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Chapter 1

Introduction

1.1 Abstract

A nosocomial infection is an infection that a patient develops while in a hospital or healthcare

related setting, also known as a hospital acquired infection (HAI).This project has two foci: firstly

to model a HAI within an individual, then secondly to understand community-level propagation

effects of a nosocomial infection within a hospital ward. An analysis of a novel system of

coupled nonlinear ordinary differential equations (representing the HAI attack and immune

response within an individual) was first completed. More specifically the model includes an s

parameter that allows frailty to be patient specific. After the dynamic behaviors of the model

were fully characterized, an agent based-modeling approach was used to understand community

level dynamics. Of particular interest was the interplay between the time span of an infection

and the distribution of immune responses across agents[1].

1.1.1 Motivation

Understanding and modeling disease dynamics has always been a point of scientific interest, but

it is more important than ever due to the rise of antibiotic resistant bacteria, the globalization

of travel, and the international food distribution system. Though antibiotics were once hailed

as miracle drugs, bacterial populations are able to quickly form a natural resistance in some

cases rendering the "miracle drugs" useless [1]. The rise of antibiotic resistance creates an

evolving conflict between pharmaceutical developers and bacterial populations [1]. Due to the
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cost of developing new antibiotics, the inevitably short amount of time a drug would be effective

before a resistant strain of bacteria adapts, and the lack of economic incentives, antibiotic drug

development is no longer a major research focus for most large pharmaceutical companies [1].

The market is failing to create new antibiotics while hospitals are becoming more dangerous due

to the risk of nosocomial infections that are untreatable with available antibiotics.

Centuries ago, the global population was geographically isolated and travel was localized in

scope. This is no longer the case with widespread access to cars, trains, ships, and aircraft. Nearly

everywhere on Earth is accessible by some mode of transport within a few days. The global

population can now travel more easily than ever before, but this perceived luxury is actually a

threat. Aging airport infrastructure along with a lack of public health surveillance allows the

possibility for travelers to spread an infectious disease endemic to their home but novel to their

destination. Common examples of global outbreaks from the last two decades include SARS,

Avian Influenza, and Ebola. Though infectious diseases usually get the most academic attention

and media coverage, the same logic applies to nosocomial diseases or antibiotic resistance.

Increased human travel potential is not the only thing worsening the outlook for nosocomial

diseases. Meat production is heavily reliant on antibiotics [1]. In 2015, Chinese scientists found

MCR-1 in bacterial samples from humans and pigs [2]. MCR-1 is a gene that gives its host

resistance to all known antibiotics [2]. Perhaps even more disturbing is the fact that the MCR-1

gene can easily be transferred between bacterial species [2]. MCR-1 has been found in bacterial

samples from humans, food, and animals on four different continents: North America, Europe,

Africa, and Asia [3]. MCR-1 has yet to be found in the US[3].

As a result of the lack of new antibiotics, the meat production industry, the globalization of

travel, and novel mutations naturally arising in bacterial populations, nosocomial infections will

never be completely vanquished[1]. It is crucial to understand not only how the infection operates

within an individual, but also communal spreading patterns of the infection. Previous research has

looked at infections within an individual or modeled infections within a traditional mathematical

epidemiological framework (such as SEIR modeling), but the combination between the two has

received little attention [4, 5]. Another area of poor scientific coverage is the distribution of

immune responses within a population and its effect on a population’s resiliency with regard to a
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nosocomial infection.

1.1.2 The Model and Parameter Explanation

The model consists of two coupled nonlinear ordinary differential equations which use y(t) to

denote the relative severity of the infection and w(t) to denote the relative immune response.

Both y(t) and w(t) are qualitative in nature, but may be interpreted on a scale from 0 to 10. y(t) =

0 means that the individual has no infection whatsoever and y(t) = 10 indicates the maximum

infection a patient could experience. Similarly, w(t) = 0 indicates no immune response, while

w(t) = 10 implies that the patient’s immune system is waging an all out war against the infection.

λ1 represents a time scaling parameter which allows the infection equation to be customizable

for infections with different temporal behavior. λ2 plays the same role except for the immune

response.

dy

dt
=

1

λ1
y(10− y)(

y

1 + w
− 1)

dw

dt
=

1

λ2
w(10− w)(−1 + sy − w)

The infection equation contains a logistic growth equations with a changing carrying capacity.

It is directly related to the immune response by the 1+w term in the denominator. When y > 1+w,

the patient will continue to grow sick and when y < 1+w the immune response will start to "win"

allowing the patient to begin to get healthier.

The unique feature of the immune response equation is the s parameter. The s parameter can

be thought of as the sensitivity of the immune response to the infection. If y(t) < 1
s

the immune

response will decline to zero, but if y(t) > 1
s

the immune system will combat the infection. To

put in a more clinical context, an immune response is unnecessary for small infections that will

die out regardless, but for larger infections an immune response is necessary.

5



Parameter Meaning

y(t) Relative Severity of the Infection

w(t) Relative Severity of Immune Response

s sensitivity parameter

λ1 time scaling parameter for infection

λ2 time scaling parameter for immune response

1.1.3 Equilibrium Solutions

To analyze the dynamics of the coupled ordinary differential equations, a linear stability analysis

was completed to find all equilibrium solutions. There are two categories: those that dependent

on s and those that do not. Firstly, the s parameter independent equilibrium solutions are de-

scribed in the following table.

Equilibrium Solution Meaning Stability

(0,0) No infection or immune response stable

(1,0) Non-infective yet continual cold stable

(10,0) Death unstable

(0,10) No infection and full immune response (unrealistic) unstable

(10,10) Intense sickness or death unstable

The last equilibrium point is dependent on s and occurs at (10, -1 + 10s) at s = .1 and s = 1.1

the system is subject to transcritical bifurications as the moving equilibrium point passes through

the equilibra at (10,10) and (10,0) respectively. At s = .1 (10, -1+10s) = (10,0) and similarly

at s = 1.1, (10, -1+10s) = (10,10). When the sensitivity parameter is between 0.1 and 1.1 the

equilibrium at (10, -1 + 10s) is a stable node. Clinically this corresponds to a situation where

the immune response is insufficient to counter against the infection and the infection endures

indefinitely. From a modeling perspective such situations might result in either patient mortality

or situations where the infection cannot be cured and the only option is palliative care.
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At s = 1 the model undergoes a degenerate bifurication resulting in a manifold of equilibria

occuring on the line y = 1 + w. This represents a patient’s immune response being equal to the

infection. The infection will stabilize based on the initial conditions.

Of most interest is what happens at s = 1.1. At s = 1.1 (10 , -1 + 10s) = (10,10) causing an

exchange of stability. For s greater than 1.1, (10,10) stays a saddle point. This means that the

only equilibrium solutions in the system for s greater than 1.1 are (0,0) and (1,0) implying that

for s greater than 1.1 a patient can never die. The patient therefore must always revert back to a

mildly healthy state either perfectly healthy (0,0) or retaining a non-infective but persistent cold

(1,0).

When s = 1.6, the model’s dynamics force the patient to return to a mildly healthy state. The

infection level monotonically decreases to zero, while the immune response first heightens to

fight off the infection, then decreases down to zero. The patient in question returns to a perfect

healthy state.
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For s = .6, (10,-1+10s) is a stable equilibrium. The patient’s infection is fast moving and

does not allow the patient’s immune response enough time to successfully combat the infection.

The infection increases towards ten while the immune response approaches five. Physically this

can be interpreted as a patient death or an incurable infection.
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1.1.4 Description of the Ward, Agents Classes, and the

Associated Partially Randomized Schedules

A single simulation follows a cohort of 10 patients and 2 nurses each given a partially random,

partially deterministic route through the ward. The infection level, the immune response, and

location of each agent was tracked independently throughout the simulation. One simulation

represents one day in the ward. The hospital ward is represented by an 11 by 11 grid containing

two bedrooms each housing two groups of five patients (denoted North Patients and South

Patients), a medical office, and a dining/recreation room.

The patients are broken into two subclasses depending on the bedroom they are housed in:

North and South. The North Patients begin and end all simulations in the North Bedroom, while

the South Patients begin and end all simulations in South Bedroom.

The partially randomized schedule for each agent within the system dictates their (x,y)

coordinates at every time step. Due to the layout of the ward, one of the coordinates is always 0.

The schedule assigned to each agent is only partially randomized due to the fact that each patient

eats breakfast, lunch, and dinner at the same time. For all other times during the simulation, all
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patients are proscribed one of five behaviors to complete: walking to the medical office and back,

walking to the opposite bedroom and back, walking to the dining room and back, walking to and

from the center of the ward twice, or resting in their respective bedroom. The nurses have a set

walk through the ward that is predetermined. Starting at the medical office, the nurses first walk

to the south bedroom, then to the dining room, then to the north bedroom, and back once again to

the medical office. This action is completed by both nurses twice during a simulation separated

by a randomized piece. The nurse’s randomized piece is a binary choice between staying in the

medical office and walking to and from the dining room. For visual purposes the North Patients

are represented by white dots, the South Patients are represented by yellow dots, and the Nurses

are represented by red dots. The figure above displays all patients resting while one nurse holds

down the medical office and the other patrols the ward.
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1.1.5 Transmission Dynamics

At the start of each simulation one patient ("patient zero") begins with initial conditions of (9,3),

while all other agents start at (1,1), a relatively healthy state. All agents are assigned an s value

greater than 1.1. Given the stable equilibrium solutions for the associated nonlinear coupled

ODE, all agents must eventually get better in one of two ways: revert back to a perfectly healthy

state (0,0) or end the simulation with a slight non-infective cough (1,0).

The infection is spread solely by agents coughing. Patients have a 7% probability of coughing

if their infection level is greater than five. This allows for occasional coughing opposed to

continual coughing throughout the simulation. For an agent to be infected by a cough, they must

be in the "splash-zone" of a coughing agent. The splash zone is defined as a 1 unit radius around

a coughing agent’s position. For each agent, the transmission probability is held constant at 5%.

No agent can infect themselves, but each agent can infect every other agent in the simulation.

If an agent is infected by a cough, their infection severity is incremented by 1. Successful

transmission events are easy to detect during simulations by the one unit jumps in the infection

equation.
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At the end of 1900 time steps one of two things can happen: if the all agents have infection

levels less than five (no agents are coughing at t = 1900), the simulation ends. If one or more

agent(s) has an infection level greater than five, the simulation is elongated by 1900 steps. In

rare cases an agent can be infected multiple times in a row, forcing the infection and immune

response level towards (10,10). To stop an agent from becoming "stuck" exactly at (10,10),

before the elongation of the simulation all agents’ infection level are accessed. If a specific

agent’s infection is greater than nine it is reduced by 2 units. This is justified because the model

is applied to non-terminal outbreaks that all patients are expected to recover from.
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Chapter 2

Results

2.1 Simulation Results

100 simulations were run that included two Nurses, five North Patients, and five South Patients.

Each of which were assigned a partially randomized schedule and an s-parameter equal to 1.6. In

each of the simulations, South Patient One started with initial conditions equal to (9,3). All other

agents in the simulation started with the initial conditions equal to (1,1). Transmission dynamics

between agents were as previously described. Each simulation ran initially for 1900 time steps.

If all agents’ infection level was less than five after 1900 time steps the simulation was deemed

over. If not, the simulation continues iteratively as previously described until the outbreak is over.

For each of the simulations, λ1 was equal to 500 and λ2 was held constant at 200.

The average number of transmission events per simulation was 6.7, with a minimum of 1

transmission event and a maximum of 14 transmission events. The average length of the outbreak

was 393.48 time steps, with a minimum of 389 time steps and a maximum of 551 time steps. No

control group simulation went beyond 1900 time steps.

2.1.1 Experimental Comparison

Another round of 100 simulations were run on an experimental group. All conditions, dynamics,

and modeling assumptions were held constant except for the s-parameter. In the experimental

group, each agent’s s-parameter was drawn from a uniform random distribution between 1.1 to

2.1.
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In the experimental group both the average number of transmission events per simulation

and the average length of the outbreak increased. The average number of transmission events

per simulation was 15, with a minimum of 3 and a maximum of 115. The average length of the

outbreak was 618.19 time steps, with a minimum of 380 time steps and a maximum of 4071

time steps. Seven out of 100 simulations went beyond 1900 time steps indicating a multi-day

outbreak. The difference between the length of the infection and the number of transmission

events between the experimental and control group is significant at an alpha value of .01 (p =

.0007 and p = .00000335, respectively).

Above are the associated plots for a single control group simulation (when s = 1.6 for all

agents). About half of the agents experience one to two transmission events while the all other

agents experience no transmission events whatsoever. None of the agents besides Patient Zero

experienced an infection level greater than five during the entire simulation. This particular
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simulation ended before 400 time steps.

Above are the associated plots for a single experimental group simulation (s is drawn from a

uniform random distribution between 1.1 to 2.1). The behavior in general is more erratic and

exciting. Patient North Four ends the first day with an infection level that exceeds five indicating

a multi-day outbreak. Four out of 12 agents exceeded an infection level of five at some point

during the first 1900 time steps.

Number of Transmission S = 1.6 S Varied

Min 1 3

Max 14 115

Average 6.7 15
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Length of Infections S = 1.6 S Varied

Min 389 380

Max 551 4071

Average 393.48 618.19

2.1.2 Discussion

There is a clear difference between both the length of an infection and number of infections

when s in drawn from a uniform random distribution between 1.1 and 2.1 and when s = 1.6 for

all agents in the simulation. These results have clear implications for the mathematical modeling

community.

A few things are clear. For infections that all patients are expected to recover from, variation

in the individual strength of the immune response lengthens the time for an entire ward to recover

from an infection. This is not necessarily intuitive as both the control group and experimen-

tal group had an average immune response hovering around s = 1.6. For the mathematical

epidemiological modeling community, these results imply the need for more specificity when

making models and modeling assumptions for immune responses at both the individual and

communal level. The individual pieces do not necessarily act as the average (or whole) does.

It also emphasizes the need for more non-traditional modeling techniques such as agent based-

modeling to help increase variability between individuals in the study. Traditional mathematical

epidemiological modeling techniques rely on differential equations techniques (SIS,SIR, and

SEIR modeling) alone. This type of modeling assumes homogeneity in each subclass making

meaningful variability impossible to include in a way that evolves as the infection progresses.

2.1.3 Future Work

Though this study showed that variation within a population’s immune response caused the

duration of the outbreak to last longer than the same outbreak in a completely homogeneous
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population with respect to immune response, it did not tackle questions regarding what part of

the heterogeneity in the group caused the reduced resiliency. The next experiment should involve

quarantining agents with the weakest immune responses (i.e. s less than 1.6) and monitoring the

length of the outbreak for quarantined agents and the general population (agents with an average

to high functioning immune response s less than or equal to 1.6).

If this experiment was shown to be effective in reducing the length of time until an outbreak

was over, it would be a meaningful result. The result would have direct implications into hospital

design and outbreak protocol. It would also have implications for densely populated housing

design where influenza and other sicknesses can easily spread. Examples include military and

university housing. Similar systems are used in intensive care units, but are commonly used for

infections and diseases with higher mortality rates, though the concept would be beneficial in a

multitude of housing scenarios for non-life-threatening illnesses.

Identifying biomarkers corresponding to the strength of a patient’s immune response with

respect to a certain infection would be helpful for not only understanding the population’s

collective and individual immune response, but also to help set an immune response threshold.

The biomarkers would generate a quantitative measure of a patient’s immune resiliency to the

infection. Given this information, it would be easy to partition the population into two groups:

the general population consisting of members with average to high functioning immune systems,

and individuals with a weak immune system that would be isolated.

Other future directions include small changes to the existing model. In some hospitals, health

care workers are now wearing location tracking devices making route data available. Given this

information, the schedule that nurses and other health care workers take through the simulation

could be more realistic. Similarly, if route data was available for patients, their associated

simulation paths would also be more accurate.

During hospital stays patients often receive visitors in the form of friends, family members,

and medical specialists other than general nurses and physicians. Visitors can often bring in new

pathogens on their clothing or infect patients through direct transmission. Including outsider

visitation is just one way of making the model more realistic, others include: increasing the size

and complexity of the hospital ward. This might be accomplished by including more beds in the
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ward, creating more rooms for the patient and health care workers to assess, or even creating

a multi-floor ward. In addition, numerous other distributions could be sampled to generate

individual agent’s s parameter to understand the distribution’s affect on the length of the outbreak

within the ward. Transmission dynamics could also be adapted to include indirect transmission

from fomite vectors or time-delayed transmission. An example of fomite transmission might

include an agent sneezing on a piece of furniture, then another agent sitting on the piece of

furniture and becoming infected. Time-delayed transmission might include an agent’s cough (or

other effluvia) lingering in the splash zone for n time steps opposed to a single time step.
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