVSS data.
The minimum value in the downlooking beams corresponds
to a minimumSV measurable by the TVSS of275 dB. The
plots in Fig. 11 also emphasize that detection near the surface
will be more difficult than near the bottom. Although we can
expect similar results in many shallow water environments,
the shape ofRL will vary with changes in scattering layer
depths and thicknesses, as well as with the sonar’s depth,
beampattern, source level, and receiver characteristics. This
information is as important in Naval applications~target de-
tection! as in acoustic studies of the sea surface, seafloor,
air-sea interaction, and mixing processes. A potential appli-
cation of the TVSS in a passive mode would be to image the
ambient noise field of the sea surface to determine the spatial
characteristics of breaking waves and the time variability of
the sea surface wave spectrum.41

FIG. 9. The average of the six two-dimensional variance spectra of volume
scattering coefficients corresponding to the images in Figs. 8~a!–~c!. The
Appendix describes the calculations, which included a two-dimensional
Hanning window to reduce sidelobe leakage. The maximum and minimum
length scales resolved are 2.8 and 50 m in the vertical, and 8 and 205 m in
the horizontal.

FIG. 10. Log-log plots of~a! horizontal variance spectra averaged over all vertical spatial frequencies in the two-dimensional spectra computed from each
image in Fig. 8; L and R refer to images formed 47 m to the left and right side of the TVSS, respectively;~b! vertical variance spectra averaged over all
horizontal spatial frequencies;~c! average horizontal, and~d! vertical variance spectrum computed from~a! and ~b!, respectively.
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D. Environmental sources of uncertainty

The most significant environmental source of uncer-
tainty was the boundary echo sidelobe interference illustrated
in Figs. 3 and 4. The scattering layer data~Table II! were not
affected because we limited the slant range coverage of Fig.
8 to distances shorter than the first echo from the towship’s
wake. Although the fish schoolSV and TS data~Table I! were

obtained after the wake and surface echoes, analysis of the
scattering strength time series in beams directed towards the
fish schools showed that the upward bias in the fish school
TS andSV due to surface reverberation was no greater than
0.5 dB. This was fortunate, because the fish school echoes
would have been significantly biased if they were closer to
the TVSS or if the TVSS were towed at a greater depth,
particularly if they were received at the same time as the
surface echo. This illustrates that, in any shallow water
multibeam application, the extent to which the data are lim-
ited by boundary echo sidelobe interference depends on the
experimental geometry. Although this problem was enhanced
in our results because the TVSS operated with 360 degree
ensonification in the vertical plane perpendicular to the array
axis, it could be reduced if the TVSS ensonified in discrete
angular sectors, each electronically scanned over several
pings to cover the 360 degrees about the array’s axis.

There was some uncertainty regarding the sound speed
used in this study because only one CTD cast was obtained
about 100 m north of the location for run 1~Fig. 2!, approxi-
mately 4.5 h prior to the acoustic data collection. Any spatial
variability in the local sound speed environment would have
produced distortions in the processed imagery, hence errors
in the scattering layer depth and thickness estimates~Table
II !, and fish school shape representation~Fig. 6!. To evaluate
the presence and effects of variability in the local sound
speed environment, we processed seafloor bathymetry and
sea surface relief maps using the sound speed profile in Fig.
7~b! and constant gradient ray-tracing methods, then com-
pared them to known environmental data.24,25 If the sound
speed profile were not representative of the local sound
speed environment, uncompensated ray bending would pro-
duce errors in the echo arrival angles, causing the sea surface
relief maps and bathymetry to ‘‘curl’’ upward or downward
in a symmetric manner about the track’s centerline. Because
the processed bathymetry was consistent with that previously
obtained during bathymetric surveys performed by the Naval
Oceanographic Office, and the relatively flat sea surface re-
lief maps were consistent with the calm conditions observed
during the experiment, we deemed sound speed errors negli-
gible.

Conditions near the seafloor that may adversely affect
the acoustic backscatter from near-bottom fish include seaf-
loor relief, vegetation, and suspended sediment, but none
was seen to influence our results. As shown in Fig. 5, the

FIG. 11. Np-ping average of volume reverberation levels (RL(u)) ~dB! for
runs 1–3@~a!–~c!#. u50 and 180 degrees are respectively the towfish’s
zenith and nadir, facing the towfish’s direction of travel.

TABLE III. Average volume reverberation characteristics from Fig. 11, and
computed overNp pings.RLmax is the maximum over all anglesu at umax,
andRLmin is the minimum atumin .

Run 1 Run 2 Run 3

Np 98 97 99

RLmax ~dB! 187.3 180.2 184.9
umax 355° 352° 64°

RLmin ~dB! 174.6 166.8 169.1
umin 181° 157° 130°

RLmax2RLmin ~dB! 12.7 13.4 15.8
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seafloor in the region was relatively flat, so acoustic shadow-
ing was not a potential source of uncertainty. Similarly,
aquatic vegetation could not have been a source of ambiguity
for the fish schools in Fig. 5 because the seagrasses capable
of strongly scattering sound in the northeastern GOM are
limited to depths shallower than 30 m.42 Finally, acoustic
backscatter from suspended sediment was extremely unlikely
in the TVSS data because the lifting velocities of the fine-
grained sediments in the TVSS experiment region are much
greater than the typical bottom currents expected over the
Florida shelf in the winter,15 and because the scattering
strengths expected from sediments at the site would have
been much less than those in Table I~cf. Ref. 39!.

In both the fish and zooplanktonSV and TS measure-
ments, uncertainties due to multiple scattering and extinction
also were deemed negligible. These effects can occur in fish
schools with densities of 50/m3 and greater,33 and may occur
in dense swarms of macrozooplankton.43 The maximumSV

values in the TVSS scattering layer data~Figs. 7 and 8; Table
II ! were not large enough to suggest that the density of scat-
terers was sufficiently high to produce multiple scattering or
extinction. To evaluate the effects of extinction through the
fish schools, we compared the mean normal incidence bot-
tom backscattering strength over runs 1 and 2 to the instan-
taneous bottom backscattering strength values below the fish
schools. Values below the school were less than a standard
deviation from the mean values, and comparable to theoret-
ical predictions for the silt and sand in the region,24 demon-
strating that extinction was insignificant~Table I!. In a simi-
lar manner, multiple scattering was ruled out by adjusting the
dynamic range in Fig. 5 and analyzing the backscatter imag-
ery under the schools~not shown!. Multiple scattering re-
turns would be evident as a ‘‘tail’’ below each school and
‘‘under’’ the bottom ~e.g., Fig. 4 in Ref. 44!, but such fea-
tures were not found in the images.

Scattering and attenuation from resonant microbubbles
are more common sources of uncertainty near the sea sur-
face. They can be formed by breaking waves, propeller cavi-
tation, and even zooplankton and fish.5,25 As with boundary
reverberation, they can produce upward biases in TS andSV

estimates when they are undetected. At the TVSS’s acoustic
frequency of 68 kHz, resonant scattering comes from
bubbles with radii equal to 48mm, with a single bubble
target strength of266 dB. For down-looking sonars near the
surface, attenuation through the bubble layer will decrease
the backscattered energy. These effects were negligible in
this study because we used the acoustic backscatter imagery
to delineate regions where acceptable data could be taken.
The vertical volume images in Fig. 7 and Ref. 25 were used
to define the maximum bubble depth of the wake that we set
as the maximum slant range for both the scattering layer
imagery and mean volume reverberation calculations.

We also used horizontal volume imagery to distinguish
near-surface bubble clouds from schooling fish. Bubble
clouds were observed at 3-m depth 50–100 m to either side
of the ship’s track, with mean volume scattering strengths of
235 dB, suggesting that they might be due to dense schools
of large fish. Comparison between the near-surface horizon-
tal imagery and other acoustic observations of ship wakes

showed them to be bubble clouds generated by the towship’s
breaking bow waves, so they were not investigated with the
other fish school data.

Ambient noise was a final source of uncertainty sug-
gested by the similarity between the vertical directionality in
mean volume reverberation levels~Fig. 11! and that observed
for high-frequency ambient noise.45 However, for biologic,
surface, and ship-generated ambient noise sources, the con-
tributions were insignificant. Biologic sources known to gen-
erate sound around 68 kHz include several species of dolphin
and porpoise, and snapping shrimp46 that are found in the
Gulf of Mexico. However, acoustic backscatter from large
scatterers like dolphin and porpoise were not observed in any
of the volume and near-surface imagery, and snapping
shrimp are not likely in water depths deeper than 60 m.46

Because the sea state was only 1.5, surface-generated noise
contributions were probably less than 30 dBre 1m Pa. Pro-
peller cavitation, as evidenced by the dense bubble clouds in
the towship’s wake~Fig. 7!, would have dominated the
towship-generated noise sources, but a review of cavitation
noise data at frequencies near 68 kHz for ships with charac-
teristics similar to the TVSS towship’s47 ~e.g., Fig. 10.15 in
Ref. 4! suggests that the cavitation noise level during the
TVSS experiment would have been 90–100 dBre: 1 mPa
@1 m, and even less at the TVSS due to spherical spreading
and absorption losses. Had the TVSS operated at a lower
frequency, and closer to the towship, the cavitation noise
levels may have been significant.

IV. SUMMARY AND CONCLUSIONS

In this study, we have used the data collected by the
TVSS to demonstrate the advantages and limitations of
multibeam sonars in bioacoustic applications. TVSS imagery
showed that the most significant limitation was boundary
echo sidelobe interference, which prevented zooplankton re-
mote sensing in the volume near the range of the first bound-
ary echo, and fish detection near the range of the first bottom
echo. The 3D representation of a near-bottom fish school
demonstrated the fundamental limitation of sonar resolution
inherent in both multibeam and single beam characteriza-
tions of scattering fields. Angular variation in the transmit
array beampattern also contributed to uncertainties in the
TVSS data.

Despite these limitations, the TVSS still provided more
coverage than that possible with a single beam sonar, and we
used this advantage to characterize the 3D acoustic structure
of near-bottom schooling fish and zooplankton scattering
layers in a shallow water region of the northeastern Gulf of
Mexico. Supporting previous studies in the region, the TVSS
scattering layer imagery indicated that the vertical distribu-
tion of zooplankton is closely associated with the mixed
layer depth. The TVSS geometry also provided the unique
capability to characterize the vertical angular dependence of
volume reverberation, shown to be affected by bioacoustic
scattering layers lying above the sonar. In the future, modi-
fications of the transmit array beampattern or ping repetition
cycle, and the application of sidelobe cancellation tech-
niques, could reduce the effects of boundary reverberation
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and increase the potential for toroidal multibeam sonars in
bioacoustic remote sensing applications.
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APPENDIX: TWO-DIMENSIONAL VARIANCE
SPECTRUM

The two-dimensional variance spectrum in Fig. 9 is cal-
culated from the backscattering coefficients (sV) correspond-
ing to each image in Fig. 8, whereSV510 log10(sV). ThesV

data for each image were first resampled vertically to 1.4-m
depth intervals. Because the sidescanning procedure used to
form the images resulted in nonuniform sample spacing
which decreases away from normal incidence, the majority
of the samples have spacing smaller than 1.4 m, so they were
subsampled. A few samples near normal incidence (z
578 m) are spaced 2.5 m apart, and were interpolated to
1.4-m spacing. The average horizontal sample spacing in
each image is 4.1 m. The resultingM3N image, denoted
sV(m,n), is demeaned according to

sV8 ~m,n!5sV~m,n!2~1/MN! (
m51

M

(
n51

N

sV~m,n! ~m21!.

~A1!

The two-dimensional discrete Fourier transform ofsV8 (m,n)
is computed as48

FV~p,q!5~1/MN! (
m51

M

(
n51

N

sV8 ~m,n!

3e2 i2p~p~m21!/M1q~n21!/N!, ~A2!

wherep and q are vertical and horizontal spatial frequency
indices, respectively. The variance spectrum is then

VV~p,q!5~1/MN!uFV~p,q!u2 ~m22!. ~A3!

Thus, the variance spectrum is simply the two-dimensional
power spectrum of the demeaned image. Figure 9 is the re-
sult of averaging the six spectra corresponding to Fig. 8.

The relationship between the indicesp and q and their
corresponding spatial frequenciesm andn is

n5~1/dz!~p2M /2!/M , m5~1/dy!~q2N/2!/N, ~A4!

where dz and dy are the vertical and horizontal sampling
intervals, respectively. The maximum and minimum positive
resolvable spatial frequencies are given by

nmax51/~2dz!, mmax51/~2dy!,
~A5!

nmin52/~Mdz!, mmin52~Ndy!.

If the total depth and along-track distance spanned by each
image in Fig. 8 are denotedZ and Y, then the minimum
resolvable spatial frequencies are also given by

nmin52/Z, mmin52/Y. ~A6!

Thus, for Figs. 8 and 9,dz51.4 m, dy54.1 m, Z5100 m,
andY5410 m, so that

nmax50.35 m21, mmax50.12 m21,
~A7!

nmin50.02 m21, mmin50.005 m21.

The total sample variance in the backscattering coeffi-
cients sV(m,n) corresponding to each image in Fig. 8 is
given by49

1/~MN! (
m51

M

(
n51

N

usV8 ~m,n!u2, ~A8!

which can be related to the variance spectrum by applying
Parseval’s theorem generalized for the two-dimensional Fou-
rier transform to Eq.~A2!:

~1/MN!2(
p51

M

(
q51

N

uFV~p,q!u25~1/MN! (
m51

M

(
n51

N

usV8 ~m,n!u2.

~A9!

Substituting~A3! into ~A9! yields

~1/MN! (
p51

M

(
q51

N

VV~p,q!5~1/MN! (
m51

M

(
n51

N

usV8 ~m,n!u2,

~A10!

which shows that the average value of the variance spectrum
is equal to the total sample variance in the original data.

1T. C. Gallaudet, C. P. de Moustier, and M. Kalcic, ‘‘Imaging the ocean
boundaries and volume with the Toroidal Volume Search Sonar~TVSS!,’’
in Proceedings of the Fourth Annual Symposium on the Mine Problem,
13–16 March 2000, Monterey, CA.

2G. Rose, ‘‘Acoustics in fisheries in the 21st century,’’ J. Acoust. Soc. Am.
108, 2457~2000!.

3C. F. Eyring, R. J. Christensen, and R. W. Raitt, ‘‘Reverberation in the
sea,’’ J. Acoust. Soc. Am.20, 462–475~1948!.

4R. J. Urick, Principles of Underwater Sound, 3rd ed. ~Peninsula, Los
Altos, CA, 1983!.

5H. Medwin and C. S. Clay,Fundamentals of Acoustical Oceanography
~Academic, San Diego, 1998!.

6B. Pedersen and M. Trevorrow, ‘‘Continuous monitoring of fish in a shal-
low channel with a fixed horizontal sonar,’’ J. Acoust. Soc. Am.105,
3126–3135~1999!.

7O. A. Misund, A. Aglen, and E. Fronaes, ‘‘Mapping the shape, size, and
density of fish-schools by echo-integration and a high resolution sonar,’’
ICES J. Mar. Sci.52, 11–20~1995!.

8T. W. Steig and S. V. Johnston, ‘‘Monitoring fish movement patterns in a
reservoir using horizontally scanning split-beam techniques,’’ ICES J.
Mar. Sci.53, 435–441~1996!.

9D. M. Farmer, M. V. Trevorrow, and B. Pedersen, ‘‘Intermediate range fish
detection with a 12 kHz sidescan sonar,’’ J. Acoust. Soc. Am.105, 2481–
2490 ~1999!.

10P. Greenblatt, ‘‘Distributions of volume scattering observed with an 87.5
kHz sonar,’’ J. Acoust. Soc. Am.71, 879–885~1982!.

11D. V. Holliday and R. E. Pieper, ‘‘Volume scattering strengths and zoop-
lankton distributions at acoustic frequencies between 0.5 and 3 MHz,’’ J.
Acoust. Soc. Am.67, 135–146~1980!.

12D. McGehee and J. S. Jaffe, ‘‘Three-dimensional swimming behavior of
individual zooplankters: observations using the acoustical imaging system
FishTV,’’ ICES J. Mar. Sci.53, 363–369~1996!.

13M. Soria, P. Freon, and F. Gerlotto, ‘‘Analysis of vessel influence on
spatial behaviour of fish schools using multi-beam sonar and conse-

502 J. Acoust. Soc. Am., Vol. 112, No. 2, August 2002 T. C. Gallaudet and C. P. de Moustier: Multibeam volume acoustic backscatter

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  132.177.229.80 On: Tue, 24 Nov 2015 14:58:44



quences for biomass estimates by echo-sounder,’’ ICES J. Mar. Sci.53,
453–458~1996!.

14O. Misund, A. Aglen, J. Hamre, E. Ona, I. Rottingen, D. Skagen, and J.
Valdemarsen, ‘‘Improved mapping of schooling fish near the surface:
comparison of abundance estimates obtained by sonar and echo integra-
tion,’’ ICES J. Mar. Sci.53, 383–388~1996!.

15G. A. Maul, ‘‘The annual cycle of the Gulf Loop Current Part I: Obser-
vations during a one-year time series,’’ J. Mar. Res.35, 29–47~1977!.

16T. C. Gallaudet, ‘‘Shallow water acoustic backscatter and reverberation
measurements using a 68 kHz cylindrical array,’’ Ph.D. dissertation, Uni-
versity of California, San Diego, 2001.

17J. S. Link, T. A. Henwood, and C. T. Gledhill,Small Pelagics in the Gulf
of Mexico: A Description of the Abundance Geographic Distribution, Size,
and Depth Distribution of Major Pelagic Species~National Marine Fish-
eries Service, Southeast Fisheries Science Center, Pascagoula, MS, 1997!.

18T. L. Hopkins, ‘‘The vertical distribution of zooplankton in the eastern
Gulf of Mexico,’’ Deep-Sea Res., Part A29, 1069–1083~1982!.

19R. A. Zimmerman and D. C. Biggs, ‘‘Patterns of distribution of sound
scattering zooplankton in warm- and cold-core eddies in the Gulf of
Mexico, from a narrowband acoustic Doppler current profiler survey,’’ J.
Geophys. Res.104, 5251–5262~1999!.

20T. L. Hopkins, D. M. Milliken, L. M. Bell, E. J. McMichael, J. J. Hef-
fernan, and R. V. Cano, ‘‘The landward distribution of oceanic plankton
and micronekton, over the west Florida continental shelf as related to their
vertical distribution,’’ J. Plankton Res.3, 645–658~1981!.

21P. B. Ortner, R. L. Ferguson, S. R. Piotrowicz, L. Chesal, G. Berberian,
and A. V. Palumbo, ‘‘Biological consequences of hydrographic and atmo-
spheric advection within the Gulf Loop Intrusion,’’ Deep-Sea Res., Part A
31, 1101–1120~1984!.

22P. B. Ortner, L. C. Hill, and S. R. Cummings, ‘‘Zooplankton community
structure and copepod species composition in the northern Gulf of
Mexico,’’ Cont. Shelf Res.9, 387–402~1989!.

23T. C. Gallaudet and C. P. de Moustier, ‘‘On optimal amplitude shading for
arrays of irregularly spaced or non-coplanar elements,’’ IEEE J. Ocean.
Eng.25, 553–567~2000!.

24T. C. Gallaudet and C. P. de Moustier, ‘‘Using environmental information
to estimate and correct for errors in bathymetry and seafloor acoustic
imagery,’’ IEEE J. Ocean Eng. submitted~2002!.

25T. C. Gallaudet and C. P. de Moustier, ‘‘Sea surface and volume back-
scattering strength measurements in the microbubble field of a ship’s
wake,’’ J. Acoust. Soc. Am. submitted~2001!.

26R. W. Nero, C. H. Thompson, J. R. Dubberley, and R. H. Love, ‘‘Herring
hydroglyphics in littoral waters of the northern Gulf of Mexico,’’ J.
Acoust. Soc. Am.108, 2489~2000!.

27R. C. Herron, T. D. Leming, and J. Li, ‘‘Satellite-detected fronts and
butterfish aggregations in the northeastern Gulf of Mexico,’’ Cont. Shelf
Res.9, 569–588~1989!.

28R. Love, ‘‘Target strength of an individual fish at any aspect,’’ J. Acoust.
Soc. Am.62, 1397–1403~1977!.

29K. G. Foote, ‘‘Fish target strengths for use in echo integrator surveys,’’ J.
Acoust. Soc. Am.82, 981–987~1987!.

30A. J. Pluddemann and R. Pinkel, ‘‘Characterization of the patterns of diel
migration using a Doppler sonar,’’ Deep-Sea Res., Part A36, 509–530
~1989!.

31L. Lecornu, V. Burdin, C. Scalabrin, and C. Hamitouche, ‘‘Fish school
analysis from multibeam sonar image processing,’’Proc. IEEE Oceans
’98, Vol. 1, pp. 587–591~1998!.

32R. K. Johnson, ‘‘Sound scattering from a fluid sphere revisited,’’ J. Acoust.
Soc. Am.61, 375–377~1977!.

33T. K. Stanton, R. D. Nash, R. L. Eastwood, and R. W. Nero, ‘‘A field
examination of acoustical scattering from marine organisms at 70 kHz,’’
IEEE J. Ocean. Eng.12, 339–348~1987!.

34R. H. Love, ‘‘Dorsal-aspect target strength of an individual fish,’’ J.
Acoust. Soc. Am.49, 816–823~1971!.

35D. L. Mackas and C. M. Boyd, ‘‘Spectral analysis of zooplankton spatial
heterogeneity,’’ Science204, 62–64~1979!.

36R. W. Nero and J. J. Magnuson, ‘‘Characterization of patches along
transects using high resolution 70 kHz integrated acoustic data,’’ Can. J.
Fish. Aquat. Sci.46, 2056–2064~1989!.

37P. H. Wiebe, ‘‘Small scale distribution in oceanic zooplankton,’’ Limnol.
Oceanogr.15, 205–217~1970!.

38C. F. Greenlaw and W. G. Pearcy, ‘‘Acoustical patchiness of mesopelagic
micronekton,’’ J. Mar. Res.43, 163–178~1985!.

39P. H. Wiebe, T. K. Stanton, M. C. Benfield, D. G. Mountain, and C. H.
Greene, ‘‘High-frequency acoustic volume backscattering in the Georges
Bank coastal region and its interpretation using scattering models,’’ IEEE
J. Ocean. Eng.22, 445–464~1997!.

40C. H. Greene, P. H. Wiebe, C. Pelkie, M. C. Benfield, and J. M. Popp,
‘‘Three-dimensional acoustic visualization of zooplankton patchiness,’’
Deep-Sea Res., Part II45, 1201–1217~1998!.

41P. A. Crowther and A. Hansla, ‘‘The lifetimes, velocities, and probable
origin of sonic and ultrasonic noise sources on the sea surface,’’ inNatural
and Physical Sources of Underwater Sound, edited by B. R. Kerman~Klu-
wer, Boston, 1993!, pp. 379–392.

42S. Z. El-Sayed, W. M. Sackett, L. M. Jeffrey, A. D. Fredricks, R. P.
Saunders, P. S. Conger, G. A. Fryxell, K. A. Steidinger, and S. A. Earle,
‘‘Chemistry, primary productivity, and benthic algae of the Gulf of
Mexico,’’ in Serial Atlas of the Marine Environment Folio 22~American
Geographical Society, New York, 1972!.

43K. G. Foote, ‘‘Correcting acoustic measurements of scatterer density for
extinction,’’ J. Acoust. Soc. Am.88, 1543–1546~1990!.

44T. K. Stanton, ‘‘Effects of second-order scattering on high resolution so-
nars,’’ J. Acoust. Soc. Am.76, 861–866~1984!.

45P. A. Crowther, H. J. S. Griffiths, and A. Hansla, ‘‘Dependence of sea
surface noise in narrow beams on windspeed and vertical angle,’’ inNatu-
ral and Physical Sources of Underwater Sound, edited by B. R. Kerman
~Kluwer, Boston, 1993!, pp. 31–44.

46Applied Physics Laboratory,APL-UW High Frequency Ocean Environ-
mental Acoustic Models Handbook, Technical Report APL-UW TR 9407
~Univ. of Washington, Seattle, 1994!, Part III.

47F. R. Young, Cavitation~McGraw Hill, 1989!.
48R. N. Bracewell,The Fourier Transform and Its Applications, 2nd ed.

~McGraw Hill, New York, 1986!.
49J. S. Bendat and A. G. Piersol,Random Data: Analysis and Measurement

Procedures, 2nd ed.~Wiley, New York, 1986!.

503J. Acoust. Soc. Am., Vol. 112, No. 2, August 2002 T. C. Gallaudet and C. P. de Moustier: Multibeam volume acoustic backscatter

 Redistribution subject to ASA license or copyright; see http://acousticalsociety.org/content/terms. Download to IP:  132.177.229.80 On: Tue, 24 Nov 2015 14:58:44


	University of New Hampshire
	University of New Hampshire Scholars' Repository
	2002

	Multibeam volume acoustic backscatter imagery and reverberation measurements in the Northeastern Gulf of Mexico
	Timoth C. Gallaudet
	Christian de Moustier
	Recommended Citation


	tmp.1448377161.pdf.QUEGh

