
University of New Hampshire
University of New Hampshire Scholars' Repository

Center for Coastal and Ocean Mapping Center for Coastal and Ocean Mapping

9-2013

Gradual Generalization of Nautical Chart
Contours with a Cube B-Spline Snake Model
Dandan Miao
University of New Hampshire, Durham

Brian R. Calder
University of New Hampshire, Durham, brian.calder@unh.edu

Follow this and additional works at: https://scholars.unh.edu/ccom

Part of the Oceanography and Atmospheric Sciences and Meteorology Commons

This Conference Proceeding is brought to you for free and open access by the Center for Coastal and Ocean Mapping at University of New Hampshire
Scholars' Repository. It has been accepted for inclusion in Center for Coastal and Ocean Mapping by an authorized administrator of University of New
Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Miao, Dandan and Calder, Brian R., "Gradual Generalization of Nautical Chart Contours with a Cube B-Spline Snake Model" (2013).
IEEE Oceans. 863.
https://scholars.unh.edu/ccom/863

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNH Scholars' Repository

https://core.ac.uk/display/72052376?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fccom%2F863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/ccom?utm_source=scholars.unh.edu%2Fccom%2F863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/ccom_home?utm_source=scholars.unh.edu%2Fccom%2F863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/ccom?utm_source=scholars.unh.edu%2Fccom%2F863&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/186?utm_source=scholars.unh.edu%2Fccom%2F863&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/ccom/863?utm_source=scholars.unh.edu%2Fccom%2F863&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu


  Gradual Generalization of Nautical Chart Contours 
with a 

 Cubic B-spline Snake Model  

Dandan Miao 
Center for Coastal Ocean Mapping 

University of New Hampshire 
Durham, NH, USA 

dmiao@ccom.unh.edu 

Brian Calder 
Center for Coastal Ocean Mapping 

 University of New Hampshire 
Durham, NH, USA 
brc@ccom.unh.edu

  
 

Abstract—B-spline snake methods have been used in 
cartographic generalization in the past decade, particularly in 
the generalization of navigational charts where this method 
yields good results with respect to the shoal-bias rules for 
generalization of chart contours. However, previous studies only 
show generalization results at particular generalization (or scale) 
levels, and the user can only see two conditions: before the 
generalization and after generalization, but nothing in between. 
This paper presents an improved method of using B-spline 
snakes for generalization in the context of nautical charts, where 
the generalization process is done gradually, and the user can see 
the complete process of the generalization. 

Keywords—gradual contour generalization, B-spline, snake 
active contour model, cartographic generalization 

I. INTRODUCTION  
Contours are one of the primary bathymetric features on 

nautical charts. They depict the geomorphologic shape of the 
seafloor, indicate the shallow area, and provide safety of 
navigation information for mariners. Nautical charts make a 
distinction between isobaths (i.e. a line that connects all points 
with the same depth) and contours (i.e., a line that contains all 
points shallower [shoaler] than a given depth). The method 
described here is concerned with contours, since they are a 
more general description of a depth boundary, and required for 
maintenance of navigational safety when constructing a chart. 

Charts are generally constructed from multiple sources of 
bathymetric data (for example, soundings from various 
sources, contours, indications of obstructions, etc.) and non-
bathymetric data (e.g., floating aids to navigation, shore-line 
constructions, tides and currents, etc.). Traditionally, charts 
were constructed at a particular scale of representation in order 
to depict the information at a level of detail suitable for the 
intended use (e.g., very large scale, perhaps 1:5,000 for 
docking charts, through to very small scale, perhaps 
1:1,000,000 or less, for planning an ocean crossing). Most 
often, the source surveys for the charts were conducted at a 
scale twice that of the largest scale charts for the area being 
surveyed and smaller scale charts were constructed from the 
larger scale charts by a process of generalization. As the scale 
of the chart changes, the contents shown on the chart are 

necessarily different since the space available to represent any 
given physical area is smaller: the detail available at the largest 
scale cannot be shown clearly at smaller scales. Clarity of 
representation is essential in a chart in order to provide a useful 
working document, and to promote navigational safety for 
surface vessels. Generalization is the process of choosing 
which contents should been shown and how they will be 
represented on the chart to achieve these goals. 

More recent practice has been to construct fully electronic 
charts (i.e., Electronic Navigational Charts [ENCs]) for use in 
computer-based bridge navigation systems. These systems 
allow the user to zoom in and out essentially continuously and 
therefore require that the display system (either an Electronic 
Chart System [ECS] or Electronic Chart Display and 
Information System [ECDIS]) provide generalized data to the 
user on demand. Currently, such systems select the best chart 
available for the region from a set of charts (typically the chart 
with the closest scale match to that required), and display it, 
generalizing only within the limits of the scale minimum and 
maximum information coded into the chart’s source data. Since 
these systems are essentially autonomous of the cartographer 
once the source data is supplied, automatic methods for 
generalization are even more important than they are in the 
traditional paper-based chart construction pipeline: here they 
need to be safe, and preferably aesthetically pleasing, without 
human intervention.  

There are two main aspects of generalization: model 
generalization and cartographic generalization. Model 
generalization, also called database generalization, is 
generalization in the conceptual level of the data 
representation, while cartographic generalization, also called 
graphic generalization, is about the changes in the geometric 
shape of chart features. This paper focuses primarily on 
cartographic generalization. Many previous studies have been 
conducted on the topic of cartographic generalization, but most 
have been concerned with land map generalization; the 
generalization of nautical charts has not been widely studied. 

 Nautical charts differ from land maps in that they do not 
intend to faithfully represent the true nature of the seafloor in 
the area of interest, or, necessarily, all of the other components 
in the region. The goal, rather, is to provide a representation of 
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the area that is as faithful to the known true configuration of 
the seabed as possible (in as much as the – usually limited – 
source data provides information on the true configuration of 
the seabed), modified such that the information is inherently 
safe for surface navigation. So, for example, the nautical 
cartographer might move an indicated sounding in order to 
improve the clarity of the display, or intentionally modify the 
representation in order to suggest to the mariner that an area of 
the chart is unsuitable for transit. In all cases, the nautical chart 
must obey shoal-bias rules, meaning that the chart always 
shows the shallowest depth at a given position, or a 
modification of the known configuration of the seafloor such 
that the depth indicated on the chart is shoaler than the 
cartographer knows the water to be. This difference requires 
the process of nautical chart generalization to be very different 
from land map generalization. 

A previous study by Guilbert and Saux [2] introduced a B-
spline snake method to nautical chart contour generalization. 
This method demonstrates several generalization operators, and 
takes the shoal-bias rule into consideration. However this 
process only creates results at a given level of generalization, 
and there is no intermediate result between the original chart 
scale and the generalized scale. But in reality, when a chart 
with a generalization function is been displayed on an 
Electronic Chart System (ECS) or Electronic Chart Display 
and Information System (ECDIS) screen, it is more appropriate 
to have the generalization happen smoothly as the user zooms 
in and out between scales. Current generalization studies all 
provide generalization result at some given generalization 
level, but no research has shown gradual generalization on a 
nautical chart; this paper addresses that question.  

II. BACKGROUND 

A. Cubic B-spline curve definition 
A B-spline curve is a parametric function defined on an 

interval I=[a,b] ⊂ in 2 [2]. Foru ∈  I, the curve  
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functions of suitable degree; here, cubic B-splines are used. 
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1 11

1 1
1

1 1

1  if  u  and u
( )

0           otherwise

( ) ( ) ( ) for2

i i i i
i

i jj j ji
i i i

i j i i j i

u u u
N u

u uu uN u N u N u j k
u u u u

+ +

+− −
+

+ − + +

⎧ ≤ ≤ <⎧
= ⎨⎪

⎪ ⎩
⎨ −−⎪ = + ≤ ≤⎪ − −⎩
and the first, second and third order basis function[3] are 
therefore as shown in Figure 1. 

 
Figure 1: First three basis functions for the cubic B-spline 
approximation to a generic curve.  The ui are the knot vector 
values that define the shape of the basis functions. 

The basis functions are positive and non-zero on a local 
interval given by the knot vector [ui], with 

0 1 20 1nu u u u≤ ≤ ≤ ≤ ≤ ≤  [2].  Cubic B-splines are 
used to ensure C2-smoothness (i.e., continuous second 
derivatives) at each knot. 

B. Snake model  
Snakes, also called active contours, were first used in image 

processing. A snake is a curve defined within an image domain 
that can move under the influence of internal forces that 
describe the curve itself and external forces computed from the 
image data [1].   The snake is defined through a parametric 
curve ( ) [ ( ), ( )],  [0,1]X u x u y u u= ∈ , on which the forces are 
defined through an energy-like term 

      
1

int0
( ( ( )) ( ( )))total extE E X u E X u du= +∫             (3) 

where int ( ( ))E l u is the internal energy of the curve, describing 

the smoothness, and ( ( ))extE l u  is the external energy, which 
indicates external constraints on the system.  In the system 
defined here, these constraints correspond to the shoal-biasing 
rule; when the external energy is minimized, the shoal-bias 
constraint has been satisfied. In general, the algorithm seeks a 
shape of the curve to balance the effects of the internal and 
external energies such that the resultant curve is as smooth as 
possible while still satisfying the external constraints (which 
may be either hard constraints – i.e., that must be satisfied – or 
soft constraints that express a degree of preference). 

In the general snake method, the internal energy is 
represented as: 

     
2 2

1

int 0

( '( ) ''( ) )
2

X u X u
E du

α β+
= ∫                  (4) 

where '( )X u and ''( )X u  are the first and second derivative 
of ( )X u with respect to u , and α and β are weighting 
parameters that control the balance between the snake’s tension 
and rigidity [1], and are adjusted to emphasize the required 
features for the given problem. 

C. B-spline snake representation 
For use in this work, the geomorphological constraints 

depend mainly on the rigidity of the snake, and therefore the 
value of α is set to zero [4].  The general formulation uses the 
second derivative at each knot as an approximation to the 
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curvature at that point, but computing this directly is difficult 
in practice, so an approximation is made by finding the internal 
angle iϕ  between three consecutive points on the curve, 1jP − , 

jP , and 1jP + , and then approximating the curvature [4] as 
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resulting in an internal energy of 
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This internal energy clearly has a minimum where the 
curvature is uniquely zero everywhere, representing a straight 
line, as might be expected. 

In image processing applications [5], snakes are often used 
to match contours in the image.  The external energy term 
therefore often uses distance between the current location and 
some image-derived contour information.  In the case of 
contour generalization, however, there is no definite target 
since the ENC contours move continuously offshore as the 
scale of the chart decreases. The primary constraint, therefore, 
is that the generalized snake should be on the seaward side of 
the original curve, and the external energy can be set to a one-
sided function [4], 
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(where X0(uj) is the original curve) such that there is only a 
penalty when the constraint is broken.  The penalty term here 
increases according to the severity with which the generalized 
curve crosses to the wrong side of the original, but uses a 
normalization term to represent the ‘minimum visualizable 
distance,’ set according to the target scale of generalization.  
This reflects the fact that lines on the chart display are non-
ideal, and have a defined thickness.  

III. GRADUAL GENERALIZATION 
The total energy is a function of each point on the B-spline 

snake, and as the minimum value of a function is where the 
first derivative of the function is zero, the snake minimizes the 
energy function such that 

                          int 0extE E∇ + ∇ =                                 (9) 

Solving (9) stably requires appropriate numerical 
approximation of intE  and extE , which is covered following.   

A. Numerical solution to the first derivative of energy term 
A snake is an active contour that moves from the starting 

position to the desired position where the total energy is 
minimized. This process is incremental, with the curve moving 
in multiple steps as the energy is minimized; computation of 
the gradients in (9) provides the direction and magnitude of the 
steps. 

The first derivative of intE  is 

                      int ( ) ( )E u uβκ κ∇ = ∇                           (10) 

where ( )uκ∇ is the first derivative of curvature ( )uκ  at each 
point of the curve.  Different approximations to ( )uκ∇  can 
lead to different performance of the snake, and if the 
approximation method is not chosen correctly there may be 
spikes or inappropriately large step sizes in the iteration.  Here, 

( )uκ∇  has been approximated by calculating ( )u
x

κ∂
∂

 and 

( )u
y

κ∂
∂

 and then setting 

                    
( ) ( )( ) ( , )u uu
x y

κ κκ ∂ ∂∇ =
∂ ∂

                    (11) 

In order to compute the changes of curvature ( )uκ  in the 

x and y directions, a new pseudo point 'ju is created very 

close to the original point ju  (Figure 2) as defined following, 

and curvatures ( )juκ  and ( ')juκ  are generated using (5).  
The partial derivative is then approximated as 

                    ( ) ( ) ( ')j j ju u uκ κ κ∂ = −                        (12)  

   

 
Figure 2: Geometry of the curvature derivative computation.  
The pseudo-point uj’ is used to compute an estimate of the rate 
of change of curvature using (11) and (12). 

 The partials x∂ and y∂  are the difference of 'ju and ju in 

x and y directions.  For convenience in finding the ju∂ in x 

and y directions 'ju  is moved solely in the x or y direction: so 

if the coordinates of point ju is (xu j
, yu j

) , then uj ,x 'will be 
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j ju ux yγ+ , where γ is a very small constant value, and 

respectively for uj ,y ' . Then, the x∂ and y∂ will be equal to 
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 Although this approximation is easy to calculate, the 
method can have numerical problems.  For example, when the 
angle 1 1j j ju u u− +∠ is significantly smaller than 90 degrees, 

and the points 1ju − , ju , 1ju + are in certain positions, the 

modified position of ju that makes the angle larger will not be 
inside the original angle (Figure 3).   

                       
Figure 3: Geometry of the perturbed point with acute angles.  
Displacing the point under these circumstances can lead to 
poor estimates of rate of curvature change. 

 So, for acute angles, another approximation is used.  
Instead of only moving 'ju along the x or y axis, 'ju  is 

moved along line 1j ju u− , and then along line 1j ju u +  to point 

''ju  (Figure 4). 

           
Figure 4: Geometry of rate of change of curvature computation 
with acute angles.  Two displaced points are used to provide a 
pair of estimates from which the rate of change can be 
computed. 

At point 'ju , the difference of curvature ( ')juκ∂  

is ( ) ( ')j ju uκ κ− , while at point ''ju , the difference of 

curvature ( '')juκ∂  is ( ) ( '')j ju uκ κ− . Then, 
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 Since the second method is moving the point ju in its 
neighbor point’s direction, the gradient of curvature 
approximated by this method will be, comparatively, smaller 
than the first method. For consistency, the gradient of curvature 
computed by the second method should be multiplied by a 
constant value. After testing, constants with 1:20 ratio are used 
here, meaning that the constant for the second method should 
be 20 times larger than the constant for the first method. This 
ratio attempts to ensure the snake has similar step size at all 
points.  

 The external energy in (8) can be rewritten 

        
2 2
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2
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so that the extE∇  is simply the vector with components 
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 where u0 are the knots on the snake curve. 

B. Process of generalizing a set of contours 
 For generalization of a set of contours, the following 
algorithm is used: 



 Input: a set of polyline (open) and closed polygon contours. 

Represent all polyline contours as B-spline curves with 80% of 
the original curve points, reducing the number if the 
approximation problem becomes singular. 

Preprocess closed polygon contours; equally distribute (by 
distance) the points on the closed contour, and add points on 
the closed polygon, so that the distance between each point is 
smaller than 1/100 of the perimeter of that closed polygon. 

1  Repeat 

2  Calculate the distance between the current snake position 
and all other features in the data, and find the feature that is 
closest to the current snake, and the closest approach 
distance  for that feature. 

3  If the closest approach distance is smaller than a threshold 
(4 m here due to the line thickness observed) indicating that 
the two features are too close and need to be aggregated, 
and this feature has  not been aggregated before: 

3.1  Mark the closest feature as having been aggregated, 

3.2  Delete the closest feature from the active dataset, 

3.3  Find the two segments that connect the current curve 
and closest feature, 

3.4  Add those two segments and the remaining part of 
the closest feature into the current snake. 

4  End if 

5  If the distance between any two neighbor points on the 
current snake is larger than a suitable threshold (1/60 of the 
total length of current contour was chosen empirically): 

5.1  Add points at all segments where two original points 
are too far away from each other. 

6  End If 

7  If the distance of any two neighbor points on the current 
snake is smaller than a suitable threshold (1/600 of current 
snake length was chosen empirically): 

7.1  Find the set of all points that are within a threshold 
distance of their neighbors, 

7.2 Find the sub-set of all groups of at least three 
consecutive points in sequence, 

7.3  Delete the first point in each group of three 
continuous points. 

8  End If 

9  Calculate the step size of the current snake with (13)-(19), 
and move the current snake to the next step. 

10  End Repeat 

IV. RESULTS 
The data used to test the gradual generalization method is 

from the ENC data for Portsmouth Harbor, NH, as portrayed in 
US ENC US5NH02M.  All US raster charts and ENCs may be 
downloaded free from http://www.nauticalcharts.noaa.gov. 

A. Simple line case 
The method was first tested on a single contour. The 

original curve had 787 points, and in the first step of B-spline 
snake approximation, the total number of points was decreased 
to 607. The curve was then generalized with the above method. 

  Figure 5 shows an intermediate step in the generalization, 
while Figure 6 shows a subset of the approximating curves 
between the original (dark blue) and final generalized curve. 

 
Figure 5: Intermediate stage of the generalization process.  
Note that the generalized (light blue) curve does not extend 
more seawards that the most seaward point of the original 
(dark blue) curve, but has removed extraneous detail from the 
landward side as expected.  Note also the smoothness of the 
curve.  

 
Figure 6: A composite of a subset of the generalization steps 
for the curve of Figure 5, showing the gradual level of 
generalization increase as the target scale of representation 
decreases.  Note how the final contour is a very gentle curve 
only constrained to the endpoints and most seaward extent of 
the original curve. 

B. A set of contours 
The method was also tested on a set of contours that 

contains a single polyline (open) contour to be generalized, and 
a set of closed contours that represent the same bathymetric 
depth, and are located to the seaward side of the contour being 
treated. Figure 7 shows the input data. 

 Figure 8 shows an initial stage of generalization, where the 
target contour (light blue) has been generalized from the 
original (dark blue), but has yet to encounter any of the other 
closed contours.  Figures 9-11 illustrate the situation where a 
number of contours have been aggregated into the target 
contour as it has been increasingly generalized.  The shape of 



the contours being aggregated can be seen to be preserved from 
Figure 7, with smooth transitions being created as the target 
contour encounters the landward-most point of the each 
contour.  Eventually, all of the contours are aggregated, and the 
result, Figure 12, is a very smooth contour that maximizes the 
outer hull of all of the contours, while smoothing the segments 
between the promontories. 

 
Figure 7: Input data for the second experiment.  The blue 
contour is being generalized, while the grey closed contours 
represent the same bathymetric depth, but are located seaward 
of the target contour. 

 
Figure 8: An early stage of generalization, where no other 
contours have been encountered: only cartographic 
generalization has been applied to the target contour. 

 
Figure 9: The generalized result after a number of contours 
have been aggregated.  Note that the seaward shape of the 
contour currently being aggregated has been preserved. 

 
Figure 10: A further stage of aggregation, preserving the 
seaward shape of the contours so far aggregated, but with 
smoothed transitions. 

 
Figure 11: A late stage example of aggregation, with one final 
contour to be aggregated.  Note the smoothed shape of the 
northern boundary of the generalizing snake, which continues 
to be smoothed as the process continues (c.f. Figure 12). 

 
Figure 12: The final stage of generalization.  All of the closed 
contours have been aggregated and generalized, so that the 
result (at much lower scale) preserves only the outer 
promontories of the originals, with smooth transitions between 
them. 

V.     DISCUSSION 
 The gradual generalization method is useful as it provides a 
scale-less process of generalization, with the mid-method 
results of this generalization covering many scales. It also 
combines cartographic generalization and model 
generalization, which generates better results than using either 
one of them alone. However, there is room for improvement of 



this method, for example in simultaneous generalization of 
multiple contours, interaction with other bathymetric and non-
bathymetric features, and further model generalizations. Future 
work will be on specifying more general input data types, 
finding a suitable workflow for those data types, and evolving 
a general workflow for complete chart data. 
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