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MAXIMUM LIKELIHOOD PARAMETRIC RECONSTRUCTION OF FOREST VERTICAL
STRUCTURE FROM INCLINED LASER QUADRAT SAMPLING

Mark J. Ducey

University of New Hampshire
Department of Natural Resources and the Environment

114 James Hall, Durham, NH 03824 USA

ABSTRACT
Forest vertical structure is critical to ecological function, and
provides a crucial link to air- and spaceborne remote sens-
ing (including LiDAR), but is difficult to measure from the
ground. Laser point quadrat sampling has been suggested as
one alternative, but previous statistical approaches to model-
ing forest structure using such data have required impracti-
cal sample sizes. Here, I develop the theory for maximum
likelihood estimation of a parametric model of forest vertical
structure, and illustrate it using inclined point quadrat sam-
pling with a handheld laser. Results from three forest stands
in arctic Norway suggest excellent qualitative agreement with
structure derived from alternative methods. The approach
generalizes readily to other hardware configurations, includ-
ing terrestrial laser scanning.

Index Terms— Ground-based remote sensing, forest
structure, LiDAR, terrestrial laser scanning

1. INTRODUCTION

The vertical structure of forests, and the density of foliar dis-
play within that structure, is critical for understanding tree
and stand level productivity and carbon sequestration [1], wa-
ter and energy transfer [2, 3], and surface attributes such as
albedo [4]. Quantifying forest vertical structure has emerged
as an important objective for remote sensing applications, and
airborne and spaceborne LiDAR has been widely used for this
purpose [5, 6, 7].

The collection of ground-based reference data for such re-
mote sensing applications remains challenging. A variety of
field techniques are available, but most are labor-intensive,
imprecise, or yield results that can be challenging to interpret
[8, 9, 10]. Terrestrial LiDAR has emerged as a promising tool
for this task (e.g. [11, 12, 6]) but the scanners themselves
remain expensive. For extensive field campaigns, and espe-
cially for those in remote or difficult terrain, there is a need
for approaches that use compact, lightweight, and inexpen-
sive equipment without undue labor costs.

This work is a scientific contribution of the New Hampshire Agricultural
Experiment Station.

In the past decade, some studies (e.g. [8]) have suggested
the use of handheld laser rangefinders, in an adaptation of
MacArthur and Horn’s point quadrat sampling methods [13,
14]. However, enthusiasm for this approach has been damp-
ened by the very large sample sizes that appear to be needed
for stable estimates [8]. More recently, a connection between
the traditional MacArthur and Horn approach and the fam-
ily of statistical techniques known as survival analysis has
been identified [15], potentially opening the door to more
efficient use of point quadrat sampling data such that reli-
able estimates are possible with much smaller sample sizes.
The MacArthur-Horn estimator of foliage density, often ap-
plied to both conventional LiDAR data as well as vertical
laser quadrat samples, is identical to a nonparametric estima-
tor of the hazard function in survival analysis. Recognition of
the connection between the foliage density profile and prob-
lems in survival analysis allows the foliage density estimation
problem to be embedded in a regression context, facilitating
site-specific modeling and hypothesis testing as well as allow-
ing the introduction of covariates [15].

2. THEORY

Previous work using handheld laser rangefinders (e.g. [8,
15])has emphasized vertically-oriented measurement. Here,
I build on the statistical framework of [15], and suggest an
adaptation to inclined laser quadrat sampling, which has ap-
plications not only for sampling with a single probe angle (as
with a handheld rangefinder) but also to multiple angles (as
with most terrestrial laser scanners).

2.1. Inclined Laser Quadrat Sampling

Warren Wilson [16, 17] developed the classic theory of in-
clined quadrat sampling. Following [16], let α be the incli-
nation of a plant surface to the horizontal in degrees, β be
the inclination of a hypothetical infinitesimally narrow, lin-
ear probe to the horizontal, let f(h) be the density of plant
surfaces (m2/m3) at height h, and let fβ(h) be the “appar-
ent density,” or the density of the projections of plant surfaces
onto the plane normal to a probe with angle β. Furthermore,
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let η be the radial orientation of the plant surface (η = 0 cor-
responding to north) and ζ be the corresponding orientation
of the probe. If the angle η − ζ is uniform on [0, 360], the
following relation holds for α ≤ β:

fβ(h)

f(h)
= cosα sinβ (1)

and for α > β,

fβ(h)

f(h)
=

[
2

π
sinα cosβ sin ζ0 +

(
1− ζ0

90

)
cosα sinβ

]
(2)

where ζ0 is the angle between 0 and 90 that satisfies ζ0 =
cos−1 (cotα tanβ). Although the original derivation as-
sumes η is uniform on [0, 360], from a design-based sampling
perspective if ζ is uniform on [0, 360] then the condition
η − ζ is uniform on [0, 360] also holds irrespective of the
distribution of η in the plant population.

One approach to the use of equations 1 and 2 is to allow β
to vary (often over the entire hemisphere) and to invert a para-
metric or nonparametric model for the distribution of α. This
approach underlies most attempts to estimate leaf area index
from passive sensors or hemispherical photography [9]. Al-
ternatively, Warren Wilson [16, 17] shows that estimates can
be obtained from a limited selection of values of β without the
need to consider the distribution of α explicitly. In particular,
when β = 32.5 degrees,

f̂(h) = 1.1f̂32.5(h) (3)

is very nearly a minimax estimator of f(h), having a maxi-
mum error of 10 percent when the distribution of α is degen-
erate at α = 0 or α = 90. In practice, distributions of α
are mixtures that include angles neither strictly horizontal nor
vertical, so the error is considerably less.

In the original derivation for inclined point quadrats
[16, 17], it was assumed that densities would be estimated
from a count of contacts along each probe. This could be
done, in principle, from narrow-beam full-waveform LiDAR
(with appropriate detection of multiple returns). However,
for the purposes of this study, we assume a first-return probe.
The basic theory for recovering profiles from first-return
data was originally developed by MacArthur and Horn [13],
and has been used with optical probes [14] and lasers [8],
with β = 90. Although theoretically sound, the MacArthur
and Horn approach returns unstable estimates, especially
in dense canopies, and requires very large sample sizes (in
the thousands) [8]. More recently, the MacArthur and Horn
approach has been shown to be identical with the nonpara-
metric Kaplan-Meier [18] estimate of a cumulative hazard
function, with f(h) serving the role of the hazard [15]. An
alternative estimator suggested by [8] is identical with the
Nelson-Aalen [19] estimator of the cumulative hazard. Both
the Kaplan-Meier and Nelson-Aalen estimators are flexible
but extremely data-demanding. Alternative approaches using

standard survival analysis regression techniques are able to
recover overall plant area density in a more stable fashion,
but are not flexible in the profiles produced [15].

2.2. Maximum Likelihood Analysis

As an alternative, let us consider direct estimation of f(h) by
maximum likelihood. Let the total density of plant surfaces be
L, (m2/m2), let G(h|θ) be its cumulative distribution func-
tion (CDF) with unknown parameters θ, and let g(h|θ) be
the corresponding probability density function (PDF). Thus,
f(h) = Lg(h|θ).

We consider two types of probes. Probes that are uncen-
sored travel from a known point of origin (the instrument lo-
cation, h0) and strike a plant surface. Probes that are censored
do not strike plant material, but are terminated either by strik-
ing material that is not of interest (such as the ground) or by
escaping the canopy entirely. Let δi be an indicator function
for the ith probe; δi = 0 for an uncensored probe, and δi = 1
if the probe is censored. For both uncensored and censored
probes, denote the height at which the probe terminates as hi,
and let the distance traveled by the probe be li. On level ter-
rain, li = (hi−h0)/ sinβ; a simple trigonometric adjustment
is appropriate on most sloping terrain.

For an ensemble of n independent probes, we can write
the likelihood function as the product of the probabilities as-
sociated with the individual probes. First, assuming locally
planar (but not necessarily level) terrain, let

Si = exp

[
− li
hi − h0

∫ hi

h0

fβ(h) dh

]
(4)

be the probability that a probe survives unobstructed from h0
to hi, and

si = −dSi
dh

∣∣∣∣
h=hi

=
li

hi − h0
Sifβ(hi) (5)

Then the overall log-likelihood can be written as:

ln Λ =

n∑
i=1

δi lnSi + (1− δi) ln si (6)

Maximization of ln Λ over the unknown parameters L and θ
yields a natural estimate of the vertical profile of plant matter.
Strictly speaking, equations 4 and 5 incorporate the unknown
distribution of plant surfaces α through the dependence of fβ
on that distribution (equations 1 and 2). In principle, the an-
gular distribution could also be parameterized (and either as-
sumed constant with h, or varying over h) and those param-
eters could also be recovered in the likelihood maximization
step. However, recognizing the nearly constant relationship
between f32.5(h) and f(h) = Lg(h|θ) in eq. 3, we may sub-
stitute f32.5(h) = Lg(h|θ)/1.1 in equations 4 and 5 in the
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case of probes inclined at a 32.5 degree angle. In that case,
we obtain the following simplifications:

lnSi = −Lki [G(hi|θ)−G(h0|θ)] (7)

and

ln Λ = lnSi + (1− δi) [ln |ki|+ lnL+ ln g(h|θ)] (8)

where ki = li
1.1(hi−h0)

. Thus, estimation of the unknown pa-
rameters L and θ becomes straightforward for any parametric
distribution with a closed-form CDF and PDF.

3. FIELD EXAMPLE

3.1. Site Description and Methods

To illustrate the approach, data were collected in three forest
stands in arctic Norway during the peak growing season of
2012. Sites were located between 69.440◦ and 69.632◦ lati-
tude and 17.441◦ and 20.335◦ longitude in low-stature birch
woodland. The Lyngsdalselva site was a tall but open forest
with trees and shrubs of varying height on nutrient-poor, ex-
cessively well-drained glacial outwash; the Mefjordvaer stand
had a shorter, closed canopy and was situated on moderately-
textured soils with understory vegetation suggesting a more
nutrient-rich site; while the Koppangen site was located on
marginal soils and heavily influenced by domestic grazing.
In all three stands, a cluster of four sample points was in-
stalled, slope and aspect were recorded for each point, and
conventional forest biometric measurements (including tree
diameter, height, and crown length) were performed. A Leica
DISTOTMrangefinder, mounted on a camera tripod, was used
to take inclined laser probes at an inclination angle of 32.5◦.
Probes were taken every 15◦ radially about the tripod position
in the upward direction, and every 30◦ radially in the down-
ward direction, for a total of 36 probes at each tripod position
and 144 probes per stand. Using the built-in live-view camera
in the laser, strikes were recorded as plant material, ground,
or sky.

For each stand, the vertical profile of plant material was
estimated by maximizing the log-likelihood (equation 8), as-
suming a beta mixture model:

g(x) =
p

B(θ1, θ2)
xθ1−1(1− x)θ2−1

+
1− p

B(θ3, θ4)
xθ3−1(1− x)θ4−1

(9)

where x = h/hmax, θ = {θ1, θ2, θ3, θ4, p} is a vector of un-
known parameters, and B is the beta function. The maximum
height hmax was taken as the height of the tallest tree in the
vicinity of the sample points within each stand.

3.2. Results

Results for the three example stands are shown in Figure
1. Qualitatively, the structural results agree well with field
observations, both in terms of the relative density and height
distribution of canopy elements. The beta mixture model
was flexible enough to capture the roughly unimodal vertical
distribution of tree and tall shrub canopies at Lyngsdalselva
and Koppangen and the denser, more continuous canopy at
Mefjordvaer, along with the dense low understory layer that
was present at all three sites. Site conditions prevented de-
structive sampling (e.g. vertically stratified clip-and-weigh
techniques; [14]). However, the profiles for overstory trees
and shrubs conform well to those predicted using a basal area-
weighted allocation of canopy elements to the live canopy
interval of conventionally measured trees (not shown).

Fig. 1. Apparent foliage density profiles for three low-stature
arctic birch forests in northern Norway.

4. DISCUSSION AND CONCLUSIONS

Maximum likelihood estimation offers the potential for more
efficient use of laser quadrat data, including more stable esti-
mates of canopy structure with smaller sample sizes than had
previously been considered necessary [8]. In part, this is due
to the ability to use a simplified parametric model in place of a
data-demanding nonparametric estimator [15]. Although not
explored here, the use of covariates could provide additional
stability, and open the door to the use of laser quadrat data in
a hypothesis-testing framework [15].

As with other indirect, non-contact approaches to esti-
mation of canopy structure, the derivations employed here
depend on an independence assumption that leads to bias
in the presence of clumping. However, combination of this
approach with existing correction methods for shoot- and
canopy-level clumping may help address this issue, as has
previously been demonstrated for estimation of total plant
area index with hemispherical photography and passive ra-
diation sensors [9]. Moreover, the methods addressed here
explicitly deal with the issue of foliage angle distribution,
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which may be a major source of bias in optical and laser-
based vertical point quadrat methods [14, 8]. The vertical
angle used in those methods has been identified as the most
sensitive to differences in angular orientation of foliage and
other plant surfaces [16, 17].

In practice, the methods outlined here offer the possibil-
ity of ground-based measurement of vertical structure of tall
canopies using inexpensive, highly portable devices. This
creates the possibility of more direct correlation with forest
profiles derived from airborne and spaceborne LiDAR than
would be possible using traditional biometric methods, or
where the expense, availability, or environmental sensitivity
of terrestrial laser scanners would make their use impossi-
ble. However, the basic modeling framework, with a suitable
model for the angular distribution of foliage and other plant
surfaces, can easily be adapted to the multiple probe angles
available from terrestrial laser scanner data. Alternatively,
it can be used to model the vertical profile of horizontally-
projected canopy elements when probes are oriented in a
strictly vertical fashion, as in previous work with handheld
laser rangefinders [8, 15], or single-return air- or spaceborne
LiDAR [7]. The full development of the technique, including
its extension to include covariates derived from conventional
ground or remotely sensed data, is an ongoing area of work.
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