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1. Framework & methods
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1. Framework & methods

Precipitation Data (CRU TS 2.0)
Ann 2000 Mean Precip (mm/day)

10 12 21.5

Map source: http://data.giss.nasa.gov/cgi-bin/precipcru



1. Framework & methods

_Horizontal Water Transport

\\\'. A - - g - X ‘ I 7 “4’
- 1 [ Atianti r s AR
‘ | Nlr I indian Ocean . w 7
‘ \ N y [ tand
N\ > x /4 | I Vediterranean/Black Sea )
SEZnnEL NSRSREE — o receiving ocean




1. Framework & methods
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1. Framework & methods

o

Area under irrigation in
percentage of land area
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The digital global map of irrigation areas
February, 2007

The map depicts the area equipped for irrigation in percentage of cell area. Projection: Mollweide
For the majority of countries the base year of statistics is in the period 1997 - 2002.

http://www.fao.org/ag/agl/aglw/aquastat/irrigationmap/index.stm

AW/,
Stefan Siebert, Petra Déll, Sebastian Feick (Institute of Physical Geography, University of Frankfurt/M., Germany) and (. & UNIVERSITAT

Jippe Hoogeveen, Karen Frenken (Land and Water Development Division, Food and Agriculture Organization of the United Nations, Rome, Italy)




1. Framework & methods
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variation in 2 input datasets led to ~2000 km3/y
range in modeled demand for irrigation water.

The digital global map of irrigation areas
February, 2007
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1. Framework & methods

Reservoirs
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* S u p p Iy ~40% Of i rrlgated areas Figure 1: Global distribution (by country) of large reservoirs in GRanD database.

in India. Large dam/reservoir database (GRanD; Lehner et al. 2011; n~6500)
hydropower; flood control; irrigation; navigation

* Increasingly considered an
http://www.gwsp.org/85.html

important option to increase
food security.

e Store local runoff: capacity
~1000 m3.

* Irrigated area: 5-50 ha. Us
National
, Inventory
Wisser et al. 2010.
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2. Context & Questions
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2. Context & Questions

March 4, 2014 | vol. 111 | no. 9 | 3197-3646

Proceedings of the National Academy of Sciences of the United States of America

8 related research articles

WWW.pnas.org

The Inter-Sectoral Impact Model
Intercomparison Project (ISI-MIP):
Project framework

Lila Warszawski, Katja Frieler’, Veronika Huber, Franziska Piontek, Olivia Serdeczny, and Jacob Schewe
Potsdam Institute for Climate impact Research, 14412 Potsdam, Germany

Table 1. Participating impact models

Model {source) Sector

LPJmL (15, 16) Water/agriculture/
biomes

JULES (17, 18) Water/biomes

VIC (19)

HO8 (20)
WaterGAP (21)
MacPDM.09 (22)
WBM (23)
MPI-HM (24)
PCR-GLOBWB (25)
MATSIRO {26)
DBH (27)
ORCHIDEE {28)

. | Hyorid4 (29)
"4 SDGVM (30)
| JeDi 31)
W | VISIT (32)

Water

Model {source)

Table 1. Participating impact models

Sector

VISIT (32)
GEPIC (33)
EPIC (34)
pDSSAT (35)
PEGASUS (36)
Biomes GAEZ-IMAGE (37)
LPJ-GUESS (38)
MARA (39)
Umea statistical
medel (40)

LMM 205 (41)
MIASMA (42)
VECTRI {43)
DIVA (44)

AIM (45)
ENVISAGE (46)
EPPA (47)
GTEM (48)
FARM (49)
MAGNET (50)
GCAM (51)
GLOBIOM (51)
IMPACT (53)
MAGPIE (54)

Agriculture

Health (malaria)

Coastal infrastructure
(Agro-) economic effects




2. Context & Questions

The Predictability of Rainfall over the Greater Horn of Africa. Part I:
Prediction of Seasonal Rainfall

SHARON E. NICHOLSON

Are people more interested in how much water
they will have in the next rainy season, or in
predictions for 21007

Response of snow-dependent hydrologic extremes

to continued global warming

Noah S. Diffenbaugh'*, Martin Scherer' and Moetasim Ashfaq?

nature
climate change

LETTERS

PUBLISHED ONLINE: 11 NOVEMBER 2012 | DOI:10.1038/NCLIMATE1732

J.Hydrometeorology, 2014, 15:1011-1027

Below 1976-2005 median

Below 15762005 minimum

2010-203%

2040-2069

% of years

2070-2099

Figure 2 | Emergence of low and extremely low snow years in the twenty-first century. Percentage of years with accumulated March SWE below the
simulated 1976-2005 median (top) or minimum (bottom) in three periods of RCP 8.5 (56 realizations from 26 models; Supplementary Table S1). Following
ref. 21, stippling indicates areas where the magnitude of the multi-model ensemble mean occurrence divided by the multi-medel standard deviation of
occurrence exceeds 1.0 (black symbels) or 2.0 (white symbols). Grey denotes areas where at least half of the realizations have a median (top) or minimum

(bettom) March SWE of zero in the 1976-2005 period.
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FIG. 1. (top) Month of rainfall maximum and area rainfall divisions (defined by numbers with
circles 1-4). (bottom four panels) Monthly rainfall (mm) at typical stations: Arba Minch, Addis
Ababa, Embu, and Migori.




2. Context & Questions

WATER RESOURCES RESEARCH, VOL. 47, W05301, doi:10.1029/2010WR010090, 2011 .
Hyperresolution global land surface modeling: Meeting a grand The never-ending quest for
challenge for monitoring Earth’s terrestrial water hi g her s P atial resolution.

Eric F. Wood,l Joshua K. Roundy,l Tara J. Troy,l L. P. H. van Beek,2

Marc F. P. Bierkens, Eleanor Blyth,* Ad de Roo,” Petra D&1L,® Mike Ek,’

James Famiglietti,8 David Gochis,” Nick van de Giesen,'® Paul Houser,'' Peter R. Jaffé,'
Stefan Kollet,'?> Bernhard Lehner,'® Dennis P. Lettenmaier,'* Christa Peters-Lidard,'®
Murugesu Sivapalan,“S Justin Sheffield,' Andrew Wade,'” and Paul Whitchead'®

i.e., global 1-km modeling
~1500km?

=T T T
5 lrv‘

'

° 8 0204080810

Figure 1. Higher-resolution modeling leads to better spatial representation of saturated and nonsaturated e L
areas, with implications for runoff generation, biogeochemical cycling, and land-atmosphere interactions. ¥ 3 ; ? . w ) ¥
Soil moisture simulations on the Little Washita showing the impact that the resolution has on its estimation : L gsn % A 7 e ;05

N s
AL 7

Figure 3. HydroSHEDS, an example of a global data set that will be needed for a hyperresolution hydro-
logic model. The data set consists of elevation, stream networks, watershed boundaries, drainage directions,
and ancillary data layers such as flow accumulations, distances, and river topology at various resolutions
from approximately 90 m to 10 km and is based on data from NASA’s Shuttle Radar Topography Mission.



2. Context & Questions | Crops, climate, canals, and the cryosphere in Asia -

e Univ. New Hampshire
Water balance and
crop yield modeling

e Boston University —
Economic modeling;
land use analysis and
remote sensing

e Penn State University
Economic modeling

e Univ. Alaska-Fairbanks
Cryosphere modeling

changing water resources around the earth’s third pole

Gr;mdwater
Mining

Glacier
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Mining =

1. Water and Climate: What are potential impacts of climate change on water supply in Asia?

2. Water and Food: What are present relative contributions of local surface water, upstream runoff, and
deep groundwater to water resources for food production and how will these relative contributions evolve?
What are potential impacts of major inter-basin transfers and improvements in irrigation and crop water use

efficiency?

3. Water, Climate, and Sustainability: How will food and water pricing respond, and with what impacts on
trade in food and virtual water, on water engineering efforts, on partitioning of water resources for
agriculture, industrial, and municipal/domestic use, and on water resource policies?

NSF Water, Sustainability, and Climate project




3. Outcomes M.ultimodel assessment of water scarcity under
- climate change  pNAs, 2014, 111, 3245-3250
Jacob Schewe®’, Jens Heipke?"’, D;eter Gerten?, Ingje':'d Ha.ddeland‘, Nigel W l-\irne_lld. Douglas B learke, ) .
The Inter-Sectoral Impact Model | oo ssmne e saies . e’ i . odyconaies: Simin . s’ yngn i

Int e r c 0 mp ari s 0 n Pr oi e Ct (IS I _MI P) :::h;:i’d:i I(Waabdaat;,ubominik Wisser®, Torsten Albrecht?, Katja Frieler®, Franziska Piontek?®, Lila Warszawski?,

W eSS N
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25
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3. Outcomes

Legend

Conflict adaptability gro
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3. Outcomes

OPEN ACCESS

I0P PUBLISHING
Environ. Res. Lett. 8 (2013) 025010 (10pp)

ENVIRONMENTAL RESEARCH LETTERS
doi:10.1088/1748-9326/8/2/025010

Horizontal cooling towers: riverine
ecosystem services and the fate of
thermoelectric heat in the contemporary

Northeast US

Robert J Stewart!, Wilfred M Wollheim' 2, Ariel Miara?,

Bernice Rosenzweig®

Charles J Vorosmarty>, Balazs Fekete®*, Richard B Lammers' and

Thermoelectric
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selected regions.

Temperature increases due to plants are more widespread in
the summer because waste heat inputs are dissipated more

quickly in the winter.

Allocation of total heat (in petajoules) generated in freshwater
thermoelectric power plants during electricity production at selected

basins.




3. Outcomes Hirabayashi et al (2013) Global flood risk under climate change, Nature Climate Change
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3. Outcomes

Water balance of global aquifers revealed by
groundwater footprint

Tom Gleeson', Yoshihide Wada?, Marc F. P. Bierkens*® & Ludovicus P. H. van Beek?

Population density in areas with less

Population density in areas with more
stressed regional aquifers (km2)

stressed regional aquifers (km=2)

. >20 8
1020 | S o
510 B8
1-5 3°

m <1 o

area (A,

groundwater
footprint (GF)

Western Persian Upper Ganges

Mexico

High Plains  North

Arabian

0 20,000 0 20,000

L S

}’ oW

w

Potential for increased calories
in areas with less stressed
regional aquifers (10° kcal ha™)

Potential for increased calories
in areas with more stressed
regional aquifers (10° kcal ha™)

Groundwater footprints of aquifers that are important to agriculture are
significantly larger than their geographic areas. Aquifers are major
groundwater basins with recharge of .>2 mm yr. At the bottom of the figure,
the areas of the six aquifers (Western Mexico, High Plains, North Arabian,
Persian, Upper Ganges and North China plain) are shown at the same scale as
the global map; the surrounding grey areas indicate the groundwater footprint
proportionally at the same scale. The ratio GF/AA indicates widespread stress
of groundwater resources and/or groundwater-dependent ecosystems. Inset,
histogram showing that GF is less than AA for most aquifers.

0 2.5 >5 0 25 >5

Figure 2 | Groundwater stress may be affecting ~1.7 billion people and
could limit the potential to increase agricultural production. The ratio GF/
Ay is used to differentiate areas with less groundwater stress (GF/A4 < 1) and
more groundwater stress (GF/A4 > 1). a, Population densities, derived from
the gridded population of the world for year 2000 (ref. 29). Areas that do not
have underlying regional aquifers, or that have very low population density are
shown in white. b, Potential for increased calories (see main text). Some areas
with potential new calories'® coincide with stressed aquifers and some areas
coincide with aquifers that are less stressed. Areas with potential new calories
that are not underlain by a regional aquifer are shown in white.



GF (groundwater footprint) =
gw withdrawal

- Area
gw net recharge

3. Outcomes

Gleeson & Wada, ERL 2013

A, = aquifer known area

Assessing regional groundwater stress for R
nations using multiple data sources with
the groundwater footprint

Aquifer stressed (GF/A, >1) for:
-ALL combinations of input data

- SOME combinations of input data

NO combinations of input data

Reported groundwater abstraction (USGS) Downscaled groundwater abstraction (Wada et al., 2012)
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3. Outcomes Dwindling Storage in Reservoirs

e Reservoirs in GRanD database

YcReported reservoir capacity loss rates due to sedimentation

0.0 0.4 0.8 1.2 1.6 2.0
Loss Rate [% per year] (from Dominik Wisser, Bonn U)




3. Outcomes Dwindling Storage in Reservoirs

river basin change 1990-2010:
e reservoir capacity (shading)
e population (filled circles)

Wisser et al. 2013 WRR -8 =4 0 4 8

Change in Storage Capacity 1990/2010 (%)
[ S | .
30 45

-45 -30 =15 0 15
Chanae in Population 1990/2010 [%)]




3. Outcomes Dwindling Storage in Snow

| e : ] L
-30 -20 -10 0 10 20 30
Change Snowmelt, 1990/2010 [%]

mil ]

6800

6600

Snowfall [ki

6400

6200 ®

6000 |- °

5801%75 1980 1985 1990 1995 2000 2005 2010 2015
(Water Year

(from Dominik Wisser, Bonn U)



W Interbasin Water Transfers

Includes: Reservoirs and Irrigation. Irrigation water applied with
100% efficiency (no loss back to system).

With and Without Inter-basin Transfers (Diversions).

When Diversions turned on (red line) more water is abstracted
from rivers for irrigation.
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3. Outcomes

Improving irrigation efficiency

wodumedia.com ' &

India’s irrigation efficiency (FAO) = 0.34
Irrigation water withdrawal = demand + 0.34

r
&N\
oo
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Surface Water Mined

Groundwater
(as needed)

/

Return

| N Irrigation water demand; efficiency

v
Irrigation water withdrawals

— T
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P P P ONFf

D Grogan
etal.
UNH



3. Outcomes

Irrigation, mined groundwater fraction of demand (c.2000)
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3. Outcomes

irrigation water demand (mm/y)

Irrigation, mined groundwater fraction of demand (c.2000)

Mined groundwater (MGW) fraction of demand
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3. Outcomes

irrigation water demand (mm/y)

Irrigation, mined groundwater fraction of demand (c.2000)
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3. Outcomes ‘Coupling WBM & Glacier Mass Balance Modeling

About 80,000 glaciers
in Central Asia (13-15)

glacier
annual
volume

V normalized

03 g 19 i
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:] Glacier regions - Randolph Glacler Inventory 2.0
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3. Outcomes |Coupling WBM & Glacier Mass Balance Modeling
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3. Outcomes |Coupling WBM & Glacier Mass Balance Modeling

Radic et al. (Climate
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4. Relevance to IAMs

How can ‘technologies’ improve water supply & crop yield?
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