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Marine Heritage Monitoring with High-Resolution Survey Tools:
Scapa Flow 2001-2006

Brian R. Calder, Bobby Forbes?, and Duncan Mallace®

Abstract

Archaeologically, marine sites can be just as significant asthose on land. Until recently, however, they
were not protected in the UK to the same degree, leading to degradation of sites; the difficulty of
investigating such sites still makesit problematic and expensive to properly describe, schedule and monitor
them. Use of conventional high-resolution survey toolsin an archaeological context is changing the
economic structure of such investigations however, and it is now possible to remotely but routinely monitor
the state of submerged cultural artifacts. Use of such datato optimize expenditure of expensive and rare
assets (e.g., divers and on-bottom dive time) is an added bonus.

We present here the results of an investigation into methods for monitoring of marine heritage sites,
using the remains of the Imperial German Navy (scuttled 1919) in Scapa Flow, Orkney as a case study.
Using a baseline bathymetric survey in 2001 and a repeat bathymetric and volumetric survey in 2006, we
illustrate the requirements for such surveys over and above normal hydrographic protocols and outline
strategies for effective imaging of large wrecks. Suggested methods for manipulation of such data
(including processing and visualization) are outlined, and we draw the distinction between products for
scientific investigation and those for outreach and education, which have very different requirements. We
then describe the use of backscatter and volumetric acoustic datain the investigation of wrecks, focusing on
the extrainformation to be gained from them that is not evident in the traditional bathymetric DTM models
or sounding point-cloud representations of data.

Finally, we consider the utility of high-resolution survey as part of an integrated site management
policy, with particular reference to the economics of marine heritage monitoring and preservation.

1 Introduction

The last decade or so has seen a significant change to our attitudes towards submerged cultural resources.
Once only the province of afew divers, the tremendous expansion of recreational diving in the late 80s and
early 90s has seen the need for knowledge and access by this group and the general public rise
exponentially. Management of this heritage is, however, a delicate balance between exploitation and
conservation. The remains of the Imperial German Fleet (from World War 1) in Scapa Flow, Orkney
(Figure 1) are a particular example of this. The wrecks, dueto their unique nature and relatively shallow
scuttle depths, have been active recreationa dive sites for more than twenty years and form a significant
portion of theisland economy. Even without intentional damage to the wrecks by divers (which is actively
policed by the local dive-boat operators), dive pressure, like *boot erosion’ on land, has a significant effect
on the wrecks, making them a non-renewable resource. Any reasonable management strategy must
therefore understand the implications of restrictions on use of the resources, and temper thiswith adesireto
preserve the resource for the future.

A basic aspect of management if, of course, monitoring of the current state of the resource. Under
Scots law, a geographical delineation of the site to be protected is also required before any legislation can
be passed. Due to the very nature of a marine archaeological site, direct monitoring is extremely difficult.
At Scapa Flow, for example, the depth of the wrecks, temperature of the water and normal visibility mean
that even experienced divers on advanced gas mixtures are capable of only approximately 30 min bottom
time on each dive. It istherefore extremely difficult to investigate significant portions of the wrecks with
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any speed, and consequently very expensive to assemble a composite picture of the state of preservation of
the whole wreck. In practice, much of the investigation prior to the current work had been done on anad
hoc, anecdotal basis, interviewing recreational divers and making occasional targeted dives to the wrecks,
recorded primarily through “Diver’simpression” sketches (Figure 2).

Clearly, there is scope for improvement in monitoring strategies, and it was with thisin mind that we
started investigating how modern hydrographic survey methods might be applied to the problem. Starting
with a sidescan survey in 1999, we co-opted one of the first ultra-high resolution Multibeam Echosounder
(MBES) systems, a Reson 8125, to survey the bathymetry of the wrecksin 2001. Based on the success of
this mission, we returned to Scapa Flow in 2006 with a Reson 7125 to re-survey the wrecks, adding to the
data mix high-resolution backscatter and full volumetric (watercolumn) acoustic datarecording. Between
these two extremes, videography of the wrecks has provided detailed descriptions of sections of the wrecks,
targeted based on prior bathymetric surveys. Our goalsfor the surveys, and hence for the current work,
were to answer fundamental questions about the use of these technologies in marine archaeol ogy, for
example:

How do we effectively delineate the active area associated with awreck? If thereisadebrisfield
associated with multiple wrecks, how is this best defined?

How do we best fuse data componentsin a multimodal survey?

Isit possible to monitor the wrecks by carrying out arepeat survey? What isthe best
methodol ogy for repeating a survey to make changes most readily apparent?

What sort of datais required for scientific study of the site, and how doesit differ from that
required for public outreach and communication?

while taking advantage of the datato monitor and protect the particular wrecksin Scapa Flow.

In this paper, we investigate the properties of the selected survey instruments, evaluating their placein
the spectrum of tools useful for marine archaeology. With very large wrecks, careful coordination of
survey effort isrequired to achieve datathat will support scientific study of the wrecks, and particular
methods of data processing and visualization are required to optimally convert the datainto information.
We offer observations on how best to utilize these data, emphasizing the difference between standard
hydrographic survey protocols and those used for processing datain a marine archaeological context. We
illustrate what can be achieved with standard survey toolsin arepeat survey, and the extra“value added”
information that is available from such tools, including high-resolution backscatter and volumetric acoustic
data. Finally, we summarize the role of these techniquesin an integrated site management policy, with
particular emphasis on their economic benefit.

2 Background

2.1 Genesis of the Scapa Flow Site

Scapa Flow is an ailmost totally enclosed expanse of water, bordered to the north by Mainland Orkney, to
the east by the Holms, Burray and South Ronaldsay, on the west by Hoy and the south by Flotta. Its
relatively sheltered 23 square miles of waters and strategic position therefore lead to Scapa Flow having an
extensive maritime heritage from King Hakon's great Viking fleet in 1263, through to Hanseatic merchants
in medieval times and convoys to the Baltic during the Napoleonic wars. Thisalso led to Admiral John
Jellicoe, RN establishing Scapa Flow as the home base for the British Grand Heet prior to the outbreak of
World War l. The Flow’s place in history was cemented, however, by the scuttling of the Imperial German
High Seas Fleet.

In November 1918, Germany having signed the armistice agreement at the end of World War I, the
warships of the German Imperial Navy’s High Seas Fleet entered Scapa Flowto beinterned during the
peace negotiations. The Allied Grand Fleet had earlier met the German shipsin the North Sea and had
escorted them to their new anchorage in the Orkneys where they could be guarded by the whole British
fleet. Herethey were to stay, moored in neat rows around the small islands of Cavaand Fara, becoming a
local tourist attraction; in total, the fleet consisted of 74 disarmed ships: 5 battlecruisers, 11 battleships, 8
light cruisers and 50 destroyers (Figure 1(b)).

By December theinitial 20,000 crew had been reduced down to skeleton crews on all vessels, atotal
of around 4,800 officers and men. Over the next few monthsthere were considerabl e discipline problems
because of (communist) revolutionary elementsin the German crews, with approximately 150 trouble
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makers being sent home and Konteradmiral Ludwig Von Reuter, commanding officer of the internment
flotilla, moving his flag to the light cruiser SM SEMDEN. By June 1919 the crews were reduced to Royal
Navy caretaker levels, atotal of about 1,700 men.

On Midsummer’ s day, 21 June 1919, cut off from his chain of command and fearing the imminent
resumption of hostilities between Germany and Britain, Von Reuter ran up a signal hoist from SMS EMDEN
reading “Paragraph eleven. Confirm”, areference to a German students’' drinking song calling for more
liquid. Pre-prepared, all 74 of the fleet from torpedo boats to battlecruisers repeated the signal and
proceeded to scuttle themselvesin the British fleet anchorage. The British Grand Fleet had earlier put to
sea, leaving only some small fleet auxiliary shipsin the anchorage; without significant assets, the British
commanders were only ableto tow and beach afew of the ships, leaving the vast majority — approximately
437,000 tonnes — to sink to the bottom in depths ranging from 25-40m. In the confusion, eight German
sailorslost their lives.

Most of the scuttled fleet did not stay where they had sunk. Those that were beached were removed
amost immediately. In the 1920s, the firm Cox & Douglas began salvage operations, lifting many of the
ships, afeat not surpassed to this day. This salvage continued until the advent of the Second World War,
and only seven scuttled ships now remainon the seabed. After the war, Nundy Ltd started work on the
remaining ships to remove the valuable non-ferrous metals by blasting holesin the engine room areas.
More salvage took placein the 70s by Dougal Campbell who removed some of the amor plating when
“pre-atomic” steel demanded a high price. All of the remaining wrecks have thus sustained heavy damage,
but are now one of the best examples of shipsfrom thiserastill in existence.

2.2 Marine Archaeological Preservation, Protection and Site Management

Due to the concentration of wrecksin close proximity, Scapa Flow is now arecreational diving destination
of global renown. Numbers have continually increased throughout the 80s and 90s with approximately
3,000 — 3,500 divers visiting Orkney annually. A recent survey showed that this represented 2% of the
tourists who come to Orkney annually but represented 8% of the total tourist revenue to theislands. Divers
typically dive for six days doing two dives per day. Research suggests that 65% of all the diving carried out
in Orkney is on the seven German wrecks, which represents around 20,000 dives per year

However, by the 90s, Historic Scotland had started receiving approaches from a variety of people and
organisations, worried about souvenir hunting. Indeed, many of the ships fittings which had been common
place in the early 80s were no longer present. Several articles then appeared on the web and in the diving
press highlighting the need for action. A number of possible routes are available to facilitate protection of
the sites under Scottish Law. The approach eventually taken was to Schedul e the wrecks under the
Archaeological Areas and Ancient Monuments Act 1979. This allowed continued access but made it an
offence to tamper or remove anything from the sites. The Scheduling came into force on the 23 May 2001.

2.3 The Scapa Flow Marine Archaeological Project (ScapaMAP)

Public access and the occasional souvenir hunter are not the only threats faced by submerged resources,
however. The physical and chemical environments also pose a continual mechanism for site formation
processes. Coupled with the extensive salvage that had occurred on the remaining wrecks there was a need
for high quality information in order that future management strategies could be formulated in an
enlightened manner. Historic Scotland therefore provided funding for baseline survey work incorporating
traditional archaeological diving techniques and remote sensing protocols used in other areas of marine
science.

A consortium of interested groups: Heriot-Watt University, University of New Hampshire,
Archaeological Dive Unit, and Reson UK carried out high —resolution survey work in 2000 — 2001 with the
final report submitted that year. One of the recommendations of the report was to carry out arepeat high
resolution survey every five years. Historic Scotland again provided funds, and Scientific Underwater
Logistics And Diving (SULA Diving) organized a second collaborative project in cooperation with the
Centre for Coastal and Ocean Mapping, NetSurvey Ltd. and the UK Maritime and Coastguard Agency. The
preliminary findings of that work are reported here.
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3 Survey, Processing and Presentation Protocols

Multibeam Echosounders are the primary instrument for high resolution hydrographic survey in much of
theworld. Measuring depth at many (typically 100-256) points across awide (typically 120-150° total
angle) swath below the acoustic instrument at each measurement cycle, aMBES is typically operated to
cover the areato be surveyed in a series of wide tracks that are overlapped by choice of ship position to
ensure that all areas of the seafloor are ensonified.

Advancesin signal processing technology towards the end of the 1990s resulted in a new generation
of MBES systems being developed, typified by the Reson 8125. More powerful DSP capabilities allowed
these systems to be dynamically focused (that is, to have the acoustic parameters adjusted continually to
keep the seafloor in focus as the system receives backscattered energy), to form more individual beams,
and to ping the seafloor more rapidly, resulting in a significant increase in data density for any given depth
of water. With receive beamwidths on the order of 0.5° at nadir, this allows anominal acoustic footprint of
0.9% of depth, making the system easily capable of resolving very small targets and therefore feasible for
usein survey of wrecks and other objects where the goal is description of the configuration of the wreck
rather than just determination of the shallowest point.

Asthe goalsfor the survey in an archaeological context are different from those in a hydrographic
context, so the methods required for capture, processing and presentation of the results are different. In this
section, we discuss the differences from typical hydrographic practice, and illustrate the results with data
from the ScapaM AP surveys.

3.1 Organization of the survey

There are two primary goalsin any archaeological survey: investigation of the site area as awhole, and
documentation of any discrete objects within the site. The former is used to determine sites for the latter, as
well asto provide background information. These two modes of operation require different strategies.

Wide scale systematic survey should be carried out essentially as a conventional hydrographic survey,
with line spacing of each pass chosen to provide effective overlap with the next. Since the bathymetric data
density with most MBES decreases as a function of off-nadir angle, object detection in the outer regions of
the swath is less effective, and a higher overlap between swaths than might be used for hydrographic
surveysistypical. The concomitant reduction in survey efficiency that thisimplies can be mitigated by use
of appropriately processed backscatter data in some cases, althoughMBES backscatter is not always ideal
for small object detection dueto therelatively high grazing angle of observation compared to, e.g., atowed
sidescan system.

Item investigation requires careful planning since the goal isto get the observing platform as close as
possible to the target (in order to maximize resolution) without causing any potential damage to either
survey platform or target. For small targets without significant vertical extent, this can be done simply by
laying out a planned track over the centerline of the target (Figure 3(a)). For large targets without
significant vertical extent, it is more effective to lay out two planned tracks to port and starboard of the
target at approximately one third to a half of a swath width away from the centerline, assuming that two
swaths are sufficient to cover the whole target (Figure 3(b)). For targets with large vertical extent, it is
typically difficult to ensonify all areas of the target with a single pass since significant areas of acoustic
shadows are formed. In this case, survey lines parallel to the centerline are required, laid out so that the
track is over the outer extent of the primary wreck site on either side of the center (Figure 3(c)). This
arrangement provides the maximum overlap between the two swaths, allowing for conservative processing
of the data to maximize the visibility of features from one swath or the other once the combined object is
constructed. Multiple-pass surveys of large objects are only effectiveif positioning is adequate both
vertically and horizontally; thisis considered in more detail in the following section.

Scientifically, the composite object formed by multiple swaths of dataismost effective in
understanding the overall shape of the target. For visualization, however, thisis not necessarily the case.
Irrespective of how well the merging of the swaths is done, the results are generally not particularly
convincing (Figure 4). Itisusually best to plan and execute a “beauty pass’ survey line over thetarget in
order to provide the most compelling image. The placement of this survey line depends heavily on the
structure of the target. For example, if the target has an overhang, it might be more effective to survey
outboard of the overhang, Figure 5(a), so that the superstructure of the target isimaged directly. If, onthe
other hand, the wreck is up-right, a survey line down the centerline would be more effective since
shadowing should be minimized, Figure 5(b). Many possible alternatives exist. Whichever orientationis
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mandated by the target, the survey line should be conducted as slowly as possible while maintaining the
survey platformin control, since this maximizes the data density on the seafloor, which significantly
improves the visibility of small targets. Regular, stable forward motion of the survey platformis essential
in this, however, since excessive yawing or crabbing will result in a confused depiction of the wreck due to
the primary geometric structure imposed by the asymmetric along-track and across-track sample spacing,
leading to the data being seen primarily as swaths of points, rather than a uniform point cloud.

The sequencing of events during the survey depends on the state of knowledge of the targets before
the survey commences. |If sufficient information is available to identify all objects of primary interest and
their centerlinesa priori, the prudent approach isto survey the objectsfirst in case of difficulty later in the
process. If, however, littleisknown of the site, or if the object orientation and/or position areill defined, a
reconnai ssance/development approach is more useful. That is, the large-scale survey is conducted first,
targets are identified and development work is later scheduled on those targets. Whether this devel opment
must occur after the primary reconnaissance survey or if it may be interleaved depends strongly on the
capabilities of the survey platform, and particularly her operational crew. (The latter is preferred since it
develops the most information about known targets earliest in the process.) In either case, an immediate
corollary of carrying out target developments is that the data being captured has to be capable of being
processed in real-time onboard the survey platform so that the feedback loop can be closed. This has direct
implications on hardware, software and personnel availability during the survey. Rapid feedback of results
to guide the adaptive development of the survey plan, and sufficient flexibility in the survey plan to allow
for this, are essential.

3.2 Data collection

The primary requirements for an archaeological survey are the same as a hydrographic survey: rigid
mounting of the sonar transducers to avoid motion artifacts, use of an adequate motion sensor, and careful
control and estimation of the offsets of the various components of the system (linear, angular and
temporal). The primary differencesin data collection are in degree of significance of some of the
measurements that are made.

For all survey systems, understanding the sound speed structure of the water column is essential to
application of appropriate refraction corrections. Often, it is possible to diagnose issues with multiple
overlapping lines and determine empirical correctionsif required. In an archaeological survey, however, it
isfrequently the case that single passes of objects are taken (as described above), so diagnosis of any
unknown refraction due to alocal micro-change in water mass can be extremely difficult. Since much of
the analysis of the datais about shape, and particularly the likely changes in shape over a significant
portion of the swath, inappropriate refraction corrections could result in different interpretations of the state
of an object. Typically, therefore, an archaeological survey will require more frequent sound speed profile
measurements than would be normal for a hydrographic survey, and especially before doing any high-
resolution work around a particular feature of interest. The actual frequency required will depend of course
on the particular survey areg; if the areais particularly shallow and well mixed, fewer measurements may
be required, but a protocol of one profile every hour and before each significant target is not unusual.

Hydrographic surveystypically spend a significant amount of time determining the appropriate
corrector to reduce the depths measured to an appropriate datum, typically the chart datum for the local
area (often Lowest Astronomical Tide or Mean Lower Low Water). Archaeological surveys have both
looser and tighter requirements for water level correctors. In most cases, the absolute depth of any feature
of the objects being investigated is unlikely to be particularly inportant. Thereistherefore no reasontotie
the measurements to an absol ute datum, since the mgjority of the information required is about the change
in shape and relative position with time. Relative vertical positioning, however, is very important if the
object being investigated cannot be covered in one pass of the sonar: small variationsin the predicted or
observed vertical correctors can significantly affect the coherence of the multiple passes being merged into
acomposite structure. In extreme cases, problems with vertical correctors could result in a
misinterpretation of small structures within the object. Since these objects can be on the order of afew
centimeters different in depth, very tight control of relative vertical correctorsisrequired. For both of these
reasons, it makes more sense to conduct archaeological surveys on the ellipsoid with Real Time Kinematic
(RTK) or Post Processed Kinematic (PPK) GPS measurements, and only connect to alocal datumif the data
isintended to be dual-use, or needs to be connected to the nautical chart of the areafor somereason. This
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is not uncommon in archeological surveys, where aquid pro quo agreement with hydrographic surveying
agencies can support or defray much of the cost of the survey.

Horizontal positioning is asignificant concern irrespective of the surveying application. The use of
RTK/PPK positioning for vertical correctors generally resolves this issue adequately, however, and no other
constraints are required. 1f RTK/PPK positioning is not possible, however, then careful use of aWide-Area
Augmentation Service (WAAS) or Globally-Corrected GPS (such as StarFix, C-Nav, or GIPSY) would
typically be required to achieve the sort of horizontal uncertainty required to adequately merge multiple
passes into a coherent object structure.

Cleanliness of dataisimportant in all surveying applications. In general hydrographic surveying,
however, it may be considered acceptable to allow some beams of the swath to be intentionally noisy in
order to optimize some other property of the system. A typical exampleisto artificially decrease the
maximum range of the SONAR, sacrificing some of the outer beams, in order to increase the achievable
ping rate and therefore increase the along-track data density over the center of the swath. Where the target
of interest is a mostly smooth seafloor, thisis generally acceptable sinceit isrelatively straightforward to
identify the anomal ous soundings (Figure 6(a)). In the context of an object with large vertical extent and
very complex structure, however, this can be significantly more difficult (Figure 6(b)), leading to avery
difficult subjective decision making process (see Section 3.3). Given that the observation time for even
large objectsis very small (on the order of afew minutes), but the processing time for dealing with noise
over such objects can be very large (on the order of an hour), if higher data density isrequired it makes
economic sense to make multiple passes over the object rather than attempt to artificially increase the
density of one pass. Aslong as sufficient vertical and horizontal positioning control is available (as
outlined previously) then the data should still be able to be merged in this case into a composite object.
Archaeological surveys therefore require even more attention to dynamic operational tuning of the MBESin
order to ensure minimal outlier ‘noise’.

Although the bathymetric measurements made by the MBES are the primary goal of the survey, other
observational datais often available. Most system provide some measure of the backscattered energy from
the seafloor, and modern systems often now provide the ability to capture acoustic backscatter data from
ping transmission continuously (i.e., to image the watercolumn in addition to the seafloor). These
measurements can be used to develop new data products that illustrate features of the sites that are not
otherwise visible in the bathymetric data (see Section 5, for example). However, in many survey suites
they are not routinely monitored during acquisition, and may not be fully preserved into the data set
archived for post-processing. To a certain extent, choices made to optimize the datafor bathymetric quality
as outlined above run counter to the requirements for backscatter quality. Adjusting the transmit power in
order to achieve reliable detection on the outer beams, for example, can cause the backscatter to be
saturated, while rapidly changing the power and/or gain can result in backscatter artifacts that are difficult
to recover later. Recognizing that bathymetric information is typically the most important, archaeol ogical
surveys should at least monitor the backscatter being devel oped during the survey, and should ensure that
al relevant data and metadata are being archived. Frequently, thislast is difficult to achieve without testing
acomponent of the data being captured. It istherefore essential that all required processing tools are
availablein thefield, and that the data is examined immediately after capture to ensure compl eteness.

3.3 Processing strategies for wreck data

Aswith data collection, the processing strategies for wreck datatypically follow the protocols used in
modern hydrographic processing schemes. Thistypically involves a dataflow path where raw datais
transformed quickly into a surface representation, frequently with auxiliary datalayers such as standard
deviation, datadensity or uncertainty among others, which isthen used to guide the effort of removing the
data observationsthat are not consistent with the hydrographer’ sinterpretation of the configuration of the
seafloor. In someinstances, automatic or semi-automatic methods of processing are used to construct the
surfaces; in other cases simple distance weighting isused. After remediation of the inconsistent data by
manual or semi -automatic means, the data is summarized either asa surface or as a collection of ‘raw
sounding’ observations as dictated by the hydrographic agency contracting the data.

For archaeological survey, these methods are sufficient for areas where general reconnaissance survey
is being undertaken, prior to any detailed investigation of an object. We have found that remediation
utilizing athree-dimensional representation of data pointsin an area-based editor is by far the most
effective method for dealing with wreck data, primarily because it allows for the detailed visualization of
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the vertical structure of the wrecks in context with the dubious observations. For investigation of particular
objects, it is often the case that the most complex part of the editing task is deciding whether a particular
sounding is erroneous, or simply avery small part of the wreck: wrecks often have small pieces of
superstructure or hull only marginally attached to the main wreckage, depending on the state of decay. In
thisinstance, we have found it effective to use small ‘ subset’ slices through the wreck’ s hull aligned with
the primary longitudinal axis of the wreck. This helpsto establish ‘inside’ from ‘outside’ of the wreck, and
delineates the primary hull or superstructure more clearly. Aswith all subset editing applications, itis
essential to ensure that sufficient context remains that objects are not removed as erroneous because only
the part within the slice is considered. Having an ‘overview’ of the datain 2D or 3D (which is preferred)
hel ps to ensure that the detailed view is not too selective.

In hydrographic data processing, the most common goal isto retain the shoalest point in any data set,
which preserves the observation most significant to surface navigation. Some leniency in removing deeper
coincident pointsis therefore natural. In archaeological data processing, however, deeper points could
represent sub-decks that are exposed by gaps in the upper plating and imaged by some other beam. Itis
essential, therefore, to be especially careful when reviewing the data within the wreck structure to ensure
that significant detail is not removed. Thisisnot alwaystrivial. Good practice for thisisto prioritize time
for investigation of the detailed structure of the wreck within the processing stream, to visualize the
structure appropriately as outlined above, and to build a mental picture of the structure ‘through the noise’
before starting on the editing task. We have found that thislast is usually possible due to the human ability
to see structure clearly past visual distracter points, and greatly aidsin decisions as to what to keep.

Visualization of the structure of the wrecks is essential in making suitable decisions for editing. In
particular, there are significant limitationsto DTMs of awreck to represent many of the overhanging
objects that wrecks frequently manifest, such as lifeboat davits or masts, Figure 7 (see Section 3.4). We
have found that the level of detail of the bathymetric data generated from moderns surveysis more than
sufficient to allow details of objectsto be identified from pictures of the ships before they were sunk, if
available, and editing with respect to the known structure of the wreck prior to sinking can be extremely
beneficial in deciding what is likely noise, and what significant archaeological detail.

3.4 Presentation of wreck or object data

The essence, and primary difficulty, of visualization of the data from archaeological surveysisin balancing
efficiency and easy of interaction against scientific veracity and interpretability. The two primary modes of
display are as either apoint cloud (i.e., arepresentation of direct observations with one glyph for each) or
as some form of surface model, whether DTM or TIN. The correct answer is properly a combination of the
two types of visualization depending on the goals and users.

The simplest form of visualization for spatial datais as a surface model. Simple to compute and fast
to render, they readily provide geo-spatial context for the site, and are easy to interact with using common
tools. There are some limitations, however, the most important of which is the implicit assumption that
thereis a continuous surface to model. In the case of general bathymetry, thisis acceptable: in most cases
there is a continuous seafloor, and if there is an overhang the primary interest isin the shallowest part of it.
Even with wrecks, in the hydrographic case, the shallowest part of the wreck at each location of interest can
be summarized by the shoalest point, or shoalest probabl e depth according to preference. For an
archaeological investigation, however, we would like to preserve interior inclusions and overhangs as
inherent properties of the object, which cannot be done with a simple surface model of the type commonly
used, Figure 8. More complex models are certainly possible, such as full CAD models with photo-realistic
rendering, but the time required to generate such models, the costs of the associated software, and the limits
on interaction with the data due to rendering delays make them unlikely as adjuncts to rapid scientific
investigation of sites. These limitations suggest that while a surface model may not be the final source for
detailed investigation of the interior of an object (or at least such of theinterior as can be seen), it does have
aroleto play to provide for rapid interaction with data and site context in the larger sense.

In order to generate effective surface models, however, some other potential limitations have to be
considered. The primary concern is one of resolution: at what level of detail should the object be
constructed? To acertain degree there isafree hand with this choice, since we acknowledge that the
surface object isprimarily for large scale context, so preservation of small detail does not overly concern
us. (Wenotein passing that algorithms based on a simple mean of all pointsin aneighborhood will almost
aways result in poor renderings since any interior inclusions will cause ‘pits’ in the data where the upper
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surfaceis actually intact, changing entirely any estimate of the state of the wreck. A simple shoal biased
surface resolves thisissue, although it can cause others due to unedited outliers.) However, if the
resolution is set inappropriately low, then significant details of the object will be lost, and along with them
the visual cues that would incite further investigation of the object. In Figure 9, for example, the detail of
the frontal hull collapse of the SMS BRUMMER would result in significantly different interpretation in the
version constructed at 1.0m resolution; possibly sufficiently that the area might not receive detailed
investigation as would be the case from visualization of the 0.5m version. Both, of course, fail to show the
detail in this area of the point cloud version of the same area from approximately the same vantage point,
but it isinteresting to note that while both surface representationsfail to properly highlight the mid-line hull
collapse points clearly visible in the point cloud, which are significant to the understanding of the hull
stability (and hence likely longevity) of the wreck, they do make it significantly easier to seethe linear
structures on the seabed off the bow of the wreck, which are likely the remains of the foremast.
Complementary roles of surfaces and point clouds are clearly indicated.

Points resolve many of the issues of surfaces outlined above, but come with asignificant performance
penalty. Counter-intuitively, although each sounding point is much simpler than a surface, to allow each
point to beilluminated it hasto be drawn in most cases as a geometric cube rather than a simple point,
requiring that all six faces belit and rendered; the combination of afew hundred thousand of these can give
even modern graphics cards sufficient work to slow the achievable frame rate below that which is
acceptable for an interactive data manipulation experience. This may be reduced to some degree by
suitable visualization techniques such as only drawing a subset of all points while interacting with the data,
and then redrawing the rest when the viewpoint stops moving, or by careful selection of which cubesto
draw and optimization of the drawing primitives. At some point, however, interactivity of point clouds
becomes limited, making them suitable for small -scal e detailed investigation of parts of an object, or pre-
rendered non-interactive views of large objects (e.g., as avideo showing particular parts of the data).

For points, the principal visualization controls are point size and color. Point size is mostly a matter
of taste, although too large a point size resultsin merging of structures, and can obscure details in the data
(Figure 10(a)(b)); some interactive choice is appropriate since this varies with object. Coloring of points
depends on the application. In publicity work for outreach applications, monochromatic rendering (Figure
10(c)) can be very atmospheric, but does not convey the scientific information that can be color-coded onto
the points such as depth, Figure 10(d). Technically, the depths of the observations should be evident from
the size of the pointsin the projected visualization space. It is common to have difficulty in determining
thisin close points that differ in depth significantly but which are rendered close together due to the
perspective of the interactive viewpoint. One promising technique for providing a halfway-house between
afully rendered model and a point model isthe use of oriented facets, Figure 11. Here, normals are
computed for each sounding based on the vector mean of the normals for the triangular facets between the
sounding and itsimmediate neighbors (i.e., immediately adjacent beams within the same ping, and the
same beamsin the previous and next pings). The soundings are then rendered as small quadrilateral
patches, colored by depth and oriented with respect to the mean normal. The effect isto generate a pseudo-
surface which isreadily lit and renders quickly, and which can also be used to occlude soundings which are
‘behind’ the nearest surface to some extent (simply by culling soundings with eye-point angles greater than
90°). Sincethese are still soundings, however, they can be time-tagged and therefore combined in a4D
sense with other data, such as the watercolumn and ship trajectory information shown here (c.f. Figure 16
and Section 5).

Visualization difficulties with points can be reduced considerably by the use of animation. Relative
motion of near and far points against each other (motion parallax) triggers strong depth cuesin the brain,
allowing the viewer to build amental impression of three dimensional shape of the wreck that allows for
more complete understanding of the structure even when the animation stops. So strong isthe effect that it
iseven effective to ‘shake’ the viewpoint slightly around anominal view vector in order to understand the
local structure being examined. Similar effects can be had with pre-programmed animation sequences
summarized in avideo clip, but our experiments with these show that they are not as effective as an
interactive experience. Heuristically, we believe thisis probably because the pre-planned flight path does
not allow the user to focus on the data that interests them, or that which they find particularly confusing.
Since these effects are different for all users, apre-planned sequenceislessthanideal. Evenif the dataare
lower resolution during the interaction, or are not rendered as well as they might possibly bein anon-real
time method, information transfer about the shape of the object is higher when interactive.
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These observations highlight the differences between data products generated for scentific use, and
those generated for communication to the public (a very important mission in most archaeol ogical surveys).
Whilethe latter are required to be visually compelling, but static; the former are required to be
scientifically informative, quantitative and interactive. These requirements dictate the constraints of
visualization. The monochrome representation of Figure 10(c), for example, does not carry the information
inherent in Figure 10(d), but it does have more visual impact. Our experiments suggest that color
differences are less important for static visualization, and may even be deleterious to the * solid surface’
illusion in point clouds that make the objects much more ‘solid’ in astatic view. For scientific work, color-
coding and the ability to rapidly change coloring is essential. In both cases, animation is essential, although
in the case of scientific work easier to arrange.

4 Site Monitoring through Repeat Surveys

The primary aim of the ScapaMAP |1 survey in 2006 was to answer the fundamental question of whether
there is sufficient repeatable detail in the remotely sensed description of awreck or other object that the
data could be used for monitoring of the object over time. This might be considered to be an obvious
assertion: the remote sensed data are extremely compelling because they are instantly recognizable as
wrecks, but agreat deal of thisinformation isfilled in by the human observer, rather than being inherent in
thedata. It wasnotinitially clear that the repeatability of survey would be sufficient for scientific
investigation of the sites, and therefore monitoring.

On the macroscopic scale, sites of any size above approximately 1nf can trivially be recovered using
conventional navigational equipment, and in that limited sense, the survey isrepeatable. Direct comparison
of data at the macroscopic scale, Figure 12, clearly shows that similar features are seen in the two surveys
which are five years apartin this case. In many instances, even small details can be compared side by side;
in Figure 12, the breaks in the hull plates along the central longitudinal axis of the SMSBRUMMER are
evident in both cases, an example where adetail that could be dismissed as a dataanomaly in one survey is
confirmed by the second. (Hull plate breaches are very significant in estimating the structural integrity of a
wreck, and hence the level of preservation and likely decay rate, since they form aweak-point which can
concentrate decay, |eading to a cascade of collapse.)

The results of the survey also show that detailed descriptions of the wrecks may be formed from pairs
of surveys compared side by side. Inthe detailed view of the bow of the SMS BRUMMER in Figure 12, for
example, it is possible to estimate the progress of the hull plate and subdeck collapse into the body of the
hull, and towards the superstructure further aft. Repeated sufficiently often, such surveys would allow
estimates of the rate of collapse aswell as continuous monitoring of the current configuration of the wreck.
Careisrequired in interpretation of the results of the repeated surveys, however. Increasesin MBES
performance generally result in higher data density, which is evident in Figure 13 in the short period of
time between 2001 and 2006. Elements of the wreck which seem to “appear” in subsequent surveys should
be treated with suspicion, therefore, since they may just represent details which were not evident in the
prior survey. In addition, slight changesin survey platform trajectory can result invery different
shadowing patterns on objects with significant vertical extent (such aswrecks), which might be (over-)
interpreted asimportant differences. (Both of these effects are evident in Figure 13(b) where the datafrom
2006 shows better definition of, e.g., the thin longitudinal remains of the sub-deck support members, which
therefore anomalously “appear” in the later survey, but is also missing the main deck bulkheads between
the forward gun director and the main superstructure, most likely due to shadowing rather than actual
collapse.)

M ethods for more quantitative estimates of the differences between two surveysare quite limited.
The simplest isto compute the difference between two coincident surfaces constructed from the separate
surveys, although thisinherits all of the problems of dealing with surfaces as outlined previously and in
general isonly useful for gross differences. Directly computing a difference of two point setsis not well
defined since thereisno direct definition of interior and exterior spacesin the data. Experimentsin using
stereo rendering of pairs of surveys show that it isdifficult to ‘fuse’ two images that are not from the same
survey, since small changesin shadowing (e.g., dueto tragjectory), data density and swath orientation
significant affect the rendered images. In our experiments, the viewer fixated one or the other survey,
rather than seeing any differences between them. More complex visualization techniques might render
better quantitative methods for comparison, but it islikely that this problem isformally as difficult (and
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closely related) to the problem of forming the semi-random pointsinto a coherent 3D surface described
previously: something that is not readily soluble by automatic methods.

The primary limitations in doing any comparisons are the achievable horizontal and vertical
positioning accuracy, both of which limit the degree of fusion that is possible with pairs of surveys; small
changes will be completely masked if there is a systematic biasin either dimension such as might be
formed through variation in GPS satellite constellations or differing vertical datums. The positioning
requirements for thistype of repeat survey arein general even stricter than they are for standard
hydrographic surveys because here the measure of successisthe relative uncertainty rather than the
(typically more generous) absolute uncertainty that is commonly required. That is, in a hydrographic
survey, we might be content to position a shoal to within 5m (2drms) repeatably, allowing an adequate
margin by which satellite constellation changes may be accommodated. |1n an archaeological survey,
however, a constellation change that resulted in a horizontal offset of 2.5m in arandom direction would
result in acomplete inability to compare the resultsreliably. For similar reasons, care in correction for
motion of the platform is paramount, since small residual motion artifacts (e.g., induced heave on the
centimeter to decimeter scale) can result in obscuration of significant features. To acertain extent the
wider application of RTK or PPK GPS measurements and tightly coupled motion sensors and features such
as delayed heave estimates will result in these difficulties being of lesser significancein the future. The
requirements for the survey that they imply will remain, however.

5 Survey with New Data Products

Backscatter data, typically from atowed sidescan system, has been a staple of wreck investigation for many
years. Thereisadifferenceinthetask of detecting an object, for which thisisideal, and some careful
investigation of its morphology, however: in the case of very large wrecks, the prevalence of shadowingis
so high that much detail of the hull shape is often obscured, Figure 14. In addition, the lack of bathymetric
dataresultsin difficultiesin correcting this data for positioning which further distorts the morphological
indicators that are useful for monitoring the object’ s condition.

Addition of bathymetric information does not significantly improve behavior of MBES backscatter
over large wrecks, however; the fundamental limitation of shadowing is still present, and attempts to
geocode backscatter coherently over alarge wreck are unconvincing.

In our experiments, the most compelling use of backscatter isin its conventional survey mode; that is,
to map changes in sedimentation around the areas of interest, or significant objects. In Figure 15, for
example, we show a section of Gutter Sound, Orkney where the backscatter shows a significantly
anomalous return for which there is no bathymetric explanation (even when the backscatter is heavily
vertically exaggerated and strongly shaded as here so that centimetric artifacts become obvious). It is
unknown whether this anomaly represents a difference in seabed surficial sediment, or whether it is aresult
of material left on the seabed due to a pollution event at some time in the past. However, the ability to map
these changes, especially since thisdatais essentially ‘free’ from the bathymetric survey, can help in the
rapid-response and baseline mapping segments of archaeological site investigation.

A newer capability in MBES systemsisto capture data for the entire water column, rather than just
the bathymetry and seabed backscatter. Potentially, this allows for greater detail of investigation of the
datain a post-processing mode, since the datais not reduced to just the seabed backscatter, or one data
point per beam, Figure 16. Comparison of the water column data to the detected bathymetric datais also
useful, particularly where small features (e.g., masts, lifeboat davits or guns) are present, since the water
column data may show more detail, or finer detail, than can be resolved even in high resolution bathymetry.
Thereisasignificant cost in thistype of analysis, however, since the data volumes for this type of data can
be very high (on the order of several gigabytes per minute). The cost of storing, processing and presenting
this datawill mean that for the immediate future only very small sections of data are likely to be collected
and processed, implying that very careful targeting of thistype of dataisrequired. For archaeological
surveys, therefore, thisis most likely to mean targeted passes on aready well established objects, rather
than use in rapid reconnaissance.

Methods for processing and display of water column data are still very much in their infancy. Future
techniques might include volume rendering of semi-transparent displays, multiple object detection and
tracking within the water column, and volumetric reconstruction of data. It remains to be seen, however,
whether this can be done in anything like real-time, and what the computational cost will be.
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6 The Role of Survey in Site Management Plans

Thereality of most marine archaeology isthat there will rarely be sufficient funding for an investigation of
the site to the level of detail that isreally required to fully document the state of preservation. Thisisnot to
say that funding is not available; for some sites, such as the wreck of the MONITOR, large, well-funded
projects have been launched. For every site of this kind, however, there are maybe hundreds more with just
as significant a cultural impact, which are unlikely to receive serious study. The cost of any marine
investigation, and the difficulties of mobilizing human observers to the location means that thereisa
necessity for methods to rapidly, but perhaps approximately, gather information on a site.

Survey technologiesfill thisniche. Remote sensing of bathymetry has been shown, here and
elsewhere, to produce compelling descriptions of the 3D structure of archaeological sites, and can be done
in significantly less time than would be required for adiver-led investigation of the site. In addition, the
precisely geo-referenced data can act as a means to prioritize use of more expensive or limited resources,
such asdiver time. For example, in the case of the SMS BRUMMER, Figure 13, knowledge that the front
deck plates have changed significantly would be cause to vector divers to the site for more detailed
investigation in situ. Repeatability of survey methodsis now sufficiently good that repeat surveys make
sense, and provide an enticingly economical method to monitor particular objects as a function of time.

There are therefore two primary roles for high resolution survey in a marine archaeological context:
rapid pre-investigation surveysto establish a baseline efficiently, and continuous monitoring of the siteto
establish decay rates or the effects of intermittent external drivers, e.g., hurricane damage. The arguments
for both of these are essentially economic, although efficiency of timein observation and saf ety of the
observers are also factors.

Clearly, however, remote sensing is not a complete solution for marine archaeol ogy; there remains no
substitute for a human observer for the finest scale observations. This may, of course, be mediated through
aremote technology such as a Remotely Operated Vehicle with cameras to do the observing, but the
purposeful investigation of atrained observer is still necessary. In the future, more exotic technologies
such as AUV s might extend the limits of what is now possible, but no matter how close the remote
platform is brought to the site, and the frequency of the observing system, there are fundamental limits to
the resolution and precision of the datathat can be achieved. Like all tools, therefore, survey systems are
only apart of acoordinated site management plan.

7 Summary

Our experience with ScapaM AP shows that remote survey provides arapid alternative to more
conventional marine archaeological investigations, and that recovery of targetsis sufficient to allow
effective repeat surveysto be carried out without extreme measures. The requirements for marine
archaeological surveys are basically those for hydrographic survey, although we are frequently more
interested in relative, rather than absolute, error, and therefore we need to pay more attention to factors
such as offsets between components of the survey system, or horizontal positioning uncertainty, rather than
things like water levels or other vertical correctors. Careful planning of survey linesis also required to
ensure efficient and effective imaging of objects with large vertical extent.

Processing methods for marine archaeological data are driven primarily by the desire to maximize
resolution, rather than preserving shoal points. Thisis especially difficult where small over-hanging
features are observed with little reliable redundancy. Standard hydrographic tools are effective, however,
when paired with a sufficiently observant, trained operator.

Visualization and display of objects with large vertical extent and complex morphology is
problematic, and depends on the intended goal of the display. Scientific investigation and public outreach
demand different approachesin datatype, color-coding and lighting among other factors. Our experiments
indicate that point-cloud type displays are generally more effective than surface type displays because of
the observer’ s ability to fill in the gaps between the points with an inferred surface, and that interactive
displays, or at least animated versions of data, are more effective because they provide much better depth
cues for the observer due to the effects of motion parallax, making it easier to interpret the 3D structure of
the objects.
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(a) Location of Orkney |slands to the north east of Scotland

(b) The Imperial German fleet at anchor in Scapa Flow in early 1919. View is
looking south towards Cavafrom Swanbister Bay. (Source: Orkney Library Archive)

Figurel: The British fleet anchorage of Scapa Flow was first used immediately prior to World War |. The
intent was to blockade the North Sea from Britain to Norway and thereby stop the Imperial German Navy
from commerce raiding in the Atlantic. The Imperial German fleet was interned in Scapa Flow following
the Armistice of 11 November 1918 until a negotiated agreement on their fate could be signed.
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Figure 2: Diver’s drawing of the bow of the SMSDRESDEN, based on numerous dives on the wreck in 30
min sections. Thelevel of detail isas good as the diver’s memory, but may vary depending on level of

experience, visibility level, etc. (Source: Steve Liscoe, ADU)
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Figure 3: Potential line organization for wreck surveys, which depend on the characteristics of the object
being surveyed. For objects with low relief, (a), (b), layout depends on horizontal side; for objects with
largerelief, (c), layout is done to minimize potential for acoustic shadowing.
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(a) A single pass of theMBES on the SMSKOLN.

(b) Two passes of theMBES on the SMS KOLN.

Figure 4: Effects of visualizing more than one MBES pass over awreck with high detail level and
insufficiently accurate positioning. Small inconsistencies in horizontal and vertical positioning resultin a
‘smearing’ of thewreck, (b), relativeto asingle pass, (a).
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(b) High relief object, multiple lines with one to fill in the superstructure dataif possible

Figure5: Layoutsfor ‘beauty passes’ over objects, intended primarily for public outreach visualization.
In the case of high relief, (b), the best view will depend strongly on the configuration of the wreck, and may
be of the superstructure but only part of the hull.

(a) Noisereadily distinguished from data (b) Noisetoo close to object of interest

Figure 6: Examples of hydrographically ‘acceptable’ data noise (a) which is readily distinguished from the
true surface data, and archaeologically challenging data noise (b) which is very difficult to subjectively
separate from the ‘true’ structure of the wreck due to the very small nature of the structure components
being considered.
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(@) The SMSKOLN in 2006
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(b) The SMS KOLN in 1919

Figure7: Theability of aDTM to represent overhanging featuresis limited, but their importance can be
archaeologically very significant; visualization of these from, e.g., images of the ship before it was sunk
can be very important in understanding the visual structure and therefore what to retain in the data during
the editing process.
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Figur e 8: Surface representations of wrecks (here, the SMS KRONPRINZ WILHELM) and other datawith
significant interior inclusions or overhangs cannot maintain fidelity due to the assumption of asingle
contiguous surface, which does not map well to thistype of data. Point clouds allow this, but are difficult
to manipulate.

(a) Grid resolution 0.5m (b) Grid resolution 1.0m

(c) Point cloud

Figure9: Surfaceresolutionis essential in visual identification of areas of the object that require further
investigation in the point cloud model of the data. Gridsat 0.5m and 1.0m tell avery different story about
the state of preservation of the bow of the SMS BRUMMER, with the 0.5m being closer to the detail found in
the point cloud.
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(@) SMSBRUMMER, 0.1m (b) SMS BRUMMER, 0.4m

(c) SMSMARKGRAF, duotone (d) SMSMARKGRAF, colored by depth

Figure 10: Variation of point size and color can resultsin significant differencesin visibility and utility of
the data. Increase of point size (a), (b) can improve some rendering, and/or obscure some details of the
object. Monochromatic colorings can be very dramatic, (c), but do not contain the scientific data inherent
in acolor-coded data set, (d), here showing depth.
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Figure11: Alternative rendering of point data (here, of the SMSKONIG) as oriented facets using the mean
normal for triangulated patches between soundings and their immediate nearest neighbors. The data points,
color-coded by depth, are represented as small quadrilateral patches which are fast to draw and readily lit
and rendered. Thedatais still inherently point-based, however, and therefore can be integrated with other
4D (i.e., spatio-temporal) data. (Image source: Roland Arsenault, Data Visualization Research Lab,
CCOM/JHC).

(3 SMSBRUMMER, 2001 (b) SM'S BRUMMER, 2006

Figure 12: Overview of the SMSBRUMMER surveysfrom 2001, (a), and 2006, (b). Although the data
densities are different, and the motion compensation from 2001 is not ideal (the MBES was deployed on a
pole mount with limited rigidity), the two surveys are directly comparable, and details such as the hull plate
failures on the longitudinal centerline and salvage recovery points are maintained between surveys.
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(b) SMS BRUMMER bow, 2006

Figure 13: Detailed view of the bow of the SMS BRUMMERin 2001, (&), and 2006, (b). The progress of
the hull plate and sub-deck collapse towards the keel and superstructure are evident, showing the sequential
monitoring of the state of preservation of the wrecks can be supported by remote sensed data of thistype.

Figure 14: Sidescan imagery of the SMSKRONPRINZ WILHELM, collected with aKlein 2000in 1999. The
vertical extent of the wreck results in significant shadowing, and consequent difficulty in recognizing
morphological indicators useful for assessing the state of the wreck. Although ideal for detecting wrecks,
towed sidescan is not always ideal for monitoring.
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(a) Backscatter

(b) Color-coded, shaded, bathymetry

Figure 15: Multibeam backscatter and bathymetry for the same section of Gutter Sound. The backscatter
shows a significant anomaly that has no bathymetric expression, although the data agree on the objectsin
the top right of the imagery. Use of backscatter to identify sediment variabilities, for example due to
differential erosion or pollutant absorption isauseful ‘collateral’ tool derived from baseline bathymetric

surveys.
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Figure 16: Snapshot of avideo sequence showing the bathymetric points and water column datawith
respect to the survey platform while imaging the SMS KONIG. Water column data can reveal more about
the structures of awreck and allows for comparison of detected bathymetric points against observed
acoustic data, but volume of data and difficultiesin processing mean that this data type needs to be targeted
to known objects rather than being applied uniformly across the survey area.
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