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Austin, Texas 78759, USA (goff@ig.utexas.edu)

Chris Jenkins
Institute of Arctic and Alpine Research, University of Colorado, Campus Box 450, Boulder, Colorado, 80309-0450, USA

Brian Calder
Center for Coastal and Ocean Mapping and Joint Hydrographic Center, Chase Ocean Engineering Laboratory,
University of New Hampshire, Durham, New Hampshire, 03824, USA

[1] In any geologic application, noisy data are sources of consternation for researchers, inhibiting
interpretability and marring images with unsightly and unrealistic artifacts. Filtering is the typical solution
to dealing with noisy data. However, filtering commonly suffers from ad hoc (i.e., uncalibrated,
ungoverned) application. We present here an alternative to filtering: a newly developed method for
correcting noise in data by finding the ‘‘best’’ value given available information. The motivating rationale
is that data points that are close to each other in space cannot differ by ‘‘too much,’’ where ‘‘too much’’ is
governed by the field covariance. Data with large uncertainties will frequently violate this condition and
therefore ought to be corrected, or ‘‘resampled.’’ Our solution for resampling is determined by the
maximum of the a posteriori density function defined by the intersection of (1) the data error probability
density function (pdf) and (2) the conditional pdf, determined by the geostatistical kriging algorithm
applied to proximal data values. A maximum a posteriori solution can be computed sequentially going
through all the data, but the solution depends on the order in which the data are examined. We approximate
the global a posteriori solution by randomizing this order and taking the average. A test with a synthetic
data set sampled from a known field demonstrates quantitatively and qualitatively the improvement
provided by the maximum a posteriori resampling algorithm. The method is also applied to three marine
geology/geophysics data examples, demonstrating the viability of the method for diverse applications:
(1) three generations of bathymetric data on the New Jersey shelf with disparate data uncertainties;
(2) mean grain size data from the Adriatic Sea, which is a combination of both analytic (low uncertainty)
and word-based (higher uncertainty) sources; and (3) side-scan backscatter data from the Martha’s
Vineyard Coastal Observatory which are, as is typical for such data, affected by speckle noise. Compared
to filtering, maximum a posteriori resampling provides an objective and optimal method for reducing
noise, and better preservation of the statistical properties of the sampled field. The primary disadvantage is
that maximum a posteriori resampling is a computationally expensive procedure.
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1. Introduction

[2] The presentation of data in spatial coordinates
is an issue faced by nearly every geoscientist.
Whether it is topography, geologic properties,
geophysical data, or some other measurement col-
lected as a function of x and y, a map of some sort
typically must be generated for interpretation and
analysis. In many such cases, data are noisy,
producing artifacts that are a detriment both in
presentation and interpretability. The common so-
lution to problems of noisy data is to filter the data
in some way. Filters are usually simple to apply
and computationally efficient. However standard
filtering techniques are typically ad hoc, in that the
weighting function used to compute the average of
neighboring values are defined by the user rather
than by the intrinsic properties of the data. Also,
filters are not straightforward to apply in situations
where data are irregularly sampled in space, or
where data of varying resolution are mixed; sit-
uations which will be important to the applications
considered here.

[3] In this paper we present an alternative to filter-
ing, which we term ‘‘maximum a posteriori resam-
pling,’’ which attempts to find the optimal value at
each data location given the sample value at that
location, its uncertainty, knowledge of proximal
sample values and uncertainties, and an understand-
ing of the true spatial covariance structure of the
field. Qualitatively we know that, for any field that
is not overly erratic (i.e., characterized by a red
spectrum), two data samples that are close to each
other in space should not differ by too much. Noisy
data (i.e., data with large uncertainties) frequently
violate this criterion, and the result is artifacts in the
data. Quantitatively, we can define ‘‘too much’’ by
the correlation properties of a field, which are used
to establish the conditional probability density
function (pdf) of one value given one or more
proximal values, and which is functionally depen-

dent on the lag distances between the points [e.g.,
Feller, 1971]: ‘‘too much’’ occurs when a data
value is extremely improbable in terms of the
conditional pdf determined by the proximal data
values, and in such cases we desire to find an
optimal correction for the wayward point.

[4] In any attempt to correct noisy data, better
resolved data should count more than poorly
resolved data, if that distinction can be made. There
are numerous examples where data of varying qual-
ity are combined into a unified data set, commonly
by merging older and newer data [e.g., Jenkins,
1997; Jakobsson et al., 2002; Calder, 2006]. Quan-
titatively, data quality is determined by an uncer-
tainty value, which expresses the root-mean square
(rms) difference between the true value and mea-
sured value (true value plus measurement error).
Where, for example, a well-constrained data value is
close to a poorly constrained data value, the latter
should be adjusted more than the former.

[5] Our basic operating assumption for maximum a
posteriori resampling is that there are two indepen-
dent probability density functions (pdfs) which
characterize the data value at any one sample
location: (1) the sample error pdf, with expected
value and variance defined by the sample value and
the square uncertainty, respectively, and (2) the
conditional pdf, with expected value and variance
derived from knowledge of the data values at
proximal locations. In the Bayesian formulation,
these pdfs act respectively as a priori, pa(Z), and
conditional, pc(ZjZi), density functions in the for-
mulation of an a posteriori density pp(Z), deter-
mined by the intersection or multiplication of the
two [e.g., Menke, 1989, equation 5.9]:

pp Zð Þ / pa Zð Þpc ZjZið Þ; i 2 1;N ; ð1Þ

where Z is the value of interest, Zi are values
sampled at N proximal locations, and assuming for
the moment that there is no distribution associated
with the Zi values (i.e., that they are perfectly
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sampled). The most probable (i.e., ‘‘best’’) value is
given by the peak of the posterior density [Menke,
1989]. Maximum a posteriori resampling is a
constrained estimate of the true value of the data at
that point. However, because each Zi also has an a
priori sample error pdf, a global solution requires
integration over the full data probability space
[Menke, 1989, equation 5.10], which is analytically
intractable for large data sets. We approximate the
global solution with a Monte Carlo method
described later. An understanding of both the data
errors and the correlation statistics (i.e., covariance
function, or semi-variogram) are required to
implement this methodology. A comparable meth-
odology is ‘‘projection onto convex sets,’’ or
POCS [e.g., Weerasinghe et al., 2002], which is a
general, iterative means for incorporating multiple
a priori constraints into an estimation. Each
constraint can be represented as a convex set in
Hilbert space, and POCS seeks at least one point in
the intersection of those sets by iteratively project-
ing onto each of the sets. The primary difference is
that maximum a posteriori resampling seeks the
best estimation, rather than just a valid one.

[6] Inthispaperwedescribe themaximumaposteriori
resampling algorithm and test its effectiveness on a
syntheticexample,wherethe‘‘true’’fieldisknownand
artificially sampled with various uncertainties. We
then apply the methodology to three examples from
the coauthors’ previous research: bathymetry on the
Atlantic margin of the United States (Figure 1), mean
grain sizes in theAdriatic Sea (Figure 2), and acoustic
backscatter from the nearshore regions off Martha’s
Vineyard, Massachusetts (Figure 3).

[7] The region of the US Atlantic margin chosen
for analysis contains data from three different
sources [Calder, 2006]: fathometer data collected
in the 1930s, echo-sounding values collected in the
1970s (both contained in the National Geophysical
Data Center archives), and multibeam data collected
in 1996 [Goff et al., 1999]. Regions not constrained
bymultibeamdataaremarredbynumerous‘‘dimple’’
artifacts in the bathymetric interpolation (Figure 1).
Calder [2006] conducted an error analysis of all
three types of data and found that the fathometer
data were substantially biased toward shallower
values; the dimples in Figure 1 are, primarily,
caused by these positive errors. While Calder
[2006] in his rendering of the bathymetry in this
region chose simply to remove the fathometer data
as inconsistent with subsequent data, here we retain
them in the data set to demonstrate the utility of the
maximum a posteriori resampling methodology in
mitigating such problems without a priori knowl-

edge of their existence. Analysis of the spatial
statistics of the bathymetry in this region was
conducted by Goff et al. [1999] on the basis of
the multibeam bathymetry.

[8] Mean grain sizes in the Adriatic sea (Figure 2)
are presented by C. J. Jenkins and J. A. Goff
(Competent interpolation for seabed substrates,
with uncertainty calculations, submitted to Conti-
nental Shelf Research, 2006; hereinafter referred to
as Jenkins and Goff, submitted manuscript, 2006)
in a study of optimal interpolation techniques.
These data are contained in the dbSEABED data-
base [Jenkins, 1997; Williams et al., 2003], and are
derived from two primary sources: (1) analytic
measurements of the grain size histogram, through
settling tube, sedigraph and/or dry sieve tech-
niques, and (2) conversion of word-based descrip-
tions of bottom samples (e.g., gravel, sand, mud,
silt, clay, muddy sand, silty clay, etc.) into quanti-
tative estimates of mean grain size by applying
fuzzy logic techniques. The word-based data con-
tain, understandably, significant uncertainties com-
pared with the analytic data (Jenkins and Goff,
submitted manuscript, 2006). In the interpolated
data set (Figure 2a), both positive and negative
dimples, where data values have large differences
with nearby data points, are common. Neverthe-
less, the word-based mean grain size values con-
stitute the vast majority of data values in the
dbSEABED databases; in the Adriatic in particular,
there are less than 200 analytically derived mean
grain size values versus more than 2000 word-based
values. The word-based values cannot therefore
simply be excluded without severely compromising
coverage. Estimates of both the uncertainty in
mean grain size data values and the semi-variogram
structure of the Adriatic data set are presented by
Jenkins and Goff (submitted manuscript, 2006).

[9] Acoustic backscatter data from the Martha’s
Vineyard Coastal Observatory (Figure 3) were
presented by Goff et al. [2004a]. These data are
responding to strong variations in seabed grain
sizes associated with so-called ‘‘rippled scour
depressions’’ [Cacchione et al., 1984], or ‘‘sorted
bed forms’’ [Murray and Thieler, 2004], that are
oriented at a small angle to shore-normal. As with
all such examples, this backscatter mosaic is highly
speckled with noise (over 50% of the total vari-
ance, as will be demonstrated later). Unlike the
previous two data examples, this data set is densely
sampled everywhere, in this case entirely filling a
grid with 6-m node spacing. Although maximum a
posteriori resampling is less efficient in such cir-
cumstances, this example is instructive because it
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represents a situation where standard filtering
techniques can be readily applied and thus com-
pared quantitatively to our proposed methodology.

2. Method

2.1. The Two-Point Problem

[10] For illustrative purposes, we first consider the
case of two data values m0 and m1 with large

uncertainties, s0 and s1, respectively, that are
sampled in spatial proximity to each other at
locations X0 and X1, respectively (Figure 4). As-
suming a normal distribution for the sample error,
m0 and m1 also represent the means and s0

2 and s1
2

represent the variances for those distributions:

pi Zð Þ ¼ 1ffiffiffiffiffiffi
2p

p
si

exp
� Z � mið Þ2

2s2i

 !
: ð2Þ

Figure 1. Bathymetric data from the New Jersey shelf [Calder, 2006]. (a) Region of data chosen for application of
the maximum a posteriori resampling algorithm, color contoured and artificially illuminated from the north. Black
dots indicate locations of archival fathometer and single narrow-beam data points from the National Geophysical
Data Center. Striated regions are areas of multibeam bathymetry data [Goff et al., 1999]; collocated archival data in
this part of the grid were not used. Areas not covered by multibeam data were interpolated with a spline-in-tension
algorithm [Smith and Wessel, 1990]. UTM x and y coordinates are for Zone 18. (b) Contoured bathymetry of the Mid-
Atlantic Bight, indicating location of Figure 1a (box) and multibeam coverage (blue outline).
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Figure 2. Mean grain sizes (in f values, where grain size in mm is 2�
f
) in the Adriatic Sea (Jenkins and Goff,

submitted manuscript, 2006). (a) Region of data chosen for application of the maximum a posteriori resampling
algorithm, color contoured. Bathymetric contours in meters are also shown. Interpolation is accomplished through a
modified version of the kriging algorithm (see text). (b) Geographic map of Mediterranean Sea indicating location of
Figure 2a (box).
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If the data were sampling a white noise process,
then values at locations X0 and X1 would be
uncorrelated and the error pdfs would represent
complete statistical descriptions of the data. How-
ever, in the more realistic case of a red-spectrum

process, the values at these two locations are
correlated, and a complete description of the data
must include a conditional pdf for one data value
given the other. This function provides additional
information on the error structure of the data value.

Figure 3. Acoustic backscatter in the nearshore regions (	12–16 m) of the Martha’s Vineyard Coastal
Observatory, Massachusetts [Goff et al., 2004a]. (a) Section of backscatter chosen for application of the
maximum a posteriori resampling algorithm. Lighter shades indicate higher backscatter intensity. UTM x and y
coordinates are for Zone 19. (b) Contoured bathymetry (meters) of the waters south of Cape Cod, indicating
location of Figure 3a (box with arrow).

Geochemistry
Geophysics
Geosystems G3G3

goff et al.: resampling of noisy data 10.1029/2006GC001297

6 of 19



[11] First we assume, for the two-point problem
illustrated in Figure 4, that the value at location X1

is known to be m1 (which can also be thought of as
the unconditional maximum a posteriori solution at
X1). We assume as well that the field is statistically
homogeneous, that the covariance between the two
locations, specified by C(r1), where r1 = jX1 � X0j,
is known, and that the mean is 0 or has been
subtracted from the data. The covariance is further
broken down via:

C r1ð Þ ¼ H2r r1ð Þ; ð3Þ

where H2, a constant, is the variance C(0), and r is
the correlation function dependent only on the lag

distance. The conditional probability density
p0j1(Z) at X0 given the value m1 is a Gaussian
function defined by the conditional mean

m0j1 ffi E m0jm1½ � ¼ r r1ð Þm1; ð4Þ

and conditional variance

s20j1 ffi E m0 � m0j1
� �2� �

¼ H2 1� r2 r1ð Þ
� 	

ð5Þ

[e.g., Feller, 1971]. The operator E[a] is the
expected value of a, and E[ajb] is the expected
value of a given b. The conditional pdf for location
X0 given the value m1 at X1 is independent of the
sample error pdf.

[12] Where the difference between m0 and m1 is
large, and the lag distance r1 between X0 and X1

is small, then we are likely to encounter the
situation illustrated in Figure 4, where the data
value m0 is highly unlikely given the conditional
pdf defined by m0j1 and s0j1. In this case, the
data value does not represent the best possible
estimate of the value at location X0; rather, we
seek a value that is most probable given both
pdfs that independently describe the error space.
This is accomplished by finding the maximum of
the a posterior density defined by the intersection
of the sample error pdf and the conditional pdf
[Menke, 1989] (Figure 5). This value, m0j1

m , is
derived as the zero first derivative of the multi-
plication of the two Gaussian pdfs, the solution

Figure 4. Illustration of the two-point problem of
noisy, correlated data in proximity. Values m0 and m1
represent data values at locations X0 and X1, with
uncertainties s0 and s1, respectively. The conditional
expected value and uncertainty at X0 given the value m1
at X1 are represented by m0j1 and s0j1, respectively.
Where errors are large, the data value m0 may be
incompatible with the conditional expectation and
uncertainty, in which case it needs to be adjusted, or
‘‘resampled.’’

Figure 5. Illustration of the a posteriori function at
location X0 (Figure 4) as the intersection of the a priori
(p0) and conditional (p0j1) probability density functions.
The maximum a posteriori value is indicated by m0j1

m.
See text for discussion and complete description of
parameters.
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of which, written in a way that emphasizes the
weighting factors, is

mm0j1 ¼
m0s

�2
0 þ m0j1s

�2
0j1

s�2
0 þ s�2

0j1
: ð6Þ

In other words, the conditional maximum a
posteriori solution is the average of the two means
weighted by their precisions, which are propor-
tional to the inverse of their respective variances.

[13] The maximum a posteriori solution for the
two-point problem (equation (6)) is, of course,
non-unique. If the RMS errors for the two values
are equal, then with equal probability we could
have assumed that the value at X0 were known to
be m0 and solved for the maximum a posteriori
solution, m1j0

m , at location X1. There are thus two
conditional maximum a posteriori solutions, as
illustrated in Figure 6. These solutions are deter-
mined by the sequence in which we resample the
data points, which will be a critical factor in
addressing the multiple-point problem in the next
section.

[14] We could, in fact, assume as known, although
with lesser probability and therefore not as a
‘‘maximum’’ a posteriori solution, any value from
within the sample error pdfs at the two locations. A

global maximum a posteriori solution requires the
integration of these solutions over the data proba-
bility space [e.g., Menke, 1989, equation 5.10]. A
useful shortcut, however, is possible by noting that
there are two ‘‘solution’’ pdfs at each location
(Figure 6): one determined simply by the range
of values that can be assumed at a location from the
sample error pdf, and the other determined from
the range of values computed by the maximum a
posteriori formulation of equation (6), where a
value is first assumed at the alternate location.
For example, at X0 we have, as pdfs for the solution
at that location (Figure 6a), the sample error pdf
p0(Z), with mean m0 and variance s0

2, and the
mapping of the error distribution at X1 onto X0

via equation (6), p0j1
m (Z), with mean m0j1

m and
variance of 	s1

2 if X1 and X0 are close to each
other. The global maximum a posteriori solution at
both locations, m0

g and m1
g (Figure 6c), can thus be

determined from zero first derivative of the multi-
plication of the two solution pdfs at each location:

mg0 �
m0s

�2
0 þ mm

0j1s
�2
1

s�2
0 þ s�2

1

; ð7Þ

mg1 �
m1s

�2
1 þ mm

1j0s
�2
0

s�2
0 þ s�2

1

: ð8Þ

Figure 6. Illustration of non-uniqueness of the maximum a posteriori resampling procedure for the two-point
problem. (a) The maximum of the a posteriori density, m0j1

m, at location X0 assuming the value at location X1 is m1.
The uncertainty in this solution, given the probability density of possible values at X1, is approximately s1. (b) The
maximum of the a posteriori density, m1j0

m, at location X1 assuming the value at location X0 is m0. The uncertainty in
this solution, given the probability density of possible values at X0, is approximately s0. (c) The global maximum a
posteriori values at each location, m0

g and m1
g, are determined by equations (7) and (8), respectively.
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In other words, the global maximum a posteriori
solution is the average of all possible conditional
maximum a posteriori solutions, weighted by the
probability of their occurrence.

2.2. Multiple-Point Solution

[15] The maximum a posteriori solution to the
multiple-point problem requires first that a se-
quence be established among the data values to
be resampled, so that the maximum a posteriori
value determined at any one point is conditioned
on all the maximum a posteriori solutions deter-
mined at the prior points in the sequence. This is
necessary to ensure internal consistency; i.e., that
the solution at one location is similar to the
solution at a proximal location. The algorithm
would begin at the first location in the sequence,
where the value is assumed to be the data point
sampled at that location (which is the maximum a
posteriori solution with no other conditions). At the
second location in the sequence, the maximum a
posteriori value is determined from the sample
error pdf and the conditional pdf calculated from
the maximum a posteriori solution at the first
location (i.e., the two-point solution of equation
(6)). At the third location, the maximum a poste-
riori value is determined from the sample error pdf
and the conditional pdf calculated from the maxi-
mum a posteriori solutions at the prior two loca-
tions, and so on. This procedure has close affinity
with the classic geostatistical method of sequential
Gaussian simulation (SGS) [e.g., Deutsch and
Journel, 1992], in which a value at an unsampled
location is selected from the pdf conditioned both
on sampled data values and on values simulated
earlier in the sequence.

[16] As we found with the two-point problem, the
conditional maximum a posteriori solution is
strongly dependent on the sequence of points
chosen for resampling; i.e., it is non-unique, with
the number of possible solutions expanding geo-
metrically with the number of data points. A closed
form solution for the global maximum a posteriori
solution, such as expressed in equations (7) and (8)
for the two-point problem, quickly becomes intrac-
table as the number of data points increases.
However, by inference from the 2-point solution
(equations (7) and (8)), where we determined that
the global maximum a posteriori solutions is the
average of conditional solutions weighted by the
probability of each, we surmise that a global
solution can be approached through a Monte Carlo
method of averaging a number of solutions that are
sampled from the solution probability space. Such

solutions can be generated through construction of
random resampling sequences, where the choice of
the next location in the sequence is weighted by the
probability (proportional to the inverse of the error
variance) of that sample value. For example, in the
2-point problem (Figure 4), we could accurately
estimate the global maximum a posteriori value
using a Monte Carlo method by choosing to start
with either m0 or m1 as the initial condition with
probability proportion to the inverse of the error
variance of each, leading to one or the other of the
two conditional solutions illustrated in Figure 6.
After generating a large number of such Monte
Carlo solutions, the average will approach the
analytic solutions of equations (7) and (8).

[17] Our algorithm for approximating the multiple-
point global maximum a posteriori value proceeds
as follows. Let the data consist of point tuples (Xi,
Yi, mi), 1 � i � N, and for simplicity, consider the
locations as vectors Xi = (Xi, Yi) giving ordered but
arbitrarily indexed pairs (Xi, mi). The sample sites
are visited in a sequence chosen at random without
replacement from the index set W = {1, . . ., N}
(i.e., as a (weighted) permutation of W), giving an
index sequence of SN = (S1, . . ., SN)

0, with
properties Si2 W, Si 6¼ Sj, 1 � i 6¼ j � N. The
sequence is generated stepwise. Let Sn = (S1, . . .,
Sn)

0 be the sequence up to the n-th site, and let Rn =
W\{Si, 1 � i � n} = {Ri, 1 � i � N � n} be the set
of indices yet to be chosen; i.e., the remainder set.

[18] The next site for resampling is chosen by
selecting Sn+1 from Rn in a probabilistic manner,
weighted by the probability of sample values
among the remainder set. We first assign a proba-
bility mass to the remainder set:

pn Rif g ¼ W�1
n s�2

Ri
; 1 � i � N � n; ð9Þ

Wn ¼
XN�n

i¼1

s�2
Ri
; ð10Þ

where sRi
is the sample error of mRi

. The cumulative
distribution is

Pn Rkf g ¼
Xk
i¼1

pn Rif g; 1 � k � n; ð11Þ

and Sn+1 is determined by selecting a random
value, Ran, from a uniform distribution on (0,1],
and assigning Sn+1 = Rk, where Pn(Rk�1) < Ran �
Pn(Rk). The sequence is then updated: Sn+1 = (S1,
. . ., Sn, Sn+1)

0, Rn+1 = Rn\Sn+1. The critical attribute
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of this sequencing algorithm is that data values
with lower uncertainties will tend to be chosen
earlier in the sequence than data values with greater
uncertainties, and in this way exert greater
influence on the Monte Carlo global solution
described below.

[19] As with SGS, the maximum a posteriori
resampling algorithm employs kriging [e.g., Cres-
sie, 1990] to compute the conditional mean mSn+1jSn

and variance sSn+1jSn
2 at the latest location in the

sequence given estimates at prior locations in the
sequence; i.e., the multipoint equivalent of equa-
tions (4) and (5). These equations are

mSnþ1jSn ¼ c0nC
�1
n Zn ð12Þ

s2Snþ1jSn ¼ H2 � c0nC
�1
n cn; ð13Þ

where Zn = (mS1
m, mS2jS1

m, . . ., mSnjSn�1
m)0 are the

previous resampled values in the sequence, cn =
(C(kXSn+1

� XS1
k), . . ., C(kXSn+1

� XSn
k))0, and Cn

is an n � n covariance matrix with Cij = C(kXSi
�

XSj
k). In practice, inverting Cn for large n is

problematic, and we avoid the issue by limiting the
solution to the 10 nearest neighbors of Sn+1 in Sn.
Such limitations are common practice in kriging
and SGS [e.g., Deutsch and Journel, 1992], and
justified in such cases as the von Kármán spectral
model [e.g., Goff and Jordan, 1988] which satisfy
the criteria for being pseudo-Markovian [Adler,
1981, p. 259].

[20] The conditional maximum a posteriori solu-
tion at XSn+1

is given by

mmSnþ1jSn ¼
mSnþ1

s�2
Snþ1

þ mSNþ1 jSns
�2
Snþ1jSn

s�2
Snþ1

þ s�2
Snþ1jSn

; ð14Þ

where mSn+1 is the sample data value and sSn+1 is the
RMS error at XSn+1

. This solution is, as we have
previously noted, non unique, dependent on the
chosen random sequence SN. However, by con-
struction of the sequence, each value for mSn+1jSn

m

is a random sample taken from the pdf for mSn+1
g , the

global maximum a posteriori solution at XSn+1
. The

average of many such mSn+1jSn

m values will therefore
provide an approximation for E[mSn+1

g ]. This con-
vergence is guaranteed by the central limit theorem
[e.g., Taylor and Karlin, 1984, p. 27], which states
that the sum Zn = z1 + z2 + . . . + zn of identically
distributed summands z1, z2, . . ., zn, having finite
mean m = E[zk] and variance s2 = Var[zk], is, for
large n, approximately normally distributed with

mean nm and variance ns2. The average therefore
will have mean m and vanishingly small variance
s2/n. More formally, we specify a set of indepen-
dent sequences SM = {SN,m, 1 � m � M} giving
rise to a set of solution vectors ZM = {ZN,m, 1 � m
� M} whose N ordered elements are the full set of
solutions to equation (14) for each sequence in SM.
The vector Zg of expected values at all points for
the global maximum a posteriori solution are then
estimated by

Zg ¼ M�1
XM
m¼1

ZN ;m: ð15Þ

In applications such as those reported here, a
typical choice for stable estimation of Zg is M = 20
sequences.

3. Test on Synthetic Data

[21] To test the capabilities of the maximum a
posteriori resampling algorithm, we apply it to
‘‘data’’ samples taken from a fully realized syn-
thetic field (Figure 7a). This ‘‘unconditional reali-
zation’’ is generated with a spectral method from a
vonKármán statistical model [e.g.,Goff and Jordan,
1988]. The von Kármán model in one dimension is
parameterized by three values: the RMS variability,
H, the correlation scale, l, and the fractal dimen-
sion, D. In two dimensions, the lateral scale is al-
lowed to vary ellipsoidally, with parameters ln and
ls being the correlation scales normal to and along
the strike direction, respectively, and qs being the
orientation of the strike direction. The field gener-
ated in Figure 7a is isotropic, with H = 1.0, ln =
ls = 2.8 (units are arbitrary), and D = 2.2, with
a grid size of 1001 � 1001 points and a node
spacing of 0.01 in both the x and y directions.
Under artificial illumination, the synthetic field
appears as a fairly realistic simulation of a topo-
graphic surface.

[22] The synthetic surface was ‘‘sampled’’ at
1000 points whose x and y indices were chosen
at random from uniform distributions over the
horizontal and vertical ranges of the grid, respec-
tively, and then interpolated with a spline in
tension algorithm [Smith and Wessel, 1990] to
generate a predicted surface. The randomness of
the locations of sample points is not essential to
this test; data points are never ‘‘randomly’’
selected. More important is that some locations
are clustered whereas others are isolated, which
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is typical for data of mixed generations. The
locations indicated in Figure 7a are suitable for
this purpose. In Figure 7b, the values were
sampled with no noise (i.e., perfect sampling).
A random Gaussian noise value was added in
Figures 7c and 7d, with RMS values of 0.2 and

0.5, respectively. Table 1 lists the overall RMS
error between each of these three prediction
surfaces and the ‘‘true’’ surface. As the amount
of noise in the data increases, the prediction error
also increases, and the image of the surface

Figure 7. (a) Realization of the von Kármán statistical model [e.g., Goff and Jordan, 1988], generated using
parameters RMS height (H) = 1.0, isotropic correlation scales (ln = ls) = 2.8, and fractal dimension (D) = 2.2.
Vertical and horizontal scale units are arbitrary. Black dots indicate locations where field has been sampled for
subsequent images. (b) Interpolated field from perfect samples of Figure 7a. (c) Interpolated field from samples of
Figure 7a with a random uncertainty of 0.2. (d) Interpolated field from samples of Figure 7a with a random
uncertainty of 0.5. All images are color contoured and artificially illuminated from the north. Interpolations employ a
spline-in-tension algorithm [Smith and Wessel, 1990].
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degrades with increased severity of ‘‘dimple’’
artifacts.

[23] The maximum a posteriori resampling algo-
rithm was written in Fortran code, and run on a Sun
Ultra 10 workstation. The kriging procedure to
determine conditional mean and variance at each
point in the sequences was restricted to using the
nearest 10 locations of previously resampled val-
ues. Here, a simple brute-force method was used
for identifying the 10 nearest locations (applica-
tions described below required a more sophisticated
search algorithm to reduce run time), and 20 inde-
pendently generated sequences were used to com-
pute a set of conditional maximum a posteriori
solutions, which were then averaged to estimate
the global maximum a posteriori solution. The full
run time for this example was 20s.

[24] Interpolations of the resampled noisy values
are presented in Figures 8a (for 0.2 RMS noise)
and 8b (for 0.5 RMS noise). As desired, the dimple
artifacts have been greatly diminished in these
images, although not entirely eradicated in the
higher noise case. Furthermore, as demonstrated
in Table 1, the overall accuracy of the prediction
surfaces has been improved by the maximum a
posteriori resampling, substantially so in the higher
noise case. Residuals between the original predic-
tion surfaces (Figures 7c and 7d, respectively) and
these post-resampling prediction surfaces are dis-
played in Figures 8c and 8d, respectively, demon-
strating in detail the actual effect of the resampling
algorithm. Changes to the prediction surface in the
low noise case (Figure 8c) are mostly minimal,
concentrating on the relatively few locations where
significant incompatibilities between proximal
points exist. Changes to the prediction surface in
the high noise case (Figure 8d) are much more
significant across the sample region. In other
words, the maximum a posteriori resampling algo-
rithm modified the sample values only slightly in
the case where little correction was needed, and
much more significantly where a lot of correction
was needed. By all the measures noted above, the

maximum a posteriori resampling algorithm was
successful at its intended application.

4. Data Examples

[25] In this section we apply the maximum a
posteriori resampling algorithm to three disparate
types of marine data sets: bathymetry on the New
Jersey shelf [Goff et al., 1999; Calder, 2006], mean
grain size in the Adriatic Sea (Jenkins and Goff,
submitted manuscript, 2006), and acoustic back-
scatter in the coastal waters off Martha’s Vineyard,
Massachusetts [Goff et al., 2004a].

[26] In the application of the maximum a posteriori
resampling algorithm to two of the data examples,
the number of data values is very large (>100,000)
and the data density is high. In these circumstan-
ces, a brute force search for the nearest resampled
values in the kriging step of the algorithm becomes
untenable. To speed up the search process, we
devised a sector search algorithm. Each data loca-
tion is first assigned to a small sector, in this case a
5 � 5 subgrid of the main grid that establishes the
boundaries of the data field. After a data value has
been resampled, its location and value are stored in
a list assigned to each sector. When kriging a new
data location, the lists of resampled values from its
sector and the 8 adjacent sectors are first searched.
If the number of desired kriging locations is found,
then the search is stopped. Otherwise the next
‘‘ring’’ of sector lists is searched, and so on until
that number is found.

4.1. New Jersey Shelf Bathymetry

[27] The bathymetric data from the New Jersey
shelf (Figure 1) are derived from three different
sources [Calder, 2006]: fathometer data collected
in the 1930s, vertical beam acoustic data collected
in the 1970s, and multibeam data collected in 1996.
The data were placed within a grid with node
spacing of 50 m. Multibeam data were favored
wherever an older data value fell within the same
grid cell as a multibeam data value. The total
number of data points in the grid considered is
over 100,000, the vast majority of which are
derived from the multibeam data which mostly fill
the grid where such data are present. Elsewhere the
grid is interpolated between data locations using a
spline-in-tension algorithm [Smith and Wessel,
1990]. Numerous large dimple artifacts are present
in regions that are not covered by multibeam data,
owing primarily to the limited precision and shal-
low bias of the older fathometer data. The multi-

Table 1. RMS Error Between the Synthetic Surface
(Figure 7a) and the Prediction Surfaces Generated by
Interpolating From Sample Points, With Specified
Sample Error, Both Before and After Resampling

Sample Error Before Resampling After Resampling

0 0.25 NA
0.2 0.30 0.28
0.5 0.50 0.37
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Figure 8. (a) Interpolation of synthetic data with 0.2 uncertainty (Figure 7c) after maximum a posteriori resampling.
(b) Interpolation of synthetic data with 0.5 uncertainty (Figure 7d) after maximum a posteriori resampling.
Interpolated images are color contoured and artificially illuminated from the north. Interpolations employ a spline-in-
tension algorithm [Smith and Wessel, 1990]. (c) Color-contoured residual between pre-resample (Figure 7c) and post-
resample (Figure 8a) interpolated images for 0.2 uncertainty. (d) Color-contoured residual between pre-resample
(Figure 7d) and post-resample (Figure 8b) interpolated images for 0.5 uncertainty.
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beam data are also streaked by track line artifacts
associated primarily with imperfect assessment of
the water column sound speed structure [Goff et
al., 1999].

[28] Calder [2006] has analyzed the uncertainties
in these different data sets: 	2 m for the fathometer
data, 	0.5 m for the vertical beam acoustic data,
and 	0.1–0.4 m for the multibeam data, which is
functionally dependent on the beam angle. Goff et

al. [1999] computed the covariance statistics of the
sand ridge morphology, which is the dominant
geomorphology in the region. For the area shown
in Figure 1, suitable von Kármán covariance model
parameters are:H = 2.7 m, ln = 1.3 km, ls = 6.0 km,

q = 70	, and D = 2.0. Application of the maximum
a posteriori resampling algorithm on this data set,
incorporating the sector search algorithm for the
10 nearest resampled values for kriging, had a run
time of 	2 hours on a Sun Ultra 10 workstation

Figure 9. (a) Interpolation of New Jersey bathymetric data (Figure 1a) after maximum a posteriori resampling.
Image is color contoured and artificially illuminated from the north. Black dots indicate locations of archival
fathometer and single narrow-beam data points from the National Geophysical Data Center. Location shown in
Figure 1b. (b) Color-contoured residual between pre-resampled (Figure 1a) and post-resampled (Figure 9a)
interpolated images of the New Jersey bathymetry data.
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(a brute force search would have taken at least a
full day).

[29] The image generated from the resampled data
values is presented in Figure 9 along with
the residual values between the pre-resampling
(Figure 1a) and post-resampling images. The dim-
ple artifacts evident in Figure 1a are largely absent
in the post-resampled image (Figure 9a), and the
primarily negative residuals (Figure 9b) demon-
strate that most of these artifacts are positive in
nature, consistent with the bias of the fathometer
data [Calder, 2006]. As evidenced by the subtle
lineaments within multibeam portions of the resid-
ual image, some minor adjustments were made to
the multibeam track line artifacts by the maximum
a posteriori resampling algorithm. However, the
net effect to reducing these artifacts in the post-
resampling image (Figure 9a) is negligible. This
failure is due to the fact that track line artifacts are
highly correlated in nature, and therefore do not
result in differences between proximal values that
are highly inconsistent with the statistical nature of
the field.

4.2. Adriatic Sea Mean Grain Size

[30] The mean grain sizes in the Adriatic Sea
(Figure 2a) were derived from the global
dbSEABED database [Jenkins, 1997; Williams et
al., 2003], and expressed as logarithmic f values
where the grain size in mm = 2�f. As described
earlier, these values are derived from two different
methods: (1) analytic evaluation of the grain size
histogram using settling tube or sieve methods and
(2) conversion of word-based descriptions to grain
size estimates. There are 	200 analytic values, and
over 2000 word-based values in the database for
the Adriatic Sea. Uncertainties for analytic meth-
ods of mean grain size estimation are less than
	0.2 f [e.g., Goff et al., 2004b]. Uncertainties for
the word-based data in the Adriatic Sea appear to
be 	1.0 f (Jenkins and Goff, submitted manu-
script, 2006), or 	30–40% of the total data
variance. This is demonstrated in Figure 10, where
two independent semi-variograms constructed
from the data are matched well by von Kármán
model curves that intersect the 0-lag axis at a value
of 1.0 f2, which is indicative of the noise spike.

[31] Also demonstrated in Figure 10 is the inho-
mogeneous nature of the data, where nearshore
data (<20 m water depth) exhibit a much shorter
correlation scale than offshore data (here we con-
sider only the isotropic form of the covariance
owing to the sparsity of the data). Experimentation
with different depth ranges for computing the semi-
variogram demonstrates that this transition is con-
strained to within 	5 m water depth of the 20 m
contour. This change in the correlation properties is
an important consideration both for the maximum a
posteriori resampling algorithm and for interpolat-
ing the data values, because the level of predict-
ability at one location given values at other
locations will be much greater in deeper water than
shallow water. To account for this inhomogeneity
in the interpolation of data values, we adapt the
kriging interpolation algorithm [e.g., Cressie,
1990] by making the covariance function depth
dependent, linearly transitioning between the two
sets of model parameters shown in Figure 10 over
the depth range 15–25 m. This same model is used
for the kriging step of the maximum a posteriori
resampling algorithm (equation (9)). The maxi-
mum a posteriori resampling algorithm had a run
time of 	2 min on a Sun Ultra 10 workstation. The
kriged interpolation of the resampled values is
shown in Figure 11, along with the residual values
indicating the difference between the pre-
resampled (Figure 2a) and post-resampled images.

Figure 10. Semi-variograms computed for the mean
grain size data set in 0–20 m and >20 m water depth
ranges in the Adriatic Sea (adapted from Jenkins and
Goff (submitted manuscript, 2006)). One-dimensional
von Kármán statistical models are matched to each, with
parameters as indicated. Both semi-variograms exhibit a
white noise spike (the difference between the 0th and 1st
lag) of 	1.0 f2.
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Figure 11. (a) Color-contoured interpolation of Adriatic Sea mean grain size data (Figure 2a) after maximum a
posteriori resampling. Interpolation is accomplished through a modified version of the kriging algorithm (see text).
Black dots indicate locations of data. Location shown in Figure 2b. (b) Color-contoured residual between pre-
resample (Figure 2a) and post-resample (Figure 11a) interpolated images of the Adriatic Sea mean grain size data.
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[32] The interpolation of pre-resampled data in
Figure 2a exhibits numerous dimple artifacts
caused by large differences in data values that are
proximal to each other. Both positive and negative
dimples are prominent. The post-resampled image
(Figure 11) shows these artifacts to be mostly
removed, especially in the deeper waters (>20 m)
where the correlation scale is much larger. The
post-resampled image provides a more realistic and
satisfactory presentation of the data in this case.

4.3. Martha’s Vineyard Coastal
Observatory Acoustic Backscatter

[33] The side-scan backscatter collected off the
Martha’s Vineyard Coastal Observatory [Goff et
al., 2004a] (Figure 3) is considered a fairly high
quality data set for its kind. However, as is typical
for acoustic backscatter, there is a high degree of
speckly noise evident in the data. This is demon-
strated quantitatively in Figure 12, where the east-
west covariance function derived from the data is
displayed: more than half the total data variance is
taken up by the ‘‘white noise spike,’’ which is the
difference between the covariance at the 0th and
1st lag values. While correlation properties in the
E-W direction, which is nearly the normal-to-strike
direction, can be robustly estimated, the N-S di-
rection is strongly influenced by track line artifacts,
so some ‘‘expert guidance’’ is needed to estimate

the along-strike correlation properties. The von
Kármán parameters used for this example are:
H = 0.39 (units are arbitrary measures of pixel
strength), ln = 0.18 km, ls = 0.51 km, q = 6	, and
D = 2.5. As derived from the covariance function
in Figure 12, a uniform uncertainty of 0.47 was
assumed for all data values. The data grid measures
437 � 255 with a node spacing of 6 m, and data fill
every node point. The total number of data points
resampled was over 111,000, and the run time for
the maximum a posteriori resampling algorithm,
incorporating the sector search algorithm for the
10 nearest resampled values for kriging, was
	2.25 hours on a Sun Ultra 10 workstation.

[34] Figure 13 presents a comparison between the
unprocessed data (Figure 13a), the resampled data
(Figure 13b), and filtered data (Figure 13c) oper-
ated on by a cosine filter with full width 0.045 km.
More sophisticated filtering methods are available
for reducing speckle noise (e.g., median or adap-
tive filters). However, our intent here is not to find
the best possible filter, but rather to quantitatively
demonstrate the differences between resampling
and filtering in the simplest possible way. Filtering
is straightforward to apply in this case, because the
data fill the available grid space. Both the resam-
pling and filtering greatly reduce the speckle noise.
The filter length and shape are arbitrary; the image
in Figure 13c could be made to look sharper or
fuzzier, depending on these choices. However, this
particular choice provides a unique opportunity to
quantitatively compare the statistical effects of
resampling and filtering, because the overall effect
on the covariance at larger scales of these two
methods is nearly identical (Figure 12). The differ-
ence between the two methods is manifest in the
smaller lag scales, where the essential distinction
between resampling and filtering is sharply de-
fined. Filtering reduces noise by averaging, which
flattens the shape of the covariance near the origin
while also spreading some of the noise variance out
to larger scales. In so doing, filtering has a poten-
tially deleterious effect on the field in addition to
reducing noise. Resampling, on the other hand, is
able to more specifically target, although not en-
tirely eliminate, the noise. The covariance function
from the resampled data does not exhibit the
flattened bulge near the origin that is characteristic
of the filtered data, but rather is able to better retain
the shape of the covariance function exhibited by
the unprocessed data, albeit at overall reduced
variance.

Figure 12. Covariance functions computed for the
Martha’s Vineyard Coastal Observatory acoustic back-
scatter data in the east-west direction, including un-
processed (Figures 3a and 13a), resampled (Figure 13b),
and filtered (Figure 13c) images. See text for discussion.
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Figure 13. (a) Acoustic backscatter data for the survey of the Martha’s Vineyard Coastal Observatory [Goff et al.,
2004a] (identical to Figure 3a). Lighter shades indicate higher backscatter intensity. Location shown in Figure 3b. (b)
Data from Figure 13a after maximum a posteriori resampling. (c) Data from Figure 13a after filtering with a cosine
function of full width 0.045 km.
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[35] While the maximum a posteriori resampling
algorithm may ultimately produce more satisfactory
results than filtering, computer run time is a factor
that mayweigh heavily in favor of filtering: here, the
filtering operation took less than 1 second, compared
with 	2.25 hours for resampling on the same com-
puter. Use of the maximum a posteriori resampling
algorithm for large data sets will require cost/benefit
considerations. However, more sophisticated near-
est-neighbor search algorithms [e.g., Samet, 1990]
could greatly alleviate such concerns. We will in-
vestigate such algorithms for future applications.

5. Conclusions

[36] The maximum a posteriori resampling algo-
rithm presented in this paper has proven, in both
synthetic tests and disparate data applications, to be a
viable method for correcting noisy data where field
values are spatially correlated but whose noise
properties are largely white. The essential require-
ments for applying this method are a quantitative
estimate of the uncertainty of the data and a charac-
terization of the spatial covariance function for the
sampled field. It should also only be employed
where there is a clear expectation that changes in
field parameters are gradational rather than abrupt.
Potential applications are numerous. Maximum a
posteriori resampling is an important alternative to
filtering. Primary advantages include (1) an objec-
tive and optimal method for reducing noise and
(2) better preservation of the statistical properties
of the sampled field. The primary disadvantage is
that maximum a posteriori resampling is a compu-
tationally expensive procedure. Application to large
data sets will require cost/benefit considerations.
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