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ABSTRACT 

Started in Fall 2015, Project OASIS (Optimizing Aquaponic Systems to Improve Sustainability) 

is an interdisciplinary capstone project with the goal of designing a sustainable and affordable 

small-scale aquaponic system for use in developing nations to tackle the problems of 

malnutrition and food insecurity. Aquaponics is a symbiotic relationship between fish and 

vegetables growing together in a recirculating system. The project’s goals were to minimize 

energy consumption and construction costs while using universally available materials. The 

computational fluid dynamics (CFD) software OpenFOAM was used to create transient and 

steady-state models of fish tanks to visualize velocity profiles, streamlines, and particle 

movement. CFD and small scale experiments showed vertical manifolds were more efficient 

than horizontal inlets. The components’ layout was analyzed to minimize head losses and airlifts 

were used instead of traditional water pumps. Full-scale research and traditional systems were 

constructed for side-by-side comparison of biological and energy factors. Flow improvements 

and use of air-lift pumps dropped energy consumption 40% when compared to a traditional 

system of the same size. Using local and recycled materials where possible decreased the cost of 

the UNH pilot system by 27%.  

 

The team also partnered with Forjando Alas, a non-profit in Uvita, Costa Rica. During a January 

2016 assessment trip, four members spent a week gathering data and building relationships with 

the community to develop a user-centered design. Project OASIS also successfully competed in 

two entrepreneurship competitions this year. 
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INTRODUCTION  

“Hunger kills more people every year than malaria, tuberculosis, and AIDS combined. 

Approximately 805 million people suffer from chronic hunger.” [1] One child dies every five 

seconds from hunger-related causes. [2] Every day, people around the world struggle to access 

nutritious food in their local communities. In developing nations, poverty is often widespread 

and food availability may depend directly on weather, politics, and other variables. 

 

Traditional farming methods of food production have geographic limitations, creating the need 

for a large distribution network to ship food to grocery stores, where it can be accessed by 

consumers. This network is very susceptible to disruption by weather conditions, infrastructure 

outages, commodity fluctuations, and the demands of consumers. Food producers across the 

globe have identified aquaponic technology as a viable supplement for traditional farming 

techniques in the future. Resultantly, most aquaponics research has been focused on commercial-

scale production that would generally be subjected to the same distribution, logistic, and capital 

difficulties facing the traditional agricultural market. Small-scale systems currently on the market 

are often custom-made or do-it-yourself systems, and tend to be energy inefficient and too 

expensive for the families and schools who would likely purchase them. Little research has been 

done from an engineering standpoint to optimize small-scale aquaponic systems for energy and 

cost efficiency. 

 

The vision of Project OASIS (Optimizing Aquaponic Systems to Improve Sustainability) is to 

develop a low cost, easily maintainable aquaponic system that runs on renewable energy and 

could provide families or groups of up to 10 with fresh vegetables and protein from growing fish. 

We will be able to accomplish this by using state-of-the-art engineering tools to create innovative 

designs that decrease energy consumption. These systems would have applications in areas 

where traditional farming methods would not be effective; indoors, outdoors, in a wide range of 

climates and ambient conditions, and with or without a stable electrical grid. These systems 

could be used year round, in places around the globe. 

  

For our first system, we are working in the town of Uvita, Costa Rica. The goal for the first 

system is to provide Forjando Alas (an afterschool program for at-risk youth from ages 5-11) 
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with a user centered design of a family sized aquaponic system. In order to achieve these goals, 

we plan to conduct surveys to get the user input into our design process. 

 

Our main research goals were to increase energy efficiency and decrease cost. Lower energy use 

gives us the opportunity to consider renewable energy. One of the major changes we made was 

choosing to use a recycled International Bulk Container as a fish tank because of its universal 

availability and low cost. This is not typical of a conventional system, where cylindrical tanks 

are used. Another goal was to maximize nutritional yield by providing a variety of crops. 
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TEAM MEMBERS 

The Project OASIS team was carefully assembled in order to utilize an interdisciplinary 

approach drawing strengths from different majors. Each team member carries a unique 

background and skillset which has contributed to our success this year. 

 

Paige Balcom, Mechanical Engineering 

● Roles: OpenFOAM flow modeling, renewable energy studies 

● Qualifications: 

○ Background in aquaponic systems and their potential for use in developing 

nations 

○ Former President of UNH’s Engineers Without Borders (Experience organizing 

international humanitarian projects)  

 

Mikalah Little, Sustainable Agriculture & Food Systems 

● Roles: Balance nutrient cycle, maximize nutritional yield  

● Qualifications: 

○ Background in sustainable farming practices  

○ Knowledge of nutrient requirements for different plant species 

 

Sid Nigam, Mechanical Engineering 

● Roles: OpenFOAM flow modeling, International Communications 

● Qualifications: 

○ International Affairs dual major  

 

Will Taveras, Mechanical Engineering  

● Roles: Fluid mechanics, energy use considerations, renewable energy studies, fundraising 

● Qualifications: 

○ Minor in Economics  

○ Internship working with solar technology 

 

Allison Wood, Environmental Engineering 
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● Roles: wastewater design, fluid mechanics, grant writing 

● Qualifications:  

○ Former Vice-President of UNH’s Engineers Without Borders (Experience with 

international humanitarian work & applying for major grants to support 

international projects)  
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BACKGROUND 

Aquaponics is the fusion of aquaculture (growing fish) and hydroponics (growing plants without 

soil) that is more effective than either independent process. Aquaponics is a form of biomimicry, 

in which humans emulate the natural systems observed on Earth to solve anthropogenic 

problems. It is a symbiotic relationship because the fish waste provides the nutrients for the 

plants to grow while the plants and bacteria clean the water for the fish to survive. It is similar to 

houseplants being used as aquarium filtration. Figure 1 shows a schematic of the aquaponics 

process. In modern aquaponics, the fish are grown in one tank, the vegetables are grown in 

another, and water is pumped between them. The radial settler removes the solid fish waste from 

the water, and the bacteria in the biological filter converts the waste’s toxic ammonia to nitrite 

and then plant-accessible nitrate. The problem is that systems for purchase are very expensive or 

backyard systems are constructed by hobbyists and are not energy efficient. So there is a need 

and a market for small-scale, energy efficient aquaponics in both developed and developing 

nations. 

 

Figure 1: Diagram of Modern Aquaponics 

Water is arguably our most valuable resource, but 70% of the world’s freshwater is already being 

used [3]--90% of it for agriculture. [4] Of the water used in agricultural irrigation annually, a 

small portion is actually utilized by crops. The excess water, contaminated with fertilizers, 

herbicides, or pesticides, drains from fields into water bodies, causing degradation. In an 

aquaponic system, water is recirculated from plants to fish in a closed loop, so no excess water is 

wasted into the environment. This diminishes the opportunity for environmental pollution and 
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decreases water usage considerably. Aquaponic systems provide an inorganic medium in which 

crops can thrive due to lack of competition. There is no opportunity for weeds to develop in the 

system, because the only organic matter is introduced into the system by the operator. Pest 

pressure is limited, and integrated pest management practices are an option if pressure becomes 

an issue. 

 

Aquaponic produce is entirely organic (and thus can be sold for a higher price) and high-value 

cash crops can be grown in areas where conventional farming can only produce grains. Plus, the 

fish provide a protein source, which is often lacking in many developing nations. Aquaponics is 

also less labor intensive than conventional farming [5] and is ideal for drought-prone and water-

scarce regions because it recirculates water. Aquaponics is also resistant to weather 

changes.Tilapia is the most commonly grown fish because it is hardy, tasty, and quick growing, 

but Pangasius can grow even faster and survive more extreme conditions than tilapia. [6] Blue 

gill, koi, goldfish, [7] and catfish can also be used. [8] 

 

Aside from the initial capital investment, the only inputs to the system are power for the pump 

(which can be diesel, electric, or solar generated), water lost from evaporation, and food for the 

fish. Fish food can be supplemented by growing some of it in the aquaponic system. Lettuce, 

duckweed, sprouts, and worms have been used. [9]  

 

There are three main types of aquaponics designs: raft, Nutrient Film Technique (NFT), and 

media-filled beds. Figure 2 shows the raft design where the plants are placed in floating rafts, 

and the roots dangle in the nutrient-rich water. In the Nutrient Film Technique plants are placed 

in long, narrow channels, and a thin stream of continuously flowing water passes through. The 

system can also be oriented vertically to reduce the amount of required space. This configuration 

works well indoors with artificial lighting, but it is not as effective outdoors because not all the 

plants receive full sunlight. Figure 3 illustrates the media-filled bed system where the container 

is filled with gravel, perlite, or another medium to support the plant. While the raft systems are 

limited to leafy vegetables, media beds can support fruiting plants, such as peppers and tomatoes.  
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Figure 2: Aquaponics Raft System 

 

Figure 3: Aquaponics Media Bed System 

Rice-fish cultures in Southeast Asia date back to 25-265 AD, [10] and the Aztecs grew plants in 

floating rafts on a lake in 1000 AD. [11] Modern aquaponics is an emerging industry that began 

in the 1980s and 1990s, [11] and it has huge potential—it is six times more productive than 

conventional farming methods, [12] uses 75% less energy than mechanized agriculture, and 

consumes 80-90% less water. [13] While a few universities are conducting aquaponics research 

and several commercial ventures exist, it is by far most popular among hobbyists and backyard 

enthusiasts. There are an estimated 3,000 to 5,000 of such systems in the U.S., and Australia 
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boasts over 5,000. Aquaponics is also popular in schools—an estimated 1,000 systems are used 

in the U.S. to teach science and business principles. Universities are starting to offer classes in 

aquaponics and some 12 U.S. commercial organizations offer training classes. There are also 

several online forums with over 5,000 members each. [14] The International Aquaponics Society 

was started in 2013 to provide information about aquaponics, guide the industry, and host 

conferences. The Aquaponics Association was founded in 2011 and is more focused on 

education and outreach. [15] 

PROJECT 

Project OASIS (Optimizing Aquaponic Systems to Improve Sustainability) was created in 

summer 2015 as a senior capstone project by two mechanical engineering students, Paige 

Balcom and Sid Nigam. Paige and Sid have known since they were freshmen they wanted to 

incorporate humanitarian work in developing countries into their senior design project. This year, 

Project OASIS is proudly the first international capstone effort in the mechanical engineering 

department. The project was also inspired by past involvement with the group 

Engineers/Students without Borders; all members have been active in the group over the last few 

years, traveling to Uganda, Peru, and serving as Engineers/Students without Borders officers. 

The primary goal of Project OASIS is to develop a low-cost, highly energy efficient aquaponic 

system design, followed by building the system for a community in need of fresh, local food. 

Aquaponics is the intersection of aquaculture; raising fish with hydroponics and growing plants 

in water instead of soil. The over-arching goal of the project is to establish a system design easily 

replicable in similar climates for use in communities with various needs across the globe. The 

modular design will enable the system to be scaled and built in various sizes. This non-traditional 

capstone effort has attracted students from engineering, biology, sustainable agriculture, and the 

business school forming a dynamic team. The group’s collaborative work has already yielded a 

first place win in the undergraduate research conference, a third place win in the 2015 NH Social 

Venture Innovation Challenge, and fundraised over $30,000.  

Project Goals  

The project goals are as follows: 

- Design a sustainable & affordable aquaponic system for use in developing nations 



 

9 
 

- Decrease the power required to operate the system 

- Run on renewable energy 

- Maximize nutritional yield 

- Utilize an interdisciplinary approach 

- Install an aquaponic system for a community in need 

- Use recycled, universally available materials (allowing design to be easily 

replicated) 

- Create user-centered design 

 

Figure 4: Project Timeline 

PROJECT SUMMARY 

OpenFOAM  

We learned OpenFOAM computational fluid dynamics (CFD) software to study the flow of the 

water in the fish tanks because our rectangular IBC totes are different than the cylindrical tanks 

used in traditional aquaponics. Our goal was to have a uniform distribution of dissolved oxygen 

and remove the fish effluent as quickly as possible while inputting minimum energy. 

OpenFOAM is an open source software and highly regarded as one of the best CFD programs 

available. Currently, computational fluid dynamics research for aquaponics application has only 

been done at Cornell on a commercial scale. We are the first team to conduct CFD based 

research on aquaponics for small scale aquaponic systems. 
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We started with modeling a small-scale experimental fish tank so it was easier to validate the 

model with experimental results. The model was scaled down from the full size system using 

Reynold’s number scaling. Both horizontal and vertical manifold inlets were modeled. 

 

Since OpenFOAM is a Linux-based software, Ubuntu was first installed and then OpenFOAM. 

A series of tutorials provided by Dr. Ivaylo Nedyalkov were completed to gain a basic 

understanding of the software. Similar to any fluids problem, the geometry, initial conditions, 

and boundary conditions must be defined. Additionally, an appropriate solver must be chosen to 

identify equations and find a solution specifically related to the given task. 

Geometry 

The OpenFOAM geometry is based on vertices, blocks, and faces. It can be created in a 

blockMeshDict file where all shapes are defined in the code or through snappyHexMesh, which 

can import geometry files. When using blockMeshDict, first, the coordinates of each point are 

programmed, then eight vertices are connected in a block, and finally, the sides of each block are 

defined as faces. There are many different types of faces, such as wall and empty. Each block is 

discretized into a specified number of cells with a user-defined grading. The geometry represents 

solely the water inside the experimental tank, which is an 11x11x10 inch cube for the small scale 

model. The tank’s inlet velocity was defined one inch from the top corner of one side and the 

outlet was defined one inch from the bottom in the center of the bottom face. Both the inlet and 

outlet were modeled as one inch circles to simplify the geometry. Additionally, OpenFOAM 

cannot work in 2D—everything must be defined as 3D. 

 

Several methods of creating the geometry were tried. The vertices were created in a separate 

program called Gmsh as shown in Figure 5, but it was difficult to import the vertices into 

OpenFOAM. Next, blockMeshDict, which is an inbuilt geometry creator for OpenFOAM was 

used, but the geometry proved too complex as shown in Figure 6. Finally, the geometry was 

created in SolidWorks and exported as a .stl file and snappyHexMesh was used to read in the 

file. Figure 7 shows the final rendering of the solidworks stl file with the breakdown of the mesh 

size. The stl file breaks down the geometry into triangles and their coordinates are saved in a text 

file. Once saved as stl, we had to edit the file and define patches. There are 3 patches - inlet, 

outlet, and wall. The inlet and outlet are self-explanatory but the wall is the part defined for the 
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boundary through which there is no transfer of mass. Figure 8 shows the breakdown of a vertical 

manifold inlet into the triangles. 

 

  

 

Figure 5: Gmsh to Generate Mesh 

 

Figure 6: blockMeshDict to Create Mesh 

 

 



 

12 
 

 

Figure 7: Final Solidworks Imported .stl Files to Define Geometry 

 

Figure 8: Breakdown of Geometry into Triangles - Vertical Manifold (left) and Horizontal (right) 

 

Solvers 

In order to create a numerical model, OpenFOAM allows users to apply different solvers for the 

system. The solvers we used were simpleFoam and pisoFoam. These solvers allowed us to create 

transient and steady-state solutions of our flow in the tanks.  
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The way simpleFoam works is that it uses a guess and correct procedure to solve for the pressure 

and velocity in the flow [16]. Figure 9 shows the SIMPLE algorithm (Semi-Implicit Method of 

Pressure Linked Equations). The parameters used in Figure 9 are defined in Table 1.  

 

Table 1: Parameters in the simpleFoam Algorithm 

Parameter Description 

p Estimated pressure field 

u, v Velocity components 

𝜙 Transport equation variables like k and 𝜔 

 

 

 

Figure 9: simpleFoam Algorithm 

 

The terminal window was used to call the commands to generate the mesh and run the solver. 

Finally, the solution as shown in Figure 10 was viewed in paraView by calling paraFoam. The 
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geometry can be rotated; cut into sections; and viewed as a surface, wiremesh, or other types of 

transparencies. The velocity and pressure fields can also be viewed throughout the geometry and 

the scales adjusted.  

 

 

Figure 10: ParaView to View the Solution 

 

The initial and boundary conditions had to be analyzed and set for each patch using OpenFOAM. 

We defined three patches - inlet, outlet, and wall. There are several different types of initial and 

boundary conditions that can be prescribed for all the parameters such as velocity and pressure. 

Table 2 gives the initial and boundary conditions for the different patches. 
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Table 2: Initial and Boundary Conditions for Parameters 

Parameter Inlet Outlet Wall 

Condition Initial Boundary Initial Boundary Initial Boundary 

U 

(velocity) 

(0 0 -0.12) 

(0.12 0 0)* 

fixedValue 

 

(0 0 0) zeroGradient (0 0 0) fixedValue 

 

p 

(pressure) 

0 zeroGradient 0 fixedValue 0 zeroGradient 

* = Horizontal Inlet 

 

Once the geometry was defined, the boundary and initial conditions were examined.  The initial 

conditions of the velocity of the walls were defined as fixedvalue with uniform (0 0 0) velocity. 

The inlet velocity was also fixedValue but had an x-component of 0.12 m/s. The value of the 

outlet velocity was not set—the software solved for it based on the internal field. The boundary 

was defined as zeroGradient. For the pressures, the wall boundary condition was zeroGradient. 

The inlet and outlet were defined as uniformValue fixed 0 pressure. The initial conditions were 

dependent on the solver used. 

Eulerian v. Lagrangian 

For transient models, both Eulerian and Lagrangian solvers were tried. Lagrangian models 

provide the capability of particle tracking because the solver follows a single particle’s path 

through time. Conversely, Eulerian models look at a fixed point in space and monitor the flow of 

the particles past that point. Originally, we wanted to track the path of individual water 

molecules through the tank, but after some time working on Lagrangian solvers, we realized an 

Eulerian model would be sufficient to validate our OpenFOAM results with our experiment. 

Therefore, Eulerian models were used for the majority of the project. Plus, paraFoam has some 

limited but built-in particle injection capabilities, so we were still able to visualize the movement 

of zero-density particles with Eulerian models. 
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Mesh Sensitivity 

Since OpenFOAM breaks the geometry down into discretized blocks and converges to a solution 

using mathematical approximations, the size of the mesh blocks is very important and can 

greatly influence the results. Smaller mesh sizes yield more accurate results but greatly increase 

computation time. Thus, a mesh must be found that balances accuracy with computational run 

time. 

 

Simulations were run at many different mesh sizes for both horizontal and vertical manifold inlet 

geometries. To assess the impact of different mesh sizes, velocity line plots in the x, y, and z 

directions intersecting at the center of the cube were examined. The white lines in Figure 11 

shows the lines over which the velocities were measured. 

 

Figure 11: Lines of Velocity Measurement for Mesh Sensitivity Analysis 

 

Using a probe in paraView, the velocities were sampled for each of the mesh sizes and plotted 

against each other. The x-line velocity plots are shown in Figures 12 and 13 and the y-line and z-

line plots are included in Appendix B. 
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Figure 12: Mesh Sensitivity Results (in x-direction) for Vertical Manifold 

 

Figure 13: Mesh Sensitivity Results (in x-direction) for Horizontal Inlet 

 

Eventually, the velocities reach the same values regardless of decreasing mesh size. If the mesh 

is made too small, the results can actually be worse. Therefore, the largest mesh which gave the 

same velocity results as smaller meshes was used. For the horizontal inlet, a mesh of (84 77 77) 

was used, and a mesh of (100 100 100) was used for the vertical manifold design.  
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Experimental Validation 

To compare our OpenFOAM computational results to the real world, we constructed an 

experiment with the same geometry as the OpenFOAM vertical manifold model and used a 

Vectrino Acoustic Doppler Velocimeter (ADV) to measure the velocity at points in the tank. The 

experimental setup is shown in Figure 14 and the Vectrino datasheet can be found in Appendix 

C. Using a probe in paraView, we were able to get the velocity at those same points in 

OpenFOAM. We measured the velocity at 11 points throughout the tank as shown in Figure 15. 

With the ADV sensor, we collected data at each point for 60 seconds and averaged each time 

series to get a more accurate velocity measurement. The ADV sensor measured the velocity 5 

centimeters below the probe. 

 

 

Figure 14: ADV Sensor Setup 
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Figure 15: Schematic of ADV Sampling Points 

Point 8 was considered an outlier because its placement in line with the tail of the inlet jet 

experienced high degrees of turbulence, so it was difficult to get an accurate velocity reading. 

The mean difference for the remaining 10 points between the experimental and OpenFOAM 

velocities was 34%. The largest differences occurred close to the inlet, but other points had 

smaller differences, even down to 6% where there was less turbulence. Table shows the 

differences at each point. 
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Table 3: Velocity Differences Between Computational and Experimental Results 

Point OpenFOAM 

Velocity (m/s) 

Experiment 

Velocity (m/s) 

% Difference 

1 2.10E-02 
3.32E-02 36.98 

2 1.47E-02 1.57E-02 6.02 

3 1.46E-02 3.14E-02 53.69 

4 2.34E-02 4.71E-02 50.26 

5 1.85E-02 1.68E-02 9.93 

6 2.16E-02 1.73E-02 24.82 

7 9.00E-03 1.75E-02 48.52 

8 2.88E-02 1.75E-02 64.72 

9 1.52E-02 1.89E-02 19.69 

10 1.96E-02 3.14E-02 37.58 

11 2.80E-02 3.44E-02 18.70 

Mean*     33.72 

*excluding point 8 

 

The results could be improved by accounting for more turbulence near the inlet in the 

OpenFOAM model and taking more ADV point measurements in the turbulent areas of the 

experimental tank. 

Final Solution 

ParaView is the OpenFOAM post-processing tool that allows users to visualize their results and 

collect data. We were able to create velocity profiles of the tank in 2D and 3D and streamlines 

that showed the paths of the water molecules and their velocities along those paths. We also used 
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probes to sample the velocities at points and along lines in the tank. With the transient models, 

we were able to watch the development of the flow by looking at simulations of the velocity 

profiles and streamlines through time. We were also able to inject zero-density particles and 

watch them travel along the streamlines through time. The following figures showcase some of 

these capabilities. 

 

Figure 16: Streamlines in Vertical Manifold (left) and Horizontal (right) at Steady State 

 

As evident from Figure 16, the flow in the vertical manifold is more uniform and cylindrical 

thereby reducing the energy required to create the flow necessary for proper spreading of 

dissolved oxygen and fast removal of fish effluent.  

Experiments  

Dye tracer studies were conducted using a horizontal inlet and vertical manifold with 5 orifices 

(9/64 inches in diameter) to evaluate inlet geometries with respect to tank mixing. Two cubic 

acrylic tanks were constructed to hold 28 liters of water. During experiments a liquid volume of 

19.4 L and a flow rate of 1.32 L/min were used. A fully developed flow was established before 

each tracer test, which took approximately ten minutes. During each test 1 mL of dye was 

injected into each tank and samples were taken every minute until minute 25, then samples were 

taken every two minutes until minute 60. Relative absorbancies of each sample were obtained 

using a spectrophotometer.  

 

Instead of integrating this data with a best fit function, Equation 1 [17] was used to find the mean 

retention time of the dye: 
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(1) 

The second portion of this equation is a common method of estimating the area under a curve, 

commonly known as the trapezoid rule. Using this equation, the average retention time of the 

dye was calculated to be 35.28 and 31.21 mins, for the horizontal and vertical setups 

respectively. The hydraulic retention time (HRT), or amount of time it should take for the tank 

volume to be replaced based on the flow rate, was 14.64 min. In this experiment, it was visually 

determined that the vertical manifold was far more efficient at mixing the dye as shown in Figure 

17, and according to the average retention time, was also more efficient at removing waste from 

the experimental tank.  

 

 

Figure 17: Concentration Experiment 

Based on the water flowrate and the high diffusion coefficient of the tracer dye, it can be 

assumed that both dispersion and advection transport processes were affecting dye 

concentrations throughout the tank. For this reason, the dye tracer study yielded high average 

retention times compared to the HRT, because dispersion was occurring constantly during the 

experiment. Thus, the replacement of water in the tank did not directly reflect the efficiency of 

the removal of “waste” from the tank, but rather served as a relative representation of which tank 

was most efficient at moving particles from the inlet to the outlet. In the aquaponic system, 

particles will have relatively low dispersion rates compared to the tracer dye, therefore, in order 
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to validate retention times calculated in OpenFOAM a different tracer would have needed to be 

selected for experimental validation. The team decided instead to investigate velocities within 

the tank using the vertical manifold setup. 

 

Three dimensional velocity measurements were taken in order to characterize the flow and to 

validate the computational models that were constructed using OpenFOAM. These tests were 

conducted on the small scale acrylic tanks from the dye tracer studies. The velocity tests were 

conducted only on the vertical manifold inlet set up for this tank, because it was determined to 

have flow that was more difficult to be characterized, with more visually noticeable turbulence 

and vertical flow. Between the two inlets, the vertical manifold is the more useful case to study 

because dye tests showed it to be more effective at solids removal. However, it was also the 

worst case for validation with turbulent flow. 

 

In order to validate and characterize the flow, the velocity was tested at a group of 11 sample 

points. These samples were taken using an Acoustic Doppler Velocimeter, or an ADV sensor. 

We used a single point Vectrino II fixed probe sensor by NortekUSA. ADV works by measuring 

the Doppler shift of the particles at a single point. The probe contains a transmitter and three 

receivers. The transmitter sends out pulses in the water at 10 MHz one pulse at a time and 

‘listens’ for the reflection. The Doppler shift is estimated from a measured phase shift between 

two consecutive signals. The Doppler relationship is governed by equation 2 below: 

 

 

(2) 

The x, y, z velocity coordinates were exported as a ‘.vna’ file and imported into MATLAB for 

manipulation. The 60 second time-averaged values were compared to the model values which 

were found to differ by less than 6% for less turbulent points and up to 34% for more turbulent 

points (these results omit one data point for reasons discussed in the OpenFOAM Experimental 

Validation section). These results were enough for a general validation of the model so that more 

analyses can be run computationally before constructing full-scale physical experiments.  
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Fluid Mechanics  

The principles of fluid mechanics were used to decrease the power required to pump water 

through the system. By evaluating headlosses throughout the PVC Pipe, our team was able to 

adjust the plant beds to allow gravity flow from the fish tanks all the way back to the sump. 

Headlosses were calculated based on Schedule 40 1 ¼ in. diameter pipe, using standard minor 

loss coefficients.  

 

 

(3) 

 

 

(4) 

 

Table 4: System Headlosses 

 

 

Airlift pumps were used to reduce power demands to operate the system. This was evaluated in 

an effort to minimize the costs involved in circulating the water to remove waste and transfer 

nutrients.  

 

In an airlift, instead of mechanical components pushing water as in a traditional water pump, air 

used to move the water up a column as shown in Figure 18. A stream of air is inserted into the 

bottom of a column of water in a pipe, and as the air rises due to the effects of buoyancy, it 

carries with it a flow of water as water gets trapped between the bubbles.  
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Figure 18: Diagram of Airlift 

This flow can occur in vertical piping in three more commonly characterized regimes: slug flow, 

bubbly flow, or bubbly slug flow. Slug flow involves large bubbles of air that fill the cross 

sectional area of the pipe pushing larger volumes of water that are trapped in between. Bubble 

flow consists of much smaller bubbles of air and smaller volumes of water that travel together 

through the pipe. Bubble slug flow is somewhere in between the other two regimes. The major 

characteristics that govern the flow of water in the air lift are the air to water ratio and the 

submergence to lift ratio. The air to water ratio is simply a volumetric ratio of the air and water 

in the pipe. In this case higher ratios tend to result in higher overall water flows, but the 

relationship also depends on the pipe diameter and subsequently the cross sectional area. The 

submergence to lift ratio measures how much of the water column that the air is being injected 

into is underwater with no flow, or the static height that is also in the tank, and the lift, or the 

height that the water is lifted above the static surface. For submergence to lift ratios, the ideal 

ratio is less known, but best water flows tend to occur between ratios of 3:1 and 4:1. Our 

research system is currently operating at the top of this range with a 4:1 ratio, but the study of the 

air lift flows in this system has been identified as a topic for further study in the coming years.  
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Biological Considerations  

The goal of this part of the project was to maximize the nutritional yield of our system. After 

evaluating current small-scale systems, it was decided that a combination of raft and gravel plant 

beds would be used to grow a variety of crops, as opposed to many traditional systems which 

only grow lettuce. Production of vegetables like tomatoes, peppers, and lettuce provide nutritious 

options to people in areas that would otherwise depend on expensive imported vegetables, or go 

without. At the location of our first system, Uvita, Costa Rica, soil pH is around 5, far too acidic 

for propagation of most vegetable crops. Aquaponics does not depend on local soil conditions 

because the inorganic nature of the system allows for control of pH.  

 

Tilapia were chosen as the fish species because they are resilient, globally available. With a feed 

conversion ratio of 1.6-1.8, they utilize feed more efficiently than other potential species. [18] 

Tilapia fertilize the plants in the system while growing to a harvestable size, eventually 

providing a protein source. The fish are extremely resilient and can survive in low oxygen levels, 

high ammonia levels, temperatures ranging from 60-80 degrees (F), and pH from 7-8. These 

conditions are achievable in both New Hampshire and Costa Rica, so our prototype could be 

tested at the University. 

 

The first 30-45 days are crucial to the success of the system. Within that timeframe ammonia 

from fish waste attracts naturally occurring bacteria which begins the breakdown of ammonia to 

nitrite. Nitrite then is converted into nitrate, which is readily available to plants. If conditions 

(temperature, salinity, pH, ammonia levels) in the system aren’t within proper operating limits, 

the nutrient cycling will not occur and the system will not function. Daily readings of system 

conditions will provide insight as to when and if cycling has begun. The only input into the 

system includes pellet fish food. 

Energy Considerations  

One goal was to power the system using renewable energy to improve the project’s 

sustainability, lower operating costs, and introduce the people of Uvita to renewable power 

sources. After a site assessment, solar power was determined to be the best source of renewable 

energy. 
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Although Costa Rica ran the first 285 days of 2015 on 100% renewable energy, solar power 

accounts for less than 0.1% of the national installed capacity (approximately 2 MW) [19]. As 

shown in Figure 19, Costa Rica has large potential for solar power with global horizontal 

irradiation (GHI) values from 1700 to 2100 W/m
2
/year since it is located near the equator. [19] 

  

Figure 19: Global Horizontal Irradiation Map of Costa Rica [20] 

Queries were made about solar power in Uvita, and the team talked with Ricardo, an agent at the 

local hardware store called Iguana Ferreteria. He had one solar panel available and could order 

other sizes from larger stores in the nearby city of San Icidro and have them delivered. Marine or 

car batteries sold in downtown Uvita shops could be used to store the excess solar power 

generated during the day and used at night. Other parts, such as an inverter and roof rack, are 

also available. Aside from at luxury hotels for tourists far up in the mountains, Uvita does not 

have any solar panels, so installing a system at Forjando Alas could introduce the people to solar 

power and encourage them to use it in their own homes. 

 

The only power needs for the aquaponic system are the pump to circulate the water. Since our 

aquaponic system design decreases the overall energy needs of the system, solar power is 

feasible. The air pump requires 322 W, but for an added safety factor, 400 W was used for all 

calculations. It needs to run continuously, so 3,500 kWh are required per year. The National 
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Renewable Energy Laboratory (NREL) online PVWatts Calculator was used to determine the 

necessary size of solar panel. Figure 20 shows one input panel of the calculator. Although the 

online tool did not have weather data for Costa Rica, the closest site was Rivas, Nicaragua whose 

longitude differed by only 2.3°. Plus, the GHI values differed by 2.4%, so Rivas solar resource 

data was deemed acceptable for Uvita. 

 

 

Figure 20: NREL PVWatts Calculator 

Next, the system info was inputted. Based on the Forjando Alas roof measurements the team 

took, the roof angle was calculated to be 15.4°. The azimuthal angle was also calculated to be 

120°, and a DC to AC size ratio of 1.2 and an inverter efficiency of 96% were used. The results 

showed that to get 3,500 kWh per year, a 2.6 kW panel is needed. The panel would cover 

approximately 16.25 square meters (22% of the roof). 

Business Feasibility Study  

A business feasibility study was conducted in order to test the feasibility of the design to 

penetrate the U.S. market as a potential fundraising effort and commercialization model. The 

project made it to the semi-final round of the Holloway competition, one of five teams in the 

track to do so out of 80 entrants to the competition. This was a great validation of our efforts to 
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improving life across the globe. The team also won 3
rd

 place in the NH Social Venture 

Innovation Challenge in Fall 2015. 

 

Traditional farming methods of food production have geographic limitations, creating the need 

for a large distribution network to ship food to grocery stores, where it can be accessed by 

consumers. This network is very susceptible to disruption by weather conditions, infrastructure 

outages, commodity fluctuations, and the demands of consumers. Food producers across the 

globe have identified aquaponic technology as the leading viable supplement for traditional 

farming techniques that will lead the new era of food production for the future. Aquaponics 

requires no soil and alleviates the headaches of weeds, soil pests or pathogens. Additionally, 

there is no labor required for tilling, cultivating, fertilizer spreading, compost shredding, manure 

spreading, plowing cover crops in, or irrigating.  

 

To date, most aquaponics research has been focused on commercial-scale production that would 

generally be subjected to the same distribution, logistic, and capital difficulties facing the 

traditional agricultural market. Small-scale systems currently on the market are often custom-

made or do-it-yourself systems, and tend to be energy inefficient and too expensive for families 

and schools who would likely purchase them. Little research has been done from an engineering 

standpoint to optimize small-scale aquaponic systems for energy and cost efficiency.  

 

The vision of Project OASIS is to develop a low cost, easily maintainable aquaponic system that 

runs on renewable energy and could provide families or groups of up to 10 with fresh organic 

vegetables and protein from growing fish in any climate/geographic setting. These systems 

would have applications in areas where traditional farming methods would not be effective. 

Project OASIS’ design could be used year round; indoors, outdoors, in a wide range of climates 

and ambient conditions, and with or without a stable electrical grid at the ease of monthly 

maintenance and services. 

 

Project OASIS is initially targeting three customer segments, home-gardeners, farmers’ market 

shoppers, and health enthusiasts interested in accessible, local, fresh, organic produce without 

having to garden themselves. From Spring 2008 - Spring 2015, an average of 10.46 million 
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shoppers visited Whole Foods daily. 70-72% of entire purchases were for fresh fruits and fresh 

vegetables. Capturing 3% (313,800 buyers) of the total addressable market of shoppers who 

frequent Whole Foods, Project OASIS has a total addressable market of $1.6 billion (313,800 * 

$5,000 - price of cheapest Project OASIS system). The business model will generate revenues 

from the initial sale of a system ($5,000 for the small size and $10,000 for the medium size) for 

the buyer option or interested customers have the option to lease a system for $100 or $200 per 

month. 

 

Currently those with an interest in owning their own aquaponics system either pay thousands of 

dollars for the plans on how to build their own or pay thousands of dollars for a small inefficient 

and ineffective system. Three of our main competitors are Backyard Aquaponics, Grove Labs, 

and Portable Farms. Backyard Aquaponics has a wide variety of systems that cost from 

approximately $1,000 to $10,000, but are just components and parts. Grove Labs sells a fish tank 

sized system retailing at $4,500, and Portable Farms sells the plans for a system with part of the 

necessary components for close to $3,000. Our system is the first at its scale to be analyzed from 

an engineering perspective, in order to improve efficiencies. The Project OASIS design will fill a 

need for customers who are searching for a more energy efficient, productive, cost- effective 

system and who already pay for inferior products because they are so passionate. 

 

We are exploring a couple different business models for our system. The first would be selling 

directly to consumers with full costs upfront, this is the structure most common in the market 

today. Alternatively we would lease the system for monthly payments and a maintenance 

contract if we find there is interest from the consumer. We plan on marketing at farmers’ 

markets, on online message boards, in gardening magazines, and via social media to reach our 

intended audience. 

 

The barriers and challenges associated with entering and competing within Project OASIS’s 

initial target market is the perceived convenience of shopping at a grocery store/farmers market 

versus harvesting food in your own backyard. Typically, aquaponic systems seem like a burden 

for enthusiasts who are interested in learning more about the technology involved in aquaponics 

but realize the learning curve to operate and/or build a system, fit to a consumer’s direct needs 
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and desires for the produce they would like to grow, is too time intensive. Additionally, many 

home-growers not only enjoy the taste of fresh food grown in their backyards but also the 

process and activities involved in growing food (the process of “getting dirty”). Project OASIS is 

solving several pain points; the first is the steep learning curve involved in operating aquaponic 

systems. The engineering behind this system is specifically designed for simplicity and also will 

be installed for every user. The maintenance that comes with the sale of the system ($250 per 

month) is set up to take care of the concerns addressing the need to understand how the 

technology works, a Project OASIS sales rep will take care of the “boring” aspects of the 

aquaponic systems, allowing consumers to fully enjoy the picking and eating aspect. Once this is 

taken care of, the convenience factor will then multiply, as customers will begin to realize how 

much easier it is to approach one’s aquaponic system and just pick the fruits and vegetables steps 

from the kitchen.  

 

User-Centered Design  

Project OASIS is proudly the first international capstone effort in the mechanical engineering 

department. In fall of 2015 Project OASIS connected with Professor Andrew Ogden of UNH’s 

Sustainable Agriculture and Food Systems Department, who put the team in touch with our 

international partner, Forjando Alas (Forging Wings), located in Uvita, Costa Rica.  

 

With the generous support of the UNH Emeriti Council, four members of Project OASIS were 

able to travel to Uvita, Costa Rica from Dec 31
st
 2015 through January 8

th
 2016 for a week of 

data gathering and relationship-building with the community. Team leaders Paige and Sid were 

joined by Will Taveras and Allison Wood. The goal of the trip was to gather information about 

the project site, locate locally available materials, and foster relationships with community 

volunteers who will be critical to the project’s success. In order to create a user-centered design, 

community input and ideas were vital throughout the whole process.  

 

Some of the tasks the team accomplished while in Costa Rica included determining the site 

location at Forjando Alas, taking various measurements (such as roof height for solar panel 

installation), pricing system components at a local hardware store, taking water samples from the 

river that runs behind the center, visiting a nearby tilapia farm to learn about local aquaculture 
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practices, volunteering at the center and interacting with children there, administering local 

surveys regarding income and vegetable consumption, signing a partnership agreement with 

Forjando Alas director Ericka and volunteer Natalia, and making plans for gathering community 

volunteers to help with the June installation. This trip did not require many materials; however 

the team did locally print some surveys to leave at the center. The June 2016 implementation trip 

will require more planning and materials such as tools in order to construct the system. 

 

One of the most important components of the trip was talking with the volunteers who will be 

maintaining this system; this will aid the team in creating a feasible maintenance plan which will 

in turn help make the project sustainable. Following this trip, Project OASIS is confident in the 

location choice for the aquaponic system, and is looking forward to continuing to work with 

Forjando Alas toward implementation in June. 

 

At UNH, our team has worked closely with Dr. Todd Guerdat to construct two full-scale systems 

at the MacFarlane greenhouses. One system is a traditional small-scale design, consisting of 

three floating raft beds which grow lettuce, and are run in parallel (water from the fish tanks is 

divided evenly among all three beds, and then returns to the fish). The other system is our 

research system, which is roughly the same size as the tradition system, allowing for side-by-side 

comparison. Our research system design as shown in Figure 21 incorporates recycled materials, 

efficient water pumps, and a combination gravel grow bed that functions as a biological filter.  
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Figure 21: UNH Research System Design 

 

For the fish tank, we used two 250 gallon IBC (International Bulk Container) totes with vertical 

manifold inlet designs. Large solids from the fish tanks are removed via a radial flow settler, 

which uses gravity settling. Water containing soluble nutrients then flows through the three plant 

beds in series, as opposed to the traditional system which runs in parallel. This cuts down the 

length of pipe in the system, decreasing headloss. As mentioned, the gravel plant bed also serves 

as a biological filter to convert nitrogen to a form usable for the plants, cutting out the necessity 

of a separate, expensive biofilter.   

 

Overall, flow improvements and use of air-lift pumps dropped energy consumption 40% when 

compared to the traditional system (of the same size). Using local and recycled materials where 

possible decreased the cost of the UNH pilot system by 27%.  
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The team also partnered with Forjando Alas, a non-profit in Uvita, Costa Rica. During a January 

2016 assessment trip, four members spent a week gathering data and building relationships with 

the community to develop a user-centered design. It was determined that IBC totes are available 

in the area at a much lower cost than cylindrical tanks, and will be a viable option for fish tanks. 

Gravel that has been thoroughly washed and cleaned will serve as the medium in the media beds 

and foam insulation will serve as a raft in the other bed. Since the sun in Costa Rica is extremely 

strong, the system will be shaded with the thin mesh commonly used in many Costa Rican 

homes. Water will be pumped through the system using airlifts which will be powered by a solar 

panel. The whole system will be built of local Costa Rican materials, therefore broken parts may 

be easily replaced. Most parts are available in Uvita hardware stores, but IBC totes and solar 

panels must be ordered in advance and delivered from the nearby town of San Isidro. Tilapia 

may be purchased in Uvita, and the fish food is available at a pet store in town, but may be 

bought in bulk in San Isidro. Construction tools, such as drills, saws, shovels, and machetes, will 

be provided by Forjando Alas and their volunteers. An aquaponic system requires very little 

maintenance; the fish need to be fed daily and sized and sorted periodically, and the mechanical 

filter should be cleaned once a month.  

Project Finances  

Table 5: Current Funds 
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Table 6: Current Budget 

 

 

RESULTS AND DISCUSSION  

The goal of the project was to design a sustainable and affordable aquaponic system, and make 

plans to actually build such a system for a community in need. Using materials that are readily 

available in developing communities across the globe, the team was able to create a replicable 

design, and by incorporating recycled materials was able to decrease the capital cost of the 

system by 27% when compared to a traditional system of the same size. By using computational 
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fluid dynamics software, the team has identified a valid system setup incorporating unique 

rectangular tanks. Evaluating flow through these tanks and throughout the system has decreased 

the power consumption by 40%. After assessing power usage in the UNH prototype system and 

using field data from the project site in Costa Rica, it was determined that a 2.6 kW solar panel 

with surface area of 16.25 m
2
 (approximately 22% of the roof) will suffice to operate the system, 

validating the idea that this size aquaponic system can be run using renewable energy in places 

where access to electricity is limited.    

 

The prototype system is still under evaluation; however, once the system is cycling regularly the 

nutritional yield will be compared to that of the traditional setup to quantify any differences. 

Provided that nutrients cycle through the system properly, the peppers and tomatoes in 

combination with the lettuce are expected to far exceed the nutrient yield of the lettuce alone 

being produced in the traditional setup.  

 

By utilizing an interdisciplinary approach, the team has been able to work efficiently to research, 

fundraise, plan, and publicize the project in a short amount of time. Over two semesters, the team 

raised over $30,000. Through these efforts, the team was able to perform an assessment trip in 

January and is ready to return to the project site over the summer to install the system. By 

working with the community from an engineering, economics and biological perspective, the 

team was able to gather data to create a user-centered design that will provide the community 

with the nutrition they need and that they will feel confident operating and maintaining.  

NEXT STEPS  

Project OASIS is currently working toward finalizing the design of the aquaponic system, 

including using computational fluid dynamics software to model different flow patterns and 

study energy efficiency. The team recently finished constructing full-scale research and 

traditional aquaponics systems located in UNH’s McFarlane Research Greenhouses. Four 

different species of lettuce are growing and tomatoes and peppers have started fruiting as well. In 

anticipation of the Tilapia being added to the system, a nursery is being constructed. Project 

OASIS’ system has been constructed alongside a traditional aquaponic system, allowing for a 

side-by-side performance comparison. So far, both systems are going through the initial nutrient 
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cycling phase. Over the summer and as part of next year’s senior project, an extensive biological 

comparison will be conducted to study the performance of the research aquaponic system in 

comparison to the traditional system. Project OASIS also plans to travel to Uvita in June to build 

the system, involving both the children at the center and community volunteers. We have also 

recruited four mechanical engineers, one electrical engineer, and one marine biology student to 

continue the project next year.  

CONCLUSION 

In its first established year, Project OASIS has proven to be a valuable undertaking in 

interdisciplinary education. Though the project is housed in the Departments of Mechanical & 

Ocean Engineering, it has already grown to incorporate students from the College of Life 

Sciences and Agriculture and the Peter T. Paul School of Business and Economics. Together this 

team has worked as a combined force to fundraise over $30,000, start an international 

humanitarian project, build two full scale prototype systems in the UNH MacFarlane 

Greenhouses, participate in two campus-wide entrepreneurship competitions, and participate in 

outreach events for prospective students, admitted students, the UNH Mechanical Engineering 

Industrial Advisory Board, the UNH Board of Trustees, and will present at an UNH Alumni 

Networking Alumni Reception in New York City later in May. The team is looking forward to 

advising next year’s group of students and is excited to see where they will take Project OASIS 

in the future.  
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APPENDIX A 

All of our code is housed on GitHub. The different branches have code for the various steady 

state and transient models and horizontal inlet and vertical manifold geometries. Feel free to 

peruse our code at: https://github.com/pbnh/unh-aquaponics 

 

  

https://github.com/pbnh/unh-aquaponics
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APPENDIX B 

The following Appendix shows the y-line and z-line OpenFOAM Mesh Sensitivity plots. 

 

Figure 22: Mesh Sensitivity Results (in x-direction) for Vertical Manifold 

 

 

Figure 23: Mesh Sensitivity Results (in y-direction) for Horizontal Inlet 
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Figure 24: Mesh Sensitivity Results (in z-direction) for Vertical Manifold 

 

Figure 25: Mesh Sensitivity Results (in z-direction) for Horizontal Inlet 
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APPENDIX C 
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