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ABSTRACT

This poster presents a model based clustering method for the segmentation and
subsequent calibration of SHOALS data. As features for the segmentation we make use of
the estimated maximum power and pulse-width of each bottom return.

We describe the feature data by parameterized Gaussian mixture models and use EM
(Expectation-Maximization) methods for clustering. The Bayesian information criterion is
used to estimate the number of clusters and therefore the underlying number of individual
classes.

To concurrently process data from both the deep PMT (Photo Multiplier Tube) and shallow
APD (Avalanche Photo Diode) channels, it is imperative that the features extracted from
each are consistent. To this end we developed a quantitative inter-channel calibration
procedure that adjusts the data from the PMT to match the APD data.

The SHOALS data used in this project was obtained from Lake Tahoe in July 2000 to
supplement a USGS multibeam sonar survey.

We would like to acknowledge the support of NOAA, through grant NA170G2285, and the
USGS. Furthermore we thank Optech for help on any questions we have and the USACE for
giving us access to their SHOALS Post Flight Processing System.

INTRODUCTION

The SHOALS LIDAR system was originally developed as a tool to improve speed and
efficiency of bathymetric data collection for the production of nautical charts (Guenther et al.,
1989). This system uses four channels for data collection, for each of which a time series is
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FEATURE SELECTION AND IMPULSE RESPONSE MODELING

The model for round trip bottom impulse response may be described by a gamma function
(Thomas et al, 1979). These functions are well described by the location of the peak and
inflection points. We therefore selected peak power and the distance between the inflection
points as the primary features for the bottom return characterization and subsequent
segmentation (Figure 1 and 4). In this initial study we use a parameter estimation approach

to determine the location of the points; in the near future this will be augmented with a

gamma function fitting approach (Elston et al, 2004).
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stored. Two of the channels are used to determine the water surface return and two more
are used for mapping the bottom return: The Avalanche Photo Diode (APD) channel for
shallow water and the Photo Multiplier Tube (PMT) channel for deeper water. A number of
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In the data that we have available to us there is a mismatch between the data from the APD and PMT channels (Figure 3.),
which has also been observed by others (Tuell, 2003). The first step in the data conditioning sequence applied by us is to
match the data from the APD channel to the PMT channel using in-sample statistics. An option would be to simply perform
a linear least squares fit to the data in the overlapping region in semi-log space. However, in this case the residuals would

efforts are underway to exiract bottom type information from LIDAR data as an added data
product. Some promising results have been achieved mapping pseudo-reflectance values
through inversion of the bathymetric LIDAR equation (Tuell et al., 2004). Philpot and Wang
have presented work to segment bottom types based on pseudo-reflectance values (Philpot
et al., 2002).

The work presented here is part of our initial effort to automatically segment bottom types
based features extracted from LIDAR data. Our effort consists of several stages: 1) return
characterization; 2) feature extraction 3) feature conditioning; 4) Feature segmentation. In
the future we will need to add a classification and verification stage.

Return characterization is achieved through a parameter-estimation approach that in the
near future will be combined with a curve-fitting approach (Elston et al, 2004). The
segmentation procedure is complicated by the fact that the observed intensities from the
APD and PMT channel are not consistent (Tuell, 2003). This poster focuses on our
approaches to the relative alignment of data from both the APD and PMT channels.

The data presented are from a SHOALS data set obtained in July of 2000 at Emerald Bay
as part of a USGS survey of Lake Tahoe, California.

DATA COLLECTION

Figure 2. Emerald Bay is located at the Southwest end of Lake Tahoe, CA (left). All the
data presented here were obtained in Emerald Bay (right).
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Figure 1. TracEd (Dijkstra, 2000) visualization of SHOALS data. Normalized time series from the APD and
PMT channel are shown in the top half of the display. Estimated locations for peak power and inflection
points are shown superimposed over individual traces in the lower left corner display. The lower middle

display shows color-coded bathymetry imported from the SHOALS processed data.

The SHOALS lidar data we analyze was collected for the USGS to complete the
near-shore regions of a multibeam sonar survey of Lake Tahoe (Gardner, 1998).
Figure 2 shows the land elevation and sonar bathymetry DTMs for Lake Tahoe
with a more detailed view of Emerald Bay. This is a challenging data set because
the bathymetry contains areas of steep slope, rocky outcrops, and possibly a
number of bottom types; in addition, our analysis reveals the presence of regions
of water with different optical properties.

Peak power and pulse width features are extracted (Elston, 2004) from the
normalized waveforms stored in the optional diagnostic output files from the
SHOALS Post-Flight Processing System (PFPS).

To ensure that full pulses are analyzed, the waveforms to be processed are
chosen from the APD when the depth is < 11 m, and from the PMT when the
depth is > 8 m. This provides a region of overlap between the channels to allow
their peak intensities to be matched before the clustering and bottom
segmentation algorithms are applied.

be significant due to the presence in the overlapping region of two distinct water-masses with varying attenuation

coefficients k and distinct bottom types in terms of the reflection coefficient.

DATA CONDITIONING AND MODEL BASED CLUSTERING

Before submitting the derived peak power and pulse width to a mixture-modeling algorithm
for segmentation we need to remove any trends i.e., systematic dependencies and artifacts.
In the data discussed here this pre-conditioning includes the removal of a mismatch between
the APD and PMT channel data (Figure 4). The process of estimating the mismatch

Waveforms in each depth channel for same laser shot
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Data from both the APD (black) and
adjusted PMT (red) channel. Note the
good overlap of the data and the two
distinctive decaying trends caused by the
presence of two water masses with
varying attenuation coefficients

The PMT channel data is re-classified
based on the correlation of the clusters to

those from the APD channel

The approach taken here is to cluster the data for the APD and PMT channel independently for the overlapping region. Next the
resulting clusters from the APD and PMT channels are matched and if they correlate well (R > .9) a linear least-squares fit is
performed for each of the matched clusters. A weighed mean of the coefficients is determined for each channel where the
number of samples populating a cluster determines weight. Subsequently all the PMT data are adjusted in an iterative loop to
match the APD data using the convergence of the fitted coefficients as a criterion.
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For all the processing described in the following paragraphs we have used "MCLUST"
(Fraley, 2002) software routines called from the Lassoo visualization and segmentation
software (Dijkstra, 1996). Note that we have used MCLUST's option of determining the BIC
for various possible covariance matrices and in each case have ended up using ellipsoidal
distributions of varying volume, shape and orientation.
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Figure 4. Shown is the normalized power vs. depth data from both the APD and PMT channel. Note the

mismatch in the observed intensities between the channels. Also shown (in green) are estimates for the
location of peak power and inflection points.
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