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ABSTRACT

The observed interannual variability of atmospheric CO2 reflects short-term variability in sources
and sinks of CO2. Analyses using 13CO2 and O2 suggest that much of the observed interannual
variability is due to changes in terrestrial CO2 exchange. First principles, empirical correlations
and process models suggest a link between climate variation and net ecosystem exchange, but the
scaling of ecological process studies to the globe is notoriously difficult. We sought to identify a
component of global CO2 exchange that varied coherently with land temperature anomalies using
an inverse modeling approach. We developed a family of simplified spatially aggregated ecosystem
models (designated K-model versions) consisting of five compartments: atmospheric CO2, live
vegetation, litter, and two soil pools that differ in turnover times. The pools represent cumulative
differences from mean C storage due to temperature variability and can thus have positive or
negative values. Uptake and respiration of CO2 are assumed to be linearly dependent on temper-
ature. One model version includes a simple representation of the nitrogen cycle in which changes
in the litter and soil carbon pools result in stoichiometric release of plant-available nitrogen, the
other omits the nitrogen feedback. The model parameters were estimated by inversion of the model
against global temperature and CO2 anomaly data using the variational method. We found that
the temperature sensitivity of carbon uptake (NPP) was less than that of respiration in all model
versions. Analyses of model and data also showed that temperature anomalies trigger ecosystem
changes on multiple, lagged time-scales. Other recent studies have suggested a more active land
biosphere at Northern latitudes in response to warming and longer growing seasons. Our results
indicate that warming should increase NPP, consistent with this theory, but that respiration should
increase more than NPP, leading to decreased or negative NEP. A warming trend could, therefore
increase NEP if the indirect feedbacks through nutrients were larger than the direct effects of
temperature on NPP and respiration, a conjecture which can be tested experimentally. The fraction
of the growth rate not predicted by the K-model represents model and data errors, and variability
in anthropogenic release, ocean uptake, and other processes not explicitly represented in the model.
These large positive and negative residuals from the K-model may be associated with the Southern
Oscillation Index.

scales. Some of the variation is clearly explained1. Introduction
by changes in humanity’s fossil fuel economy, but
other changes result from variability in ecosystemThe growth rate of carbon dioxide in the atmo-
and ocean exchange. The substantial slow-downsphere exhibits variations on a range of time
in the growth rate of CO2 following the eruption
of Mt. Pinatubo, with ensuing climatic con-* Corresponding author.

e-mail: tomi@cira.colostate.edu sequences, provided strong evidence for climate
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forcing of interannual changes in CO2 (Schimel change in CO2 uptake could not be explained by
an oceanic mechanism. The Braswell et al. (1997)et al., 1995). There have been a number of analyses

of the spatio-temporal variations in atmospheric result suggests that terrestrial CO2 exchange

cannot be predicted entirely from an instantaneousCO2 using inverse modeling from concentrations
(Tans et al., 1990; Enting and Mansbridge 1991), relationship with temperature but that longer-

term ecological processes must also be at work,changes in the seasonal cycle (Randerson et al.,

1997; Myneni et al., 1997) or the trend and inter- consistent with a hypothesis derived from experi-
ments with the Century ecosystem model (Schimelannual variability of the growth rate (Keeling

et al., 1995; Braswell et al., 1997). These analyses et al., 1996).

In this paper we follow up on the hypothesisreveal that there is impact of the processes govern-
ing CO2 exchange over land and oceans in the that the terrestrial biosphere responds to temper-

ature variability (Fig. 1) on multiple time scales.record of atmospheric CO2 , its isotopes and

oxygen. The Braswell et al. (1997) paper showed positive
correlations of temperature on sub-annual timeThe development of networks for 13C and

O2 measurements and advances in terrestrial scales (warm years release CO2 to the atmosphere)

and negative correlations from a year to 2–3 yearsmodeling are expanding the utility of the observa-
tional record for testing hypotheses about the (implying larger-than-usual uptake of CO2 after

warm years). Experiments using the Centurylocation and cause of variations in carbon

exchange (Keeling et al., 1995; Schimel et al., 1996; model suggest a mechanism consistent with the
hypothesis. In warm years, respiration of soilBraswell et al., 1997; Rayner et al., 1999). For

example, the effects of the Pinatubo eruption organic matter exceeds increases in photosyn-
thesis, leading to a loss of carbon and a release of(1992) can be rather directly partitioned between

land and ocean processes using 13C in CO2 and nitrogen. The effect of this enhanced N availability

may persist for several years (Schimel 1995), lead-O2 (Ciais et al., 1995; Keeling et al., 1995). Analyses
using 13C and O2 suggest increased terrestrial ing to increased NPP lasting longer than the

temperature direct effect. Statistical analysis ofuptake of CO2 played a large role in the slowdown

of the growth rate after Pinatubo (Ciais et al., global data can provide relatively little insight as
to mechanism beyond that explored in the1995; Rayner et al., 1999), as do modeling studies

of the biosphere (Schimel et al., 1996). The slow Braswell et al. (1997) paper. Experiments with

ecosystem models can provide additional ideasdown actually began slightly before Pinatubo,
provoking us initially to begin looking for complex and hypotheses, but lagged effects which are small

locally but significant globally are difficult to testresponses of CO2 to temperature (Schimel et al.,

1996). Braswell et al. (1997) used a statistical with site-specific data (Goulden et al., 1996).
Most ecosystem modeling involves forwardmodel to relate temperature anomalies (defined as

deviations from the long-term mean) over land to modeling, where ecosystem models are integrated

using observed environmental data and then com-global variations in the growth rate of CO2 and
satellite data. Braswell et al. (1997) found signifi- pared to CO2 concentration or flux data. In

contrast, most inverse models estimate spatial-cant responses on immediate and lagged time-

scales, and identified patterns in global terrestrial temporal distributions of fluxes and do not analyze
the relationships between controls over andsatellite observations supporting the hypothesis of

responses on multiple times-scales. responses of ecosystems. Our approach of

inverting a simple ecosystem model is comple-While correlations between spatio-temporal
patterns of climate and of CO2 can be identified, mentary to both forward ecosystem and inverse

geophysical models.in general there is not sufficient information to

unambiguously identify mechanisms. However, We ask the question ‘‘is the observed relation-
ship between temperature and CO2 flux anomaliesthere is often sufficient information to exclude

certain hypotheses. For example, Randerson et al. consistent with our knowledge of biotic responses
to temperature’’. Our understanding of temper-(1997) showed that the increase in the amplitude

of the CO2 seasonal cycle is inconsistent with CO2 ature effects on ecosystems is based on studies of

‘‘microscopic’’ phenomena (relative to atmosphericfertilization of photosynthesis as the sole cause of
changing NPP. Ciais et al. (1995) showed that the CO2 changes). Can the parameters of a simple
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Fig. 1. Global temperature anomaly for 1979–1994 based on compiled weather station data (Jones, 1994; Parker
et al., 1994). The thin curve shows monthly anomaly, or departure from the long term mean for that month. A slight
trend was removed for the analysis amounting to approximately 0.1° over the entire period. The thick curve shows
these anomalies after 6-month filter was applied.

process model be estimated from ‘‘macroscopic’’ of surface temperature anomalies and CO2 concen-
trations, (3) model parameter optimization withdata (temperature and atmospheric CO2 )?

We developed a diagnostic model, based on respect to an observationally based estimate of
dCO2/dt and (4) evaluation of temperaturecurrent global ecosystem models (Parton et al.,

1987; Schimel et al., 1997), designed to explain ‘‘transfer functions’’.

observations of interannual temperature and CO2 .
The model is simplified and aggregates spatially

2.1. K-model
all ecosystems. The model contains a subset of the

global ecosystem model compartments, repres- We constructed a highly aggregated, global
model with parameters based on the Centuryenting those pools that affect monthly-to-decadal

dynamics. We have developed versions with and terrestrial biogeochemical model (Parton et al.,

1993; Schimel et al., 1996). It is a perturbationwithout a reduced nitrogen cycle. The residual
from the fit of the model to CO2 data then contains model, assuming that responses to anomalous

forcing may be superposed upon a steady stateinformation on ocean, land use and fossil fuel flux

anomalies. This model allows us to explore the system. In this framework, anomalous temperature
initially leads to anomalous production and res-consistency of observed temperature and CO2

variations with hypotheses about the large-scale piration that is ‘‘instantaneous’’ (time scales less

than one month) but these changes propagateresponse of ecosystems to temperature from
experiments and process models (Holland et al., through the model via vegetation and soil organic

matter turnover to potentially yield responses at1995; Cao and Woodward 1998; Tian et al., 1998).

We apply the model to the period 1979–1994. multiple time scales. We developed a model ver-
sion with the potential for nutrient feedbacks, as

well as a purely biophysical version. The model
(which we call the K-model, where K denotes2. Methods
turnover time coefficients) is a set of five coupled

linear differential equations.The key components in our analysis are:
(1) aggregated global model, (2) global data sets The state of the model is represented by five
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where respiration R depends directly and linearly
upon temperature anomaly (T ) with coefficient Q

r
,

and with other terms corresponding to turnover

of excess organic matter with specified rates given
for each pool:

R=Q
r
T +k3DS3+k4S4+k5S5 . (2)

The latter three terms represent indirect con-
sequences of temperature anomalies. The D

coefficient is the fraction of carbon in the plant
detrital pool that is respired versus transformed
into soil organic matter. The turnover rates them-

selves (k3 , k4 and k5 ) are also potentially modified
by temperature:

k
i
=kc

i
(1.0+w

i
T ), (3)

where w
i
represents the fractional change in turnover

rate given the temperature anomaly T in Kelvin
and kc

i
are constant turnover rates. Thus, we have

allowed for a temperature perturbation to directly

yield a respiration anomaly, and to alter the pro-
cessing rate of the quantity of carbon (positive or
negative) which had previously been accumulated

Fig. 2. Schematic showing the pools (S
i
) and fluxes of in longer turnover time fractions. Production P is

the K-model. Respiration fluxes and exchanges between given by the sum of a linear temperature response
vegetation and soil/litter pools are controlled both

Q
p
, and a nutrient feedback term,

directly by temperature variability and by changes in the
pool size (open circles; eq. (6)). Changes in NPP are P=Q

p
T+cn2bF, (4)

assumed to be affected by temperature (filled circle), and
where cn2 is the carbon-to-nutrient ratio of theoptionally in the standard case, by a nutrient-related
‘‘new’’ plant material and F is a parameter thatfeedback (eqs. (4) and (5)).

indicates the strength of the feedback, or nutrient

limitation. In dealing with the selection of parameterpools representing anomalous amounts of carbon
constraints of this model, we assume that nitrogenin (1) the atmosphere, (2) terrestrial vegetation,
is the limiting nutrient, and select values from the(3) litter and detritus, (4) active soil organic matter,
literature accordingly. Nutrient availability for plantand (5) slow and passive soil organic matter
uptake is simulated in one of two ways: either it is(Fig. 2). Because the model simulates temperature-
equal to the amount of N mineralized in month tcaused perturbations to an assumed steady state,
(no time lag), or it is a Gaussian-weighted sum ofthe amount of carbon at time t in any of these
nutrient mineralization over the past 2×n months,pools represents the amount of excess carbon
with maximum weighting at n months, where n=(which can be negative) due to cumulative effects
18 or 24. Evidence for this mechanism is discussedof temperature variability. The rate of change of
in Subsection 3.3. Finally, the nutrient mineraliz-carbon in the atmosphere, pool #1, we assume is
ation rate is given by mass balance and stoichi-commensurate with observations of atmospheric
ometric considerations asCO2 growth rate. The rate of change of the

atmospheric pool is calculated instantaneously as
b=

k3S3
cn3

+
k4S4
cn4

+
k5S5
cn5

−
k3 f34s3

cn4
the difference between anomalous plant produc-
tion and anomalous respiration (henceforth we

shall omit the term ‘‘anomalous’’), and represented
−

k4 f35S3
cn5

+
Q
r
T

cn4
, (5)

simply by

where f34 and f35 represent the fractional alloca-dS1
dt

=R−P, (1)
tion of soil carbon from litter to either the active
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or slow pools (Fig. 2). Having defined all the From eqs. (1)–(6) (which completely describe
the model) we can see that there are 16 parametersrelevant parameters and variables, the remaining

model state equations for vegetation and soil (Table 1), the selection of which yields a unique

realization (time series output) of the model. Thecomponents simply transform the anomalous
carbon (though at variable rates) according to initial values of S1 , S2 , S3 , S4 and S5 are set to

zero. The parameters are given in Table 1, whichfirst order coupling coefficients:

also includes intervals of acceptable values used
in our analyses, and retrieved values, determined

dS2
dt

=P−k2S2 , (6a)
via the optimization procedure described in

Subsection 2.3.dS3
dt

=k2S2−k3S3 , (6b)

2.2. Global data sets
dS4
dt

=k3t34S3−k4S4QrT, (6c) Our simple globally-parameterized model
estimates variations in the terrestrial net flux of

carbon (net ecosystem production) that are due todS5
dt

=k3t35S3−k5S5 . (6d)
anomalies in global temperature. Therefore, the

Table 1. K-model parameters

Retrieved Retrieved Interval of
Name Description N-cycle no-N-cycle acceptable values Units

k2 vegetation
turnover rate 0.17 0.11 0.04–0.17 month−1

k3 litter
turnover rate 0.042 0.0083 0.0083–0.042 month−1

k4 active SOM
turnover rate 0.014 0.031 0.014–0.042 month−1

k5 passive SOM
turnover rate 0.00083 0.0042 0.00083–0.0042 month−1

cn2 C : N vegetation 66.3 N/A 25.0–75.0 gg−1
cn3 C : n litter 50.0 N/A 50.0–150.0 gg−1
cn4 C : N active SOM 37.5 N/A 12.5–37.5 gg−1
cn5 C :N passive SOM 22.5 N/A 7.5–22.5 gg−1
w3 slope of k3

versus temperature 1.0 1.0 0.001–1.00 month−1 deg−1
w4 slope of k4

versus temperature 1.0 1.0 0.001–1.00 month−1 deg−1
w5 slope of k5

versus temperature 0.43 1.0 0.001–1.00 month−1 deg−1
Q
p

slope of NPP
versus temperature 1.66 1.22 0.001–2.00 gm−2 year−1 deg−1

Q
r

slope of resp.
versus temperature 2.00 1.60 0.001–2.00 gm−2 year−1 deg−1

F strength of
N-feedback 0.59 N/A 0.001–1.00 dimensionless

D resp. fraction
of decomposition 0.45 0.49 0.20–0.80 dimensionless

b slow versus passive
partitioning 0.80 0.54 0.20–0.80 dimensionless

Retrieved parameter values using the K-model version with the N-cycle included are listed in the column labeled
‘‘retrieved N-cycle’’. The retrieved parameter values using the K-model version without the N cycle included are
listed in the column labeled ‘‘retrieved no-N-cycle. The interval of acceptable values for parameters are listed in the
column labeled ‘‘interval of acceptable values’’.

Tellus 53B (2001), 2
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model requires global temperature anomaly time 2.3. Optimization of model parameters
series as input, and produces global anomaly CO2 The K-model is designed to represent global
time rate of change as output (dS1/dt). Simulated

responses to globally averaged temperature anom-
CO2 changes are compared to an observationally

alies. This design makes it is difficult to obtain
based estimate of dCO2/dt.

unique values for the model parameters from
We used monthly CO2 concentration data

direct prior observational or modeling ecosystem-
from the Climate Monitoring and Diagnostics

specific estimates. To evaluate parameters for the
Laboratory. Observations made using an infrared

global aggregate model we made use of the global
continuous analyzer system are available for

observations of CO2 and performed the objective
Mauna Loa (MLO) and the South Pole (SPO)

parameter estimation using the variational tech-
from 1979–1994 (Gillette et al., 1987; Thoning

nique. Specifically, a measure of discrepancy
et al., 1989). Monthly averages of the continuous

between the model solution and observationally
analyzer data were used to construct hemispheric

based global record of dCO2/dt (Subsection 2.2)
CO2 growth rate anomalies, assuming MLO is

was minimized via adjustment of the model para-
representative of the northern hemisphere, and

meters in Table 1. The variational parameter
that SPO is representative of the southern

estimation technique is well known and has been
hemisphere.

used in atmospheric and ocean studies to improve
We produced CO2 growth rate anomalies from

model parameter values using observations (Zou
the concentration data in three steps. First, we

et al., 1992; Bennett and McIntosh, 1982; Smedstad
took the first-differences of the time series yielding

and O’Brien, 1991).
a concentration rate of change per month

The variational parameter estimation method
(ppm/mo). Second, we removed the seasonal cycle

consists of computing parameter values which
by subtracting the monthly mean values calculated

minimize a cost function. This function is a quad-
for the entire period 1979–1994, yielding a

ratic measure of model discrepancy with respect
monthly growth rate anomaly. Finally, because of

to data, written in the current application as:
finite atmospheric mixing rates one cannot inter-

pret the rate of change of CO2 observed at the
J=

1

2 P t
0

wCO
2 CAdS1

dt B−AdCO2
dt BD2 dtsites as being instantaneously equal to the rate of

change of carbon in the atmosphere produced by

the surface source anomalies. Therefore, we +
1

2
∑
i=16
i=1

wi
a
(aoptimali −aguess

i
)2, (7)

applied a forward-smoothing filter to remove vari-
ations on time scales less than intra-hemispheric

where t is time in the interval (0, t=15 years),
mixing time. We used forward smoothing, assum-

(dCO2/dt) and (dS1/dt) are observed and modeled
ing that the effect of fluxes on carbon in the

CO2 time rate of change, respectively and aoptimal
iatmosphere at time t will be reflected in the CO2 and aguess

i
are optimal and first guess values of the

observations, because of transport, until some time
parameters in Table 1 and i is the parameter index.

between t and t+6 months.
The coefficients wCO

2

and wi
a
are necessary weights

We used temperature anomalies from land
to render the terms unitless and to assign a

observations to drive the model (Jones, 1994;
measure of uncertainty (error) associated with the

Parker et al., 1994). These data are provided as
data and prior values of the parameters,

monthly anomalies, so no additional processing
respectively.

was necessary to transform this data into the
It is standard procedure in the variational

appropriate variable as with the CO2 observations.
approach to seek the minimum of the cost function

However, we removed a small positive trend in
using the Lagrange functional (Daley, 1991). First,

these data which violates stationarity and could
an augmented cost function F is defined

interfere with the primary purpose of our model

exercise, which is to study interannual variability.
F=J+ P t

0
l(t) CdS

dt
−K(S, a)D dt, (8)This small adjustment was made using a linear

regression with time as the independent variable.

The detrended temperature time series is shown where the term within square brackets is in this
study the entire K-model system of equationsin Fig. 1.

Tellus 53B (2001), 2
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(Subsection 2.1) but expressed in matrix form with assumption renders wi
a
~0. As a consequence we

have solved the optimization system (1)–(9) as aS representing the vector of K-model pools, a is
the vector of parameters and K is the nonlinear constrained minimization (omitting the second

term on rhs of (7)) instead of as a BayesianK-model operator represented with the right hand
side (rhs) of eqs. (1) and (6). Because the second estimation problem (Tarantola, 1987). Eq. (9b)

was replaced withterm in the rhs of (8) is equal to zero, by definition

F=J. The new variable l is the Lagrange multi-
aoptimal
n

=aoptimal
n−1 +H(l

n−1 ),plier. This multiplier is a vector of dimension
equal to the number of pools in the model (the where n is iteration number and H(l

n−1 ) is a

correction which depends on the adjoint solution.dimension of S vector). The utility of l is seen by
setting the first order variation of F with respect The specific form of the correction term depends

on the minimization algorithm. In this study weto the vectors S and a to zero and then integrating

by parts. This derivation yields applied the Quasi-Newton method using a
Numerical Algorithms Group (NAG) library rou-
tine (E04KDF). Because the optimization problem

dl(t)

dt
=−K*S l+wCO

2 CAdS1
dt B−AdCO2

dt BD ,
is nonlinear we also tested the sensitivity of results

(9a) to variations in the first guess. We started the
optimization integrations from the first guess

aoptimal=aquess+
1

w
a
P t
0

l(t)K
a
Da dt. (9b) values either using the parameter values equal to

the mid-point in the intervals of acceptable values

or to a rough estimate of the optimal valuesThe matrix operators K*S and K
a

consist of the
first derivatives of the rhs of K-model equations obtained via forward model integrations. To

obtain the rough optimal first guess we appliedwith respect to the state vector (S) and the para-

meters (a), respectively. Asterisk denotes the Powell’s method (Press et al., 1992). The para-
meter optimization experiments were performedadjoint. The matrix KS is, therefore, the Jacobian

of the K-model and the associated adjoint is for both the K-model with the lagged N-feedback

mechanism (standard K-model) and without thissimply the transposition of this matrix. In (9b),
Da is the parameter perturbation vector to be feedback (no-N cycle K-mode). There were a total

of four optimization experiments which are listeddetermined from an optimization algorithm. The

expression (9a) represents the adjoint system of in Table 2.
The weighting coefficients wCO

2

were defined asequations. The expressions (1)–(9) together repres-
ent the optimization system for the cost function inverse of the error variances for dCO2/dt. We

estimated the error variance by setting it equal to(7). Because this system is nonlinear it is necessar-
ily solved using iterative optimization algorithms the anomaly variance for the period. Including

any other knowledge would reduce the variance.where the first guess parameter values are refined

within each iteration using the adjoint system This assumption was used because we wished to
avoid over-fitting the data which contains variancesolution.

In this study, the variances and the associated due to the fossil and land use sources and due to

the ocean and terrestrial ecosystem fluxes. Theerror estimates for the first guess parameters were
not known, nor did we have a strong a priori K-model includes only the terrestrial mechanisms.

Thus, the model errors were formally included inbasis for choosing the first guess. We could, how-

ever, specify a data based interval of acceptable
values for each parameter (Table 1). These inter- Table 2. Parameter optimization experiments for
vals were derived from the global range of the N cycle and no-N cycle model versions
corresponding parameters used in the global
Century ecosystem model experiments (Schimel Experiment Model First guess

et al., 1996). Because the intervals of acceptable
NLAG-M N-feedback mid pointvalues are known, and prior estimates are not
NLAG-O N-feedback rough optimalavailable, it was reasonable to assume that the
NONF-M no-N feedback mid point

first guess values are all equally uncertain and
NONF-O no-N feedback rough optimal

that their associated variance is large. This

Tellus 53B (2001), 2



       157

the optimization problem through representa- of CO2/dt, thus we chose this linear function to
be a short time average:tiveness errors (Tarantola, 1987, chapter 1).

In summary, the model optimization with

respect to the observationally based estimate of R(t1 , t2 )=
1

(t2−t1 ) P t2t
1

dS1
dt

dt, (10)
dCO2/dt was performed as constrained minimiza-
tion assuming significant total error consisting of where t1 and t2 are the beginning and final times
the prior information error (the first guess error) used for the average. We used 3 months as the
and the data error (model and observation errors). averaging period. Note that dS1/dt=dCO2/dt in
The results of such optimization can be used to the model.
falsify rather than to verify the hypothesis embed- The change of R as a function of an arbitrary
ded in the model formulation because wide range temperature variation T ∞(t=t*) is
of retrieved parameter values can fall within the

error margins. We have developed model versions DR(t1 , t2 , t*)=
∂R(t1 , t2 )
∂T (t*)

T ∞(t*)+O(T ∞2(t*)).
with and without a nitrogen cycle (Fig. 3). The

(11)optimization experiments were used to test these

hypotheses. The overall model evaluation in this Because the K-model is nonlinear with respect to
temperature variations, the linear diagnostic func-study was not based solely on the differences in

goodness of fit between different model versions tion is nonlinearly related to these variations. We

assume, however, that the second and high orderbut on several diagnostics, including the formal
diagnostics from the inversion and the qualitative terms O(T ∞2 ) are negligible. In this case the change

of R is related to the temperature variations viacomparison of the parameters, temperature trans-
fer functions and cross-correlations. the derivative ∂R(t1 , t2 )/∂T (t*). This derivative is

both a function of the verification interval (t1 , t2 )
and the time where the temperature variation is

2.4. T emperature transfer function
introduced (t=t*). The value of the derivative for
each t*<t2 would show the actual change of RSimilar to the derivation of the parameter

optimization system in Subsection 2.3, the vari- due to the temperature variation at that time
assuming that T ∞(t*)=1.0° and the linear relation-ational technique can be applied to derive a

functional relationship between the K-model - ship between the temperature forcing and dCO2/dt

in the model is valid. The derivativesolution or a function of this solution and the
temperature variations. ∂R(t1 , t2 )/∂T (t*) is, therefore, equivalent to a

transfer function between the temperature forcingIn this application of the variational technique

the quantity of interest is a linear diagnostic and the CO2 response in the K-model. As long as
the linear assumption is valid, the derivative, whenfunction dS1/dt instead of the quadratic cost func-

tion (7). We were interested in lagged responses known, can be applied to analyze the response of

Fig. 3. Time series of observed (solid line) and optimized K-model results for CO2 growth rate. The modeled growth
rates shown are from the standard (dotted curve) and no-N-feedback (dashed curve) K-model.
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the modeled system without having to integrate time integral in (15). Choosing
the model many times. The linear assumption is
always valid for infinitesimally small temperature L *S∞¬

dS∞
dt

−KSS∞ (17)

variations. We tested the validity of this assump-
and using the linear K-model eq. (12), the changetion numerically for T =1.0° and the agreement
of R is expressedbetween linear and nonlinear responses had 0.1%

or smaller errors.
DR= P t

0
c(t)KTT ∞(t) dt. (18)The derivative ∂R(t1 , t2 )/∂T (t*) was computed

using the adjoint technique (Vukićević and Hess,

2000; Vukićević and Raeder, 1995; Zou et al, 1993; The derivative ∂R(t1 , t2 )/∂T (t* ) in (11) is then
Hall et al., 1982). First, the linear version of the given by
K-model system of equations was written ∂R(t1 , t2 )

∂T (t*)
=c(t*)KT (t*). (19)

dS∞
dt

−KSS∞=KTT ∞, (12)
Because the adjoint of L in (17) is the homogen-

eous part of the linearized K-model operator (12),where S∞ is the variation of the K-model state
the matrix L is the adjoint of this linear operator.vector caused by a variation T ∞ in the temperature.
The expression (13), therefore, defines an adjointKS is the Jacobian of the rhs of (6) without the
system of equations similar to (9a) but the forcinglinear temperature forcing. KT is the Jacobian
is the gradient ∂g(S(t))/∂S(t) instead of thewith respect to temperature consisting, therefore,
weighted differences between the model solutionof the linear temperature forcing terms in (6) plus
and observations. The K-model Fortran code andthe linearized version of the turnover terms.
the associated adjoint code are available fromNext, a new linear system was defined:
http: :www.cgd.ucar.edu/VEMAP/Kmodel.

To compute the equivalent of a transfer function
L c(t)=

∂g(S(t))

∂S(t)
, (13)

between the response R and the temperature vari-

ations for all t*<t2 , the adjoint system must be
where g is integrated backward in time from t=t2 . As a

consequence, the adjoint solution c(t*) is evalu-
g(S(t))=

1

t2−t1
[S1d(t−t2 )−S1d(t−t1 )], (14) ated at lag times t=t2−t*.

The equivalent of temperature transfer function
for the period 1979–1994 was computed with thec is a new vector and d is the Dirac delta function
K-model adjoint backward time integrations forand L is a linear operator to be defined from the
a sequence of 5-year intervals. Each year containedutility of (13) by deriving an alternative expression
12 data points. This produced 117 adjoint solu-to (11) for DR. Using (10), (13) and (14) and
tions, each corresponding to a 5-year period. Therecognizing that the solution S1 (t) depends on the
model average transfer function was then com-entire K-model solution vector S, the linear change
puted as mean of 117 adjoint solutions. Theof response function R is then written
response function (R) was defined as the 3 month
average of dS1/dt for each 5-year interval usingDR= P t

0

∂g(S)

∂S
S∞(t) dt= P t

0
S∞(t)L c(t) dt. (15)

the last three months in the interval. The model

transfer function was computed for both the stand-
The interval of integration was extended to

ard K-model (with the lagged N-feedback mechan-
(0, t>t2 ) without change of the integral value

ism) and the no-N feedback K-model. These
because of d functions in (14). Using the rule for

models were integrated using the corresponding
adjoint operations the expression (15) can also be

best set of parameters values (Table 1). The best
written

set of parameters was determined from the opti-
mization experiments.

DR= P t
0

c(t)L *S∞(t) dt, (16) The transfer function between the temperature

variations and dCO2/dt was also estimated empir-
ically using the temperature and CO2 observa-where L * is the adjoint of L with respect to the
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tions. First, the autocorrelations were removed through year-to-year changes in transport. In the
extreme, a version of the K-model which fit thefrom each time series by subtracting a statistical

model fit to these time series (Kendall and Ord, observations perfectly would imply zero inter-

annual variability of ocean CO2 exchange.1990). For this purpose we found a second order
auto-regressive model [AR(2)] to be sufficient, by Therefore, we relied only secondarily on differ-

ences in goodness of fit between model versionsinspection of the residual auto-correlograms.

Then, the ‘‘pre-whitened’’ time series of the temper- as a criterion for model selection.
We first compared the model variants usingature and CO2 were used to compute the cross-

correlations. The standard F-test was performed forward integrations (Fig. 4), choosing arbitrarily

parameters from the mid-points of the rangeson the results to determine significance for each
point. The ‘‘transfer function’’ was finally com- shown in Table 1. The no-lag K-model produces

amplified variations in CO2 exchange that areputed from the cross-correlations by multiplying

by the ratio of standard deviations of the 2 time poorly phased with, and of greater amplitude than
those observed. Additional experimentation sug-series (Kendall and Ord, 1990).
gested that no parameter set produced reasonable

simulations with a no-lag N-cycle K-model. If the
3. Discussion

no-lag N-cycle were correct, then to match the
observed CO2 , the ocean or some other process

3.1. Choice of a model
would have to damp out the effects of the bio-
sphere. Even the no-lag biosphere produces rela-We based the structure of the K-model on

approaches widely used in ecosystem modeling tively small variations in atmospheric CO2 relative
to the concentration changes needed to affectand specifically on the Century ecosystem model

(Schimel et al., 1996). We sought to represent ocean uptake or photosynthesis. Changes in one

domain (land or oceans) are not mechanisticallythose components and processes that we believed
would influence year-to-year variations within a coupled to the other by atmospheric concentra-

tions in a way that would systematically buffer15-year period (1979–1994). We focused on those

quickly-responding processes that could be trig- short-term oscillations. We, therefore rejected from
further consideration the no-lag K-model.gered by interannual climate variability rather

than processes which might dominate long-term We also compared Gaussian lags centered on

1.5 and 2 years in the lagged K-model. Neither oftrends such as historical land use or climate
change. these models have unreasonable variability and

both resemble the amplitude and frequency ofBased on suggestions in Braswell et al. (1997)

and Schimel et al. (1996), we examined processes variations in the data, even without the parameter
optimization. Because they substantially resemblelinked to the nitrogen cycle that could produce

delayed responses (uptake or release of CO2 ) of each other, we arbitrarily chose the 2 year mean

lag version of the model for subsequent analysis.opposite sign to those triggered during the year
of a temperature anomaly. We first considered In addition, we also continued to evaluate the

‘‘null hypothesis’’ K-model which lacks anseveral variations on the K-model. We imple-

mented the null hypothesis as a K-model with N-feedback entirely.
In the next step of analysis, we conductedno-N feedback in which delayed effects had to

arise from the multicomponent model structure. optimizations of the standard K-model with the

2 year lag and of the no-N feedback K-model (seeIn the ‘‘standard version’’, N uptake causes a
lagged impact on NPP. Finally, we considered a optimization procedures in Subsection 2.3). We

evaluated a number of quantitative and qualitativeversion with the N feedback but no lag, the

‘‘no-lag version’’. The simplest way to distinguish measures describing the optimization of these two
model structures and their appropriateness forbetween alternate model formulations is to con-

sider the size of the residual or root mean squared representing the observations. First, we considered
formal optimization diagnostics. Fig. 5 shows theerror. We know the residual from the K-model

includes: model errors, data errors, anthropogenic cost function and the norm of the cost function

gradient from the optimizations of both modelsflux anomalies and ocean flux anomalies. At this
scale, the data errors in CO2 would arise primarily starting from two different sets of first guesses
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Fig. 4. Comparison of observed CO2 growth rates (solid line) with results of forward simulations of the K-model,
using midpoint, ‘‘first guess’’ parameter values (Table 1). (A) Standard case, including explicitly lagged N feedback
term. We considered feedback terms with lag centered on 1.5 years (dotted line), and 2 years (dashed line). (B) Input
parameters are the same as in (A), but there is no explicit delay in availability of mineralized excess nitrogen (N
uptake equals N mineralized for each month). (C) Input parameters are the same as (A) and (B), except that the N
feedback term F (eqs. (4) and (5)), is set to zero. This consequently disables all the C :N terms.

(Table 2). The norm of the gradient shows how The cost function declined monotonically in all
experiments, but the norm of the gradient showsclose the cost function is to a minimum. This

norm was used to define the convergence cri- that convergence was achieved formally only for
the standard K-model starting from the ‘‘roughterion (∏0.1).

Tellus 53B (2001), 2



       161

Fig. 5. Convergence of the cost function (A) and the norm of the gradient of the cost function (B). We considered
two different models (standard and no-N feedback) and two different first guess parameter sets (midpoint and ‘‘rough
optimal’’) resulting in 4 experiments (Table 2): NLAG-O (solid), NONF-O (dashed), NLAG-M (dot-dash) and
NONF-M (dotted).

optimal’’ first guess described in Subsection 2.3. model. The 2nd experiment for the standard
K-model starting from the mid-interval first guessIn the no-N feedback experiment with the equiva-

lent first guess the norm declined very slowly for did not converge formally, indicating that the

optimization results were sensitive to the first100 iterations, oscillating as it declined indicating
the presence of close multiple minima in the guess. This result is expected in the nonlinear

constrained minimizations.parameter space. The multiple minima are the

result of non-quadratic nonlinear relationships The Hessian matrix condition number is pro-
duced as a part of optimization using thebetween the cost function and the model para-

meters. The oscillations in the norm of the gradient Quasi-Newton numerical and is a measure of how
well-posed the inverse problem is (for example,are even more pronounced in the second experi-

ment using the no-N feedback model (the experi- see Tarantola, 1987, Chapter 1, for definition of

the Hessian matrix and its condition number).ment NONF-M in Table 2). We were not able to
find a stable minimum of the cost function for this The no-N feedback inversion resulted in a very
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large Hessian condition number, suggesting the transfer function in the form of the lagged
Gaussian centered on 2 years. The no-N feedbackproblem was not well-posed. In qualitative terms,

this indicates the difficulty of obtaining a unique model shows a similar initial response. As

expected, the two models are virtually identicalparameter set for the given model using the avail-
able observations. By inference, the model struc- on short time scales, given the Gaussian N lag

which shifts most of the N-response to longer timeture is inappropriate to explain the observed

relationships. The Hessian condition number for scales. The no-N feedback model shows lagged
negative response, which however returns mono-the standard K-model was small (~10).

Taking into account, the trend in the norm of tonically to zero. The overall pattern in observa-

tions (Fig. 6A) is more consistent with thethe gradient (convergence) and the Hessian condi-
tion number, we consider the inversion of the standard K-model and less consistent with the

no-N lag K-model.standard K-model to have been successful, and

inversion of the no-N feedback K-model to have We also computed the cross-correlations of T
and dCO2/dt from the modeled and observed timebeen mathematically unsuccessful. This suggests

that the N feedback hypothesis is more consistent series over the period 1979–1994 (Fig. 7). The

cross-correlations are less powerful as diagnosticswith the observations given the gross model struc-
ture, and that, conditioned on model structure, than the transfer functions because they preserve

the effects of autocorrelations in the input datathe no-N feedback hypothesis is inconsistent with

the available global data. Before rejecting the (the rough periodicity in temperature anomalies
could cause a spurious lagged effect if the actualno-N feedback hypothesis, we evaluated the

‘‘transfer function’’ (see Subsection 2.4 for the correlation were instantaneous). But, because the
standard K-model produced a cross-correlogramdefinition) produced by the standard and no-N

feedback model. For this diagnostic and the discus- that is different from the no-N feedback model

and because the cross-correlation was used insion of the cross-correlations and parameters
(below), we used for each model version the best prior work (Braswell et al., 1997), we consider

this comparison informative of the relationshipset of parameter values produced in the experi-

ments in Table 2. The best optimization of the between the model and data. The cross correla-
tions for the standard K-model and the data areparameters in our experiments was produced with

the ‘‘rough optimal’’ first guess. Formal conver- very similar at short (<1 year) and long (>2.5

years) lags. They have similar slopes and the samegence was not achieved in the no-N feedback
experiments but the new set of parameters at the pattern of correlation--anticorrelation unlike the

no-N cycle model (dashed curve) which does notend of the least unstable optimization experiment

(dashed curves in Fig. 5A) gave a better dS1/dt produce anticorrelation at long lags. The no-N
cycle model cross-correlation curve is, however,solution than the first guess (smaller cost function).

The transfer function of the model is the func- more similar to the data at 1–2.5 year lags.

Finally, we examined the parameters from thetion that relates an instantaneous change (impulse)
in temperature to the derivative of CO2 with time two model versions. The retrieved values vary

somewhat depending upon the first guess in theat lags 0–5 years (Subsection 2.4). A transfer

function can also be estimated from the data using optimization experiments and upon the smoothing
of the data. Despite this, the differences betweenregression after the data are ‘‘pre-whitened’’ to

remove autocorrelation. This estimate allows us the standard and no-N cycle K-models are instruc-

tive. In the standard model, there is a clear hier-to check whether the sign and time scales of lagged
effects (in the T to dCO2/dt relationships) in the archy in the time scales (turnover times) of the

biomass, litter, fast and slow soil pools from lessmodel are consistent with the data (Fig. 6A).

Fig. 6B shows the transfer function computed than a year to around 100 years (parameters k2–k5
in Table 1). This is similar to our understandingfor the standard and no-N feedback K-models.

The standard model shows a function which is as embodied in models and from isotope data
(Schimel et al., 1994; Trumbore et al., 1996). Ininitially positive (warming causes immediate

release of CO2 ), has a lagged negative phase, and the no-N cycle K-model, biomass and litter have

longer time scales and soil pools shorter timea subsequent return to positive sign. Note the
shape of the lag function appears directly in the scales than in the standard model. This adjustment

Tellus 53B (2001), 2



       163

Fig. 6. Temperature impulse transfer functions for global CO2 growth rate. (A) Calculated directly from observations
based on the method suggested by Kendall and Ord (1990); the thick line is smoothed for visual purposes only.
(B) Calculated using the K-model-adjoint and optimized parameter sets for the standard (solid line) and no-N
feedback (dashed line) model version.

is required to attempt to fit the lagged signal in the average of instantaneous responses (IR) of
CO2 time rate of change resulting from a 1%the T −dCO2/dt data, with the ‘‘slower’’ soil pools

providing some lagged effect. Overall, the change positive change in the parameter:

in parameters from the standard to the no-N cycle
model is towards a less reasonable parameter set,

IR=
∂
∂a AdCO2

dt B×0.01×a.
based on our understanding of carbon biogeo-

chemistry. This again is evidence that the no-N
cycle model, driven purely by the biophysical Note that the responses are generally larger in

the N-cycle model (Fig. 8A). In some cases para-effects of temperature, fits the pattern of multiple
time scales evident in the data poorly. meter sensitivities vary depending on the sign of

dCO2/dt. The larger sensitivity in the N-cycleFig. 8 shows the model’s linear sensitivity to its

parameters, calculated from its adjoint, for the model corresponds to the generally larger ampli-
tude in dCO2/dt simulated by this version com-N-cycle and no-N cycle versions. The figure shows
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Fig. 7. Lagged cross-correlations. Solid curve shows cor-
relation of observed CO2 anomaly with temperature
anomaly for positive lags (temperature leading CO2).
The remaining curves are for the optimized model with
explicitly lagged N feedback (dotted line) and with no-
N-feedback (dashed line).

pared to the no-N cycle version. In both model

versions, the sensitivity to Q
r
and Q

p
is significant.

This is reasonable, since the imbalance between
these two parameters triggers all of the other

model responses (causing carbon accumulation or
loss). In the no-N cycle version, the model is
sensitive to turnover of ‘‘slow’’ soil organic matter,

the parameter k4 , because this pool contributes
much of the lagged effect absent in N cycle. In the
N-cycle version of the model, the solution is also

sensitive to two crucial N cycle parameters (F
and cn2 in eq. (4)). These two are paired variables,
determining by their product the translation of N

mineralization into carbon uptake. F is the frac-
tion of N utilized in carbon uptake and cn2 , the
C : N ratio of the new carbon fixed. As F goes
up, so does the amount of carbon fixed for any

Fig. 8. Average of instantaneous responses of dCO2/dtgiven N mineralization, and similarly as the C : N
to 1% positive change in the parameter value. Fullratio increases, the amount of C fixed per unit N
circles represent time averages of the positive response

captured increases. In a similar stoichiometric
dCO2/dt>0 and open circles represent negative

sense, the C :N ratios of the sensitive litter and responses dCO2/dt<0 in the adjoint integration.
slow soil pools determine the N mineralized per

unit carbon released during turnover. It has been
3.2. Climate anomaly patterns and model

suggested that not all additional N released during
evaluation

warming can be utilized by plant growth
(Houghton et al., 1998). In our analyses, the The structure of the K-model is based on the

structure of global ecosystem models, which arefraction of N released that is used in plant growth

is a free parameter with an estimated value much implemented grid-cell by grid-cell to capture spat-
ial variations in vegetation, soils and climate. Byless than 1.0 (F=0.59), though still significant.
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fitting a non-spatial model to global temperature much of the global variability occurs in the
Northern mid-high latitudes, with a secondaryand CO2 growth rates anomalies, we have estim-

ated ‘‘bulk’’ parameters for characteristics. In real- contribution from the southern hemisphere trop-

ics. The dashed line indicates the relative variance.ity, turnover times, C:N ratios and other ecosystem
properties vary geographically. The parameter The magnitude of interannual temperature variab-

ility peaks in the Northern mid-high latitudes andvalues in the K-model reflect those regions in the

biosphere that are affected by temperature anom- is substantially lower elsewhere. Absolute year-to-
year swings of up to 4°C occur from 35–40 N andalies, weighted by the effect of those regions on

the atmosphere (that is, weighted by the variability northwards, while year-to-year changes are typic-

ally less than 1°C in the tropics. This suggests thatin NEP). Since we don’t know a priori those
weightings, we estimate the parameters by inver- temperature-driven interannual variability during

the period 1979–1994 was dominated by the effectssion to best fit the observed temperature-to-

CO2/dt relationships. In the inversion, we only of the northern hemisphere mid latitude and
Southern Boreal ecosystems. This is also the regionconstrained the parameters to lie within the global

ranges (tropics to tundra) of analogous parameters of the globe in which spatial inverse analyses

persistently put the terrestrial sink (Tans et al.,in Century, so we made no initial pre-judgment
of which biomes might dominate CO2 growth rate 1990; Rayner et al., 1999; Ciais et al., 1997) and

where time-dependent inverse analyses suggestanomalies. In this section we discuss how different

regions might contribute (or dominate) global significant variability (Ciais et al., 1997; Rayner
et al., 1999).responses by examining zonal patterns of temper-

ature anomalies. Note the secondary region of correlation in the
southern hemisphere tropics (Fig. 9, solid line)Fig. 9 shows zonal variability in temperature

two ways. The solid line shows the correlation of which is a region of generally low-amplitude tem-

perature variability and substantially less landtemperature anomalies 1979–1994 for each 5°
latitude band with the global mean temperature area than the mid-latitude northern hemisphere

(Fig. 9, dashed line). Other studies, however, haveanomaly time series. From this, it is evident that

suggested that interannual variability of CO2
fluxes in this region could be high, but mainly
driven by precipitation, with droughts causing net

CO2 emissions and increased fires leading to CO2
flux to the atmosphere. Tian et al. (1999) suggest
net emission to the atmosphere during tropical–

subtropical droughts occurring in El Niño years.
From Fig. 9, we assume that our ‘‘bulk’’ para-

meters capture effects dominated by temperature

forcing and ecosystem response in the northern
hemisphere because large, spatial coherent temper-
ature variations affected this region during our

study period. Changes to NEP there likely influ-
enced the growth rate of atmospheric CO2 glob-

Fig. 9. The latitudinal distribution of the temperature ally. That this region can experience large swings
forcing. The correlation between area-weighted temper-

in NEP has been corroborated using entirely
ature anomaly for each 1° latitude band and the global

independent methods (Ciais et al., 1997; Raynerarea-weighted mean (solid line) appears to be greatest in
and Law, 1999). While estimating weighted aver-the mid-to-high northern latitudes (40N–60N), with a

smaller peak in the tropics. A similar pattern can be seen age or ‘‘bulk’’ parameters over an area of this size
in the area-weighted variance of the T anomaly time (much of the Earth’s land area lies between
series for each latitude band (dotted line). Together, these 35–70 N) requires that we group together diverse
analyses suggest that the greatest forcing due to inter-

ecosystems, the region is substantially less diverse
annual temperature variability occurs in the northern

than the Earth as a whole. Ecosystems with hightemperate zone. Note that while the pattern in the tropics
NPP in this region are generally temperature and‘‘resembles’’ the global mean, its overall variability is

very low. nitrogen limited, and so our model structure
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(which includes only temperature and nitrogen work arguing that the immediate effects of warm-
ing are larger for respiration than photosynthesis,effects) can credibly capture a significant portion

of interannual variability, though drought and a new line of evidence suggests that warming leads

to increased growing season length and enhancedother disturbances which we don’t consider,
certainly can play a rôle. plant growth (Myneni et al., 1997; Randerson

et al., 1997). This mechanism can at least locally

increase carbon uptake (Goulden et al., 1996). Is
3.3. Implications of the working hypothesis

this result in conflict with the K-model analysis?
First, both N-cycle and no-N cycle versions of theOur study supports the idea that the terrestrial

ecosystems can contribute to interannual variabil- K-model suggest an increase in plant growth with
warmer conditions. Table 1 shows that in bothity in the growth rate of atmospheric CO2 .

Ecosystem carbon storage is sensitive to climate model versions Q
r
(the temperature effect on res-

piration) is consistently larger than Q
p
(the temper-and, thus, future changes to climate and climate

variability should affect ecosystems. Much of the ature effect on primary productivity). Thus, our
analysis suggests a positive effect of warm yearstemperature-driven interannual variability of eco-

system carbon exchange may occur in mid-high on NPP and, by extension, on the amplitude of
the seasonal cycle of CO2 . In addition, warminglatitude northern hemisphere ecosystems, the

region identified persistently as the location of the can increase simulated carbon storage if the lagged

nutrient release mechanism dominates over thebulk of terrestrial carbon uptake. Northern hemi-
sphere uptake may not be very stable from one direct effects of temperature.

The results of the K-model analysis suggestyear to the next, consistent with results by Ciais
et al. (1997). This is significant in interpreting that, globally, ecosystems behave as if the temper-

ature sensitivity of respiration is larger than that‘‘snapshot’’ or time-averaged spatial inverse calcu-

lations (Tans et al., 1990; Fan et al., 1998). The of primary production. If ecosystems show
increased NEP in response to larger growinginterannual variability of terrestrial uptake is

approximately ±2 Gt C per year, an amount seasons, this would have to be via indirect mechan-

isms such as nutrient feedbacks. A strong role forequal to the mean global terrestrial sink
(Schimel, 1995). nutrients is consistent with experimental studies

which suggested that ‘‘increased nutrient availabil-Both N-cycle and no-N cycle model versions

suggest release of CO2 from terrestrial ecosystems ity was an important indirect effect of warming’’
in tundra ecosystems, although increased micro-during warm years (and vice versa). The immediate

effects of temperature anomalies can be seen in bial activity may have been only one of several

mechanisms leading to enhanced plant uptake ofrespiration more than in carbon uptake, at least
in those ecosystems contributing to CO2 anomal- nutrients (Chapin et al., 1995). Chapin et al. (1995)

also found substantial lagged effects of warmingies over the period 1979–1994. Without this asym-

metry, the effects of temperature would be zero or on nutrients and also suggested that slow species
and litter chemistry shifts with climate could con-reversed (if uptake was more sensitive than respira-

tion). This agrees with understanding of the rela- tribute to ecosystem responses on decadal time-

scales. Species shifts (succession) are unlikely totionships between temperature, respiration and
NPP based on small scale ( leaf, plant or soil be a major cause of year-to-year changes in terrest-

rial NEP but could contribute to decadal trendsincubation) experiments. The agreement between

analyses based on ‘‘scaling up’’ microscopic para- in carbon uptake at high latitudes (Myneni et al.,
1997; Chapin et al., 1995). Current measurementsmeters ( leaf and microbial physiology) with inverse

methods from ‘‘macroscopic’’ data lends credibility of the atmosphere may not provide sufficient

information to allow unambiguous diagnosis ofto the underlying theory. If our analyses are
correct, the northern hemisphere terrestrial sink the consequences of temperature on terrestrial

carbon storage and must be complemented byappears to be extremely volatile in magnitude
from year to year requiring that we develop a regional process and flux studies.

Both our models and the empirical cross-detailed process level understanding if we are to

anticipate its likely future magnitude. correlation and transfer function regressions
suggest instantaneous and delayed effects ofWhile our results are consistent with a body of
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temperature on ecosystems. Effects of temper-
ature-mediated ecosystem processes have
‘‘memory’’ of consequences on multiple time scales.

The N-cycle version of the K-model suggests that
this memory may operate via the N-cycle and
plant nutrient use. Increases in soil respiration are

generally accompanied by increase net N min-
eralization, leading to a coupling between the
immediate effects of temperature on respiration

and the N cycle. While there has not been extensive
specific discussion of delayed effects of temper-
ature, there is supporting evidence. Fertilization

of forests typically results in rapid changes to
foliar N concentration and delayed effects on NPP
(see studies reviewed in Schimel, 1995). Warm

temperature anomalies may result in increased
available N too late in the growing season to
affect the present years growth but allow perennial

plants to stockpile N for the subsequent year.
Many trees determine carbon and nitrogen alloca-

tion to foliage based on the previous years’ NPP
as the bulk of the annual leaf area is formed early
in the growing season using stored C and N

(Waring and Running, 1998). Evidence from a
long time series of aboveground NPP data in tall-
grass prairie suggests that the relationship between

weather and NPP in one year depends upon
weather in the previous year (Towne and
Owensby, 1988; Seastedt, personal communica-

tion). While we represent the lagged effects of N
cycle changes as a simple Gaussian delay, the
likely underlying biological mechanisms involve

plant allocation of C and N to different plant
parts (wood, leaves, roots) and phenology, the
timing of plant growth relative to the seasonal

cycle. Explicit testing of the standard K-model
Fig. 10. A: Global C flux produced with the K-model.hypothesis should focus on interactions of N
B: Residual global C fluxes (K-model minus observa-availability with allocation and phenology.
tions) shown as annual averages (grey bars). PositiveThe residual from the K-model (K-model-
values indicate an unaccounted source of CO2 to the

observations) shows (Fig. 10B) both positive and atmosphere. For comparison, in panel C are shown the
negative fluxes. The magnitude of the residuals observed CO2 growth rate (solid line), and an index of
suggests that significant processes are occurring the El Niño Southern Oscillation (ENSO) cycles (dotted

line; data from Trenberth (1984)), both smoothed withthat are not included in the K-model. The large
a 6-month moving window filter.paired positive and negative residuals in the 1980s

are suggestive of a relationship to El Niño ( large
El Niño events occurred in 1982–83 and 1987). suggests anomalous ocean uptake during El

Niños. Others have argued for increased terrestrialThe literature suggests that enhanced ocean
uptake should occur during El Niño periods due release in the tropics during El Niño. These losses

are due to the droughts that occur in the humidto ‘‘capping’’ of tropical upwelling by the warm

water tongue extending over the Eastern Pacific. tropics late in El Niño periods and may result
from enhanced respiration or from increased bio-Rayner’s (Rayner et al., 1999) inverse analysis

Tellus 53B (2001), 2



.    .168

mass burning (Tian et al., 1999; Nepstad et al., temperature dependence of respiration is larger
than that of NPP, leading to negative NEP during1999). Since the K-model does not include precip-

itation effects or biomass buring, any signal from warm periods. Third, the effects of temperature on

ecosystems are manifest as both indirect, laggedthese processes would appear in the residual
(unless highly correlated with temperature anom- ecosystem responses and by direct physiological

effects. The lagged effects suggest a role for soilalies). The residuals from the K-model should not

be over-interpreted but the residual fluxes nitrogen cycling and plant nitrogen metabol-
ism in the global carbon cycle as well as direct(Fig. 10B) show signals that consistent with anom-

alous ocean and land exchange during El Niño plant and microbial physiological response to

temperature. The residuals from the model (model-periods. New tools and observations must be
brought to bear to test whether land or ocean observations) demonstrate that there are sig-

nificant interannual dynamics in CO2 that are notprocesses dominate to produce anomalous fluxes.

Atmospheric oxygen, isotopes in CO2 , new remote directly related to temperature. These could be
linked to both tropical oceanic and ecosystemsensing techniques and process modeling can all

contribute to resolving this question. responses to the El Niño. Warming and longer

growing seasons at high latitudes should causeNote also the lack of clear residual signals
during the prolonged weak El Niño of the 1990s increased NPP but could either increase or

decrease NEP, depending on whether the direct(Figs. 10A, C), a period that also contains the

cooling associated with the Mt. Pinatubo eruption. physiological or indirect ecosystem effects of tem-
perature dominated. Long-term experimentalEither the effects of El Niño may have been

masked by the Pinatubo effect, or, for an unknown studies should be able to distinguish which pro-
cesses dominate carbon fluxes.reason, the behavior of the carbon system was

different in the 1990s.

Terrestrial ecosystems could also contribute to
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