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Article

Multi-Algorithm Swath Consistency Detection for 
Multibeam Echosounder Data

By Brian Calder, Center for Coastal and Ocean M apping & N OAA-UNH Joint 

Hydrographic Center, University of New Ham pshire, Durham, NH 03824, USA. 

E-M ail: brc@ccom .unh.edu

Abstracts
It is unrealistic to expect that any single algorithm for pre-filtering 
Multibeam Echosounder data will be able to detect all of the “noise" 

in such data all of the time. This paper therefore presents a scheme for fusing the 
results of many pre-filtering sub-algorithms in order to form one, significantly more 
robust, meta-algorithm. This principle is illustrated on the problem of consistency 
detection in regions of sloping bathymetry. We show that the meta-algorithm is more 
robust, adapts dynamically to sub-algorithm performance, and is consistent with 
operator assessment of the data. The meta-algorithm is called the Multi-Algorithm 
Swath Consistency Detector.

■■ Résumé
g W  II n'est pas réaliste de s'attendre à ce que chaque algorithme pour

le pré-filtrage des données des échosondeurs multifaisceaux puisse 
détecter tous les «bruits» de ces données, à chaque moment. Cet article présente 
donc un projet de fusion des résultats de nombreux sous-algorithmes de pré-filtrage 
afin de constituer un seul méta-algorithme, bien plus robuste. Ce principe est illustré 
avec le problème de la détection de cohérence dans les régions à bathymétrie 
en pente. Nous montrons que le méta-algorithme est plus robuste, que sa dy
namique s'adapte au fonctionnement du sous-algorithme et qu'il est cohérent avec 
l'évaluation des données effectuée par l ’opérateur. Le méta-algorithme est appelé 
«détecteur multi-algorithme de cohérence dans une bande».

Resumen
No es realista esperar que cualquier simple algoritmo, para filtrar 
previa mente /os datos procedentes de un Sondador Acüstico Multi- 

haz, podrâ detectar todo el “ruido" contenido en dichos datos todo el tiempo. Este 
documento présenta pues un esquema que utilizarâ los resultados de muchos sub- 
algoritmos de pre-filtrado para formar uno solo, significativamente mâs robusto, un 
meta-algoritmo. Este principio queda demostrado en el problema de la detecciôn de 
una coherencia en regiones de batimetna de retroceso. Mostramos que el meta-al- 
goritmo es mâs robusto, se adapta de forma dinâmica al funcionamiento de un sub- 
algoritmo y es coherente con la evaluaciôn de los datos por el operador. El meta-al
goritmo es denominado Detector de Coherencia de Muiti-algoritmos por Bandas.

mailto:brc@ccom.unh.edu


1 Introduction

There have been many approaches to automatic 
detection of outliers in bathymetric or hydrograph
ic data [1-13], most of which are based on some 
idea of consistency of the data. The methods pro
posed all attempt to identify "outliers” in data by 
some robustness method, and fall into essentially 
two camps: detection based on spatial context in 
a ground-fixed local coordinate system, or detection 
based on beam-to-beam comparisons of data in the 
body-frame of the MBES itself. The algorithms then 
“flag” the data considered to be outliers so that they 
are not considered further (CUBE [12,14] is an ex
ception to this rule.) However, while each of these 
algorithms has some features to recommend it, all 
of them attempt to solve all of the problems, all of 
the time. While a noble goal, it is unrealistic to ex
pect one algorithm to solve everything consistently. 
As an alternative, we consider here the benefits of 
using multiple simple sub-algorithms that each iden
tity a part of the problem, with the aim of utilising 
all of these in concert to attempt to solve the whole 
problem robustly. That is, can we use ideas of multi
sensor fusion [15, 16] to harness simple sub-algo
rithms into a more robust meta-algorithm?

In principle, a data fusion scheme has much to rec
ommend it. (We consider here a “data-level" fusion 
in which data derived measures are expressed as 
probabilities and are combined, or fused, before any 
decision is made about them.) Each sub-algorithm 
only has to solve a part of the problem, and there
fore can be made more targeted as to its opinion

of the data (that is, its probabilistic description of 
the problem) so long as it expresses neutrality in an 
appropriate manner when the feature being sought 
does not occur. So long as there is a sufficient diver
sity of opinion among the sub-algorithms, the failure 
of one will not generally outweigh the opinions of the 
others, resulting in a significantly more robust meta
algorithm overall. In a compute-resource limited en
vironment -  e.g., in real-time applications -  the sub
algorithms could be applied sequentially rather than 
in parallel until such time as either a sufficiently sol
id opinion emerges, or the meta-algorithm runs out 
of time and has to make a decision anyway. The only 
significant difficulty is finding a means to express 
the results of the sub-algorithms in an appropriate 
manner, and manage the fusion of results. These 
are the issues motivating the current work.

To focus the discussion, we consider here as an 
example the problem of Multibeam Echosounder 
(MBES) bottom detection in areas of heavily asym
metric bathymetry (Figure 1). In this case, the heavy 
slope of the seabed engenders at least three mech
anisms that cause bottom detections to fail. Firstly, 
the grazing angle of the beams can be very low, re
sulting in lower signal-to-noise ratio (SNR). Secondly, 
the outer beams may observe only watercolumn be
fore the combination of spreading and absorption 
loss result in insufficient energy return to make an 
adequate detection. In this case, the most energy 
generally comes from the primary sidelobe of each 
beam observing the orthogonal return of the outgo
ing energy from the nearest point of the seabed, 
resulting in clusters of "noise” points at about the

Outside user 
maximum range

MBES
Most likely noise 
region (sub-sidelobe)

sees 
seafloor

Figure 1: Schematic and example data for the downhill problem. The difficulties are due to very oblique incidence on heavy 
slopes, and user-specified maximum ranges. Note the spatial coherency of returns indicated in the example data (vertical 
scale is l x  here). Data from Valdez, AK, courtesy of the NOAA Ship Rainier.



Figure 2: Data flow-path for the MASC'D meta-algorithm. Bathymetric data enters at the left, and is processed in parallel by 

the basic sub-algorithms which each predict a probability mass function (pmf) for breakpoint location at each edge of the 
swath. Fusion of the pmfs results in an overall conclusion of most likely breakpoint. Feedback of fusion result and break

points allows the meta-algorithm to tune the fusion weights and safe aperture tracker, respectively.

same range from the MBES. Thirdly, in order to artifi
cially increase the ping rate of the MBES so that the 
highest density data is collected in the hydrographi- 
cally more significant shoal areas, it is common in 
this situation to limit the MBES maximum range. 
While this improves the along-track resolution and 
hence rate of advance for the same coverage re
quirement [17], it also means that the primary re
turn in many beams will not be observed before the 
limit, leading to similar misdetection problems as 
outlined previously.

These problems manifest themselves as a “break
point” in each swath of soundings (i.e., a point in 
the swath at which the behaviour of the data breaks 
from one regime to another), with consistent data on 
one side (typically towards nadir) and radically incon
sistent data on the other. (Each swath most often 
has a breakpoint on one side of nadir, but can have 
a breakpoint on each side in certain conditions.) 
The role of the sidelobes in formation of the prob
lem makes the “noise” data spatially coherent and 
hence difficult to process by typical methods both 
algorithmic and manual, leading to great expendi
ture in time and effort. The objective here, therefore, 
is to develop multiple sub-algorithms to detect this 
breakpoint, and then use the fusion engine to bring 
these to a consistent, robust solution. The intent 
is to allow this to be used as a pre-filter for further

processing, and therefore the remediation method 
is to simply apply conventional “do not use” flags 
against the data.

The remainder of this paper describes this Multi- 
Algorithm Swath Consistency Detector (MASC'D) 
meta-algorithm, with particular emphasis on the fu
sion system. The meta-algorithm is illustrated on 
data collected in steep bathymetry and it is shown 
to subjectively match what a human operator might 
do in the same circumstances. We then conclude 
with some perspectives on utilisation of the meta
algorithm, and extensions to other scenarios.

2 Theory

The MASC’D meta-algorithm consists essentially of 
two parts: probability mass function (pmf) genera
tion based on the data, and fusion of the pmfs. In 
the general scheme, the pmf estimates summarise 
some features of the data of interest, e.g., consist
ency of data points, likelihood of object presence, 
probability of correct bottom detection, etc., and the 
fusion scheme ties the estimates together, taking 
into account the relative current strengths of the 
sub-algorithms. In the example here, the feature be
ing summarised is the location between the portion 
of the swath with consistent data (generally about



the nadir) and that with inconsistent data, potential
ly on either side of nadir within one swath. The over
all flow of data within the meta-algorithm is shown 
in Figure 2.

2.1 Safe Aperture Tracker
A number of the sub-algorithms used need to esti
mate some basic properties of the data (e.g., slope, 
noise variance). Given that the data has not been 
“cleaned” or otherwise processed, it is important 
that, in addition to suitably robust techniques, the 
sub-algorithms are given an idea of where in the 
swath is likely to be unaffected by the noise problems. 
This is called a "safe aperture”, and is represented 
as a start and stop beam number, B(p) and B{p) 
respectively, for each ping (with 0 < B{p)<  B{p)< N  
for N  beams, numbering from port to starboard). In 
order to provide a scheme that adapts to protect the 
aperture's integrity as much as possible, the region 
between the breakpoints is segmented as shown in 
Figure 3. The tracking algorithm is structured so that 
the segmentation maintains a safety margin around

Decreasing space between breakpoints

Figure 3: Progression of safe aperture tracker as the space 
between breakpoints decreases. The tracking algorithm 
attempts to preserve the safety margin for as long as 
possible before starting to encroach on the user-specified 
minimum estimation aperture.

the safe aperture as long as possible, then reduces 
the safety margin before finally starting to collapse 
the estimation aperture. The tracker uses the infor
mation provided by the fusion system to determine 
the likely location of the safe aperture on the next 
ping, which is then fed back to the sub-algorithms. 
Details of the tracking algorithm can be found in Ap
pendix A.

2.2 Sub-Algorithms
Each of the sub-algorithms is designed to construct, 
from the raw input data and the current estimate 
of the safe aperture, an estimate for each beam 
of the likelihood of that beam being the breakpoint 
between consistent and inconsistent data. That is, 
they compute the probability Pt (p,Z>|a) and PR(p,b\a) 
for the port (left) and starboard (right) side, respect
ively, interpreted as the probability of beam b at ping 
p being the breakpoint, given the sub-algorithm a. 
These are defined over beams 0 < b < h (p )  and 
&(p)< b < N  -1 , respectively, to avoid any problems 
of identification.

The structure of the meta-algorithm is designed to 
allow a variable number of sub-algorithms to be add
ed or removed from the decision-making process, 
potentially on a dynamic basis. The sub-algorithms 
are designed to identify different features of the 
data so that they are as near as possible condition
ally independent given the data, and therefore have 
independent information in their probability mass 
function (pmf) estimates to contribute to the fusion 
scheme. In the example here, four sub-algorithms 
were used:

- Grazing Angle. This sub-algorithm computes the 
slope of the swath using a suitably robust filter
ing method and combines this with the normal 
minimal grazing angle allowed for the MBES when 
the seafloor is flat in order to determine a slope- 
corrected minimal grazing angle. The probability 
distribution is computed based on how close the 
beams are to this angle. This sub-algorithm is 
simple and efficient, and although it generally 
underestimates the extent of the problem it is 
very good at indicating the likely location of the 
problem area as a vaguely informative adjunct to 
the other methods.

- Variance Excess. This sub-algorithm computes an 
a priori estimate of the expected variance in the 
depth solution for each beam, using the method 
of Hare et ai. [18] as implemented for the CUBE



algorithm [12]. The sub-algorithm then computes 
a sample estimate of the variance observed in the 
beam over a small window of pings and uses the 
former as a threshold on the latter to develop a 
sequence of binary indicator variables indicating 
whether the sample estimate is above or below 
the theoretical prediction that should be valid if 
the data is behaving as we would normally expect. 
A probability distribution for the likely breakpoint 
location is developed from these by treating them 
as Bernoulli trials with fixed probability of suc
cess, so that the sum to the left and the sum to 
the right of each potential breakpoint should both 
be binomially distributed. The product of these 
two probabilities, suitably normalised, provides a 
distribution with higher mass where a breakpoint 
is likely.

- Range Limit. This sub-algorithm starts from the 
observation that the inconsistent data is more 
frequently clipped at the maximum range gate 
specified by the user than it is in consistent data. 
By applying a threshold to the data by range, 
therefore, the sub-algorithm can judge closeness 
to maximum range as a percentage of that maxi
mum range, and thereby develop a binary indi
cator variable for likely inconsistency. These are 
processed as for the Variance Excess method 
to develop the required probability estimate for 
each beam.

- Turning Angles. This sub-algorithm starts from 
the observation that consistent data changes 
depth relatively slowly, even on slopes. The off
set vector from one beam depth solution in the 
body-frame of the MBES to the next beam in se
quence should therefore be similar to that of the 
next offset vector in sequence. Consequently, 
if we consider the turning angle between these 
two vectors, consistent data should have a very 
peaked angular distribution while inconsistent 
data should have a more closely uniform distribu
tion. This distinction is a simple hypothesis test 
in the theory of circular statistics [19] and there
fore directly forms a sequence of binary indicator 
variables for processing as before.

None of the sub-algorithms, which are described in 
full in Appendix B, are expected to be perfect in the 
sense that they determine the "correct" breakpoints 
for all pings and all datasets. All that is required is 
that they get the computation right most of the time 
and fail in different ways when they do fail. The fu
sion of the disparate results then uses the consist

ent probability mass of the correct sub-algorithms 
to outweigh those that are inconsistent, providing a 
more robust final solution.

2.3 Algorithm Fusion
2.3.1 Fusion Structure
Let the a priori probabilities of sub-algorithm reli
ability be PaL(p) and PaR(p) for port and starboard 
sides, respectively. Then, the fusion of pmf estimates 
resolves to computation of the total probability:

Pl (p ^ )  = Y j Pl (P> $a) p*,L (P )
aeA

PL(p,b)= PL(p ,b J ^ P L(ptb) 

PR(P’b)=

1)

2)PR(p,b)=  PR( p ,b J ^ P R(p,b)

where A  is the set of all sub-algorithms. The fused 
breakpoints for the ping are then computed as:

bp(p)=3igvosx.PL(p ,b ) 3)
0:Si<£(p)

b£(p)=  arg m ax/>*(?,&) 4>
S(p)s6<W-l

and are then used to feed the “safe” aperture track
er, (11)-(13), and to flag the data outside the break
points as “not for use’’.

2.3.2 Computation of Algorithm Probabilities 
The sub-algorithm probabilities, P%L(p )  and Pa<R{p), 
have to be adaptively computed since the perform
ance of each sub-algorithm is expected to change 
over time and space depending on the structure of 
the noise observed. The probability of each sub-al- 
gorithm giving a correct decision is a combination of 
an overall prior probability, Pn(o) assessed ad hoc by 
the operator, and a likelihood, A,*(/>)that depends 
on the data being processed. (Here, is the
side being processed.) With these definitions,

^ . ,0 ) =  r J 9 ) K ( p )  ' 5)

A feedback solution is utilized to carry out the 
adaptation, based on the concept of balanced 
penalties and bonuses, Figure 4. Formally, the 
likelihood of each sub-algorithm (i.e., the likeli
hood that the sub-algorithm is performing correct
ly and assessing the breakpoint position reliably) 
is assessed at the end of each ping cycle, and is 
updated as:

^ : ( 0 ) = 1  J

K ( p + 0 =  [K  ( p)~  K  (p>:h  Pa ( p ;•)] 7>



where the penalty function is given by:

<  (p  ;  K  (p\ Ps ip A a)  > bF 0 ? )  ’  W max )=  K  (p )Wmax

(m a xPs (p,b\a) -  Ps (/?,if(p )|ct)) 8) 

and the bonus function by:
p : ( p ; ^ 0 » k ) = c T( i - x ; ( p ) )  9)

A hard-limiter,
min max f ( x ) =  min{max { f (x ) ,a } ,b }

{a,6}
= max {min {/ (* ), b }, a} 

is used to ensure that the results remain valid prob
abilities.

The penalty function is designed to penalize
sub-algorithms that have significant mass far from 
the final fusion point bsF(p), while only mildly penal
ising sub-algorithms that have very diffuse probabil
ity functions, Figure 5. This allows the use of “vague 
but informative” methods, such as the Grazing Angle 
sub-algorithm, which always give an estimate that is 
mostly correct, but are never very certain about what 
the true answer is. An immediate corollary is that 
this method heavily penalizes sub-algorithms that are

over-confident in the precision of their predictions. 
Given the properties of the Ps(p,b\a), it is immedi
ately evident that wmax is a scalar on how much of a 
modification to attempt at any stage (i.e., how bad is 
“bad"). The bonus function, PâO^')- is designed to 
drift the likelihood back to its nominal steady state 
of K  00=1 in the absence of further penalties. If no 
other penalties are applied, the recursion of (7) can 
be solved to show that choosing

ct =l-exp{(T*+l)~’ta(s/wmax)} (e/wmax < l) i 0)
allows the bonus to recover the likelihood from 
1 -  wmix to 1 -  e (for some suitably small e such that 
e/ wmm < 1 so that a valid solution exists) in zR pings. 
Choosing xR is significantly simpler than trying to 
choose an appropriate c, directly.

2.3.3 Choice of Algorithm Prior Probabilities 
The choice of sub-algorithm prior probabilities is es
sentially subjective. In the experiments here, they 
were selected based on experience with the reliabil
ity of each sub-algorithm, but were set in very approx
imate fashion so that the Grazing and Turning Angle 
sub-algorithms had Pa(0)=1.0 and the Variance Ex
cess and Range Limit sub-algorithms had Pa(o)=  0.5.

These reflect the (operator) assess
ment that the former pair are gener
ally reliable everywhere, while the lat
ter pair are occasionally significantly 
in error about their breakpoint as
sessments. It is in theory possible 
to apply another adaptive system to 
tune these at a much slower rate -  
for example at the scale of a survey 
line, or over a survey area -  but this 
has not been pursued further in this 
case. Although subjective, it is not 
expected that these assessments 
should have to change from loca
tion to location. The prior probability 
is, by definition, an assessment of 
the reliability of the sub-algorithm 
before any data is observed and is 
more a description of the nature of 
the sub-algorithm than its behaviour 
on particular data.

Figure 4: Fusion feedback system for per sub-algorithm likelihood probabilities
(i.e., the probability that the sub-algorithm is operating correctly at the current 3 Examples
step). The system of penalties and bonuses adjust the estimated probability of
correct operation based on the past performance of the sub-algorithm on the The example here uses data from 
data. the south-west Pacific around the



P(p,b\a)

Figure 5: Structure of the fusion penalty function. The function is designed to penalise sub-algorithms that have significant 
mass far from the fused breakpoint solution.

Figure 6: Section of example data at a depth of 60-100 
m. Data is colored by depth and clearly shows the heavy 

“noise" induced by a maximum range f { p ) =  300 m. Star
board is to the right of the image.

safety margin of x s =10beams, and aperture recov
ery time of wmax = 20pings, a minimum aperture of 
±5° and a nominal aperture of ±30°.

3.1 Component Algorithms
The example file was processed separately with 
each sub-algorithm (for illustration), and then with 
the fusion scheme in place. (Note that algorithm pa
rameters are explained fully in the detailed descrip
tions of the sub-algorithms in Appendix B.) For the 
Grazing Angle sub-algorithm, an estimation window 
width of Wc = 10 pings was used, with maximum 
and minimum acoustic opening angles of 9 = -75° 
and 0 = 75°. The breakpoint locations predicted, 
( sg ( p ) A ( p ) ) ' are shown in Figure 8, and the cor
responding flagged data is shown in Figure 9. The 
breakpoints picked by the sub-algorithm are gener
ally good, although some examination of the filter-

island of Rota (14° 09’N, 145° 
12’E, part of the Mariana Is
lands group in Western Micro
nesia). The data was gathered 
with a Reson 8101MBES in ap
proximately 60-100m depths, 
and clearly show evidence of 
swath breakpoints on both 
sides of the swath, Figure 6. 
The problems in this example 
occur mostly on the starboard 
side of the swath, but occa
sionally break-through on the 
port side as shown here. The 
estimated slope of the surface 
is shown in Figure 7, indexed 
in pings from start of line. The 
line is approximately 9 min., or
2.2 km long, with a ping rate of 
~ 3Hz. In all cases, the code 
was run with aperture tracker

Ping N um ber (from start of file)

Figure 7: Estimated slope of the example line. “Slope" is not well defined in variable 
cross-track environments, but only a rough estimate is required here.

P(p,b|a) 

Penalty
Wrong but diffuse



Ping Number (from start of file)

Figure 8: Estimated breakpoints using the Grazing Angle sub-algorithm. Note 

that the port side breakpoint is fixed at zero since there is only one estimate of 

slope, and it is always to starboard in this example.

v  /

Figure 9: Example of flagging corresponding to breakpoint of Figure 8, con

structed by the Grazing Angle sub-algorithm. The starboard side of the swath is 

to the right; flagged soundings are shown in gray.

ing results shows that the sub-al- 
gorithm does underestimate the 
extent of the problem, failing to 
flag many of the points that are 
affected by the noise problem.
This sub-algorithm does, however, 
provide basic information on the 
likely location of the breakpoints, 
and very rarely has any difficulties 
with outliers.

The breakpoints predicted from 
the Variance Excess sub-algorithm, 
f e C p ) A ( p ) ) '  are shown in Fig
ure 10. (The sub-algorithm used 
an estimation window width of Wv 
= 10 pings, and hypothesis test
ing significance a = 0.05 for the 
X2 testing.) The breakpoints here 
show significantly finer detail than 
those of Figure 8, primarily be
cause of the greater subtlety in the 
analysis of the data. Both sides of 
the swath are processed, clearly 
showing the “fail safe” nature of 
the sub-algorithm where no prob
lem exists. The sub-algorithm has 
predicted more of the swath to be 
affected by the problem than the 
previous sub-algorithm, which are 
more in keeping with the expected 
values observed from the data. In 
areas of slight slope, Figure 11, 
the sub-algorithm corresponds 
well with what a user might do, al
though it can be seen to slightly 
underestimate the extent of the 
problem on the starboard side of 
the swath. This in itself is not a 
very significant difficulty, since 
this is intended to be a pre-filter.
However, the sub-algorithm is also 
observed to over-estimate the 
problem when there is very significant slope or very 
rapid changes in bottom configuration, Figure 12, 
essentially because the model of expected variance 
does not currently take these effects into account. 
This is a more significant problem since this data, 
pre-flagged, will never be seen by any subsequent 
algorithm. This example emphasizes the importance 
of having multiple sub-algorithms available to reach 
consensus in the fusion stage of processing.

The breakpoints computed from the Range Limit 
and the Turning Angle sub-algorithms show comple
mentary properties to that of the Variance Excess 
sub-algorithm, with the Turning Angle sub-algorithm 
appearing more stable with respect to variability in 
slope. (The Range Limit sub-algorithm was run with 
estimation window width WR = 3 pings, range scal
ing constant k = 0.20 and detection threshold of 
t  = 0.80. Significance for the Bernoulli trial testing



Figure 10: Estimated breakpoints using the Variance Excess sub-algorithm. 
The estimates are typically good, although some noise spikes are still ob
served (e.g., around ping 200) and the sub-algorithm occasionally over-esti

mates the extent of the breakpoints.

Figure 11: Example of flagging corresponding to breakpoints of Figure 10. The 
performance is reasonable in relatively shallow areas, with only a few “noise" 
points allowed through. Slight under-estlmation of breakpoint, like this, is not 

a very significant problem since this is only intended as a pre-processing step 
for more powerful algorithms.

was a = 0.05; the Turning Angle 
sub-algorithm was run with estima
tion window width WT = 5 beams, 
and height H T = 5 pings with hypoth
esis testing significance a = 0.05.
Choosing a larger area of operation 
in this case is important to ensure 
that the large-sample assumption 
of (32) is valid.)

3.2 Fusion Algorithm
The fusion scheme was configured 
with wmax=0.5, T„=20pings and 
a priori sub-algorithm probabilities 
P0(G)= 1.0, P0(r )=  1.0, P0(v )=  0.5 
and P0( r ) =  0.5. The resulting likeli
hood estimates are shown in Figure 
13, which shows different behaviors 
for the four sub-algorithms depend
ing on their characteristics. The 
Grazing Angle sub-algorithm fares 
reasonably well when the data has 
relatively low slope at the start of 
the line, but is more heavily penal
ized as the slope and roughness 
increase. This is primarily due to 
the preponderance of mass at the 
breakpoint in PR(p,b\G^) which is a 
weakness as the breakpoint moves 
further towards the nadir. The Turn
ing Angle sub-algorithm, on the 
other hand, is seen to be penalized 
only occasionally to any significant 
extent, and then recovers back to 
nominal performance in almost zR 

pings. This is partly because the 
sub-algorithm is preferred in the a 
priori probability assessment, but 
primarily because it is generally reli
able while the Range Limit and Vari
ance Excess sub-algorithms show 
occasional runs of significant over
estimation of breakpoint. This effect 
is clearly evident in their likelihood 
estimates, which are frequently pe
nalized, but do show a complemen
tary nature to that of the Turning 
Angle sub-algorithm, as the fusion algorithm shifts 
probability mass between the components.

An example of the fused breakpoint tracks is given 
in Figure 14 for the steep and rough section towards

the end of the example data; Figure 15 shows typical 
pmf estimates in the same region. The robustness 
of the fusion scheme with respect to the outliers 
from the Variance Excess sub-algorithm is evident, 
primarily because of the success of the Turning An-



gle sub-algorithm in combination 
with the supporting evidence from 
the Range Limit sub-algorithm. In 
the lower-slope conditions at the 
start of the example data, Figure 
16, similar noise tolerance is ob
served, although another problem 
appears, visible around pings 70- 
75. Here, the integer nature of the 
breakpoint fusion (caused by being 
forced to choose one particular 
beam as the breakpoint) means 
that where there are two sub-algo
rithms of almost equal information, 
the meta-algorithm may vacillate 
between two closely spaced beams 
leading to some '‘chatter.’’ In gen
eral, however, the difference of one 
beam in the breakpoint is not of sig
nificance.

Figure 12: Example of flagging by Variance Excess sub-algorithm in steep 

slopes and rapidly changing bathymetry.

Likelihood Probabilities for Algorithm s

Figure 13: Sub-Algorithm likelihood estimates during processing. The Turning 

Angle sub-algorithm makes occasional mistakes, but recovers over time; the 

Range Limit and Variance Excess sub-algorithms are frequently penalized but 

still contain some information, while the Grazing Angle sub-algorithm survives 

by being suitable vague in its predictions.

4 Discussion

The meta-algorithm presented here 
clearly detects the inconsistencies 
in the example data, and in general 
does so at the positions that would 
be indicated by a human operator 
(although such indications are, of 
course, very subjective). The com
plexity of the sub-algorithms are 
not particularly high, although there 
are a number of parameters to de
termine which can have significant 
effect on the performance of the 
meta-algorithm. Methods to reduce 
or "harden" the parameter choice 
(i.e., make them estimatible physi
cal parameters rather than arbitrary 
constants) are currently under in
vestigation. The Grazing Angle, Vari
ance Excess and Turning Angle sub
algorithms have well established 
theoretical support; the Range Limit sub-algorithm 
is more ad hoc (although ad hoc in the strict sense 
of the term). This makes the parameter choice for 
the Range Limit sub-algorithm problematic, although 
in the experiments reported here only the maximum 
range scale was found to be particularly sensitive. 
Too low a value results in insufficiently robust detec
tion of the breakpoint; too high a value results in

over-estimation of the inconsistent region’s extent 
and subsequent over-flagging. It may be possible to 
improve on this situation by estimating the variance 
of the ranges with respect to the maximum range 
using the grazing angle sub-algorithm’s estimate of 
the breakpoint as something suitably “safe”.

In this experiment, only four sub-algorithms have
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Ping Num ber (from start of file)

Figure 14: Example of fusion track in steep and rough environment towards 

the end of the example line. The fusion system observes that the Variance 

Excess sub-algorithm has inappropriately overestimated the starboard break

point relative to the other evidence, and reduces the sub-algorithm’s likeli
hood accordingly (c.f. Figure 13). (Here, “Clip" refers to the safety aperture, as 

given by (11).)

Beam num ber (from port side).

Figure 15: Example of fusion system pmf estimates under normal circum

stances. The fusion algorithm favors the Turning Angle and Grazing Angle 

sub-algorithms (c.f. the likelihoods in Figure 13), resulting in a multimodal pmf 
which still has its primary mode in the appropriate location.

been investigated. There is an outstanding ques
tion of whether four is enough, or if the performance 
would continue to improve with more opinions added 
to the mix. In theory, so long as the new sub-algo
rithms being added provide independent information 
on the problem at hand, the fused solution should

be better. However, since all of the 
sub-algorithms work from the same 
original data, there is probably a 
limit to the number of independent 
opinions that can be developed. 
While it could be envisioned that 
another sub-algorithm might be 
added to look at, e.g., evidence for 
acoustic interference from another 
active source, it is more likely that 
significant advantage would be de
rived from extending the scheme to 
look at other aspects of the overall 
data quality assessment problem 
as outlined below. In application of 
the same basic fusion system to 
other areas, however, the balance 
of sub-algorithms might be differ
ent.

We have considered here only con
current fusion of the sub-algorithms 
(i.e., all of the sub-algorithms are 
run (theoretically) in parallel, and 
all of the information is fused in 
one step) since this is an off-line 
application; the meta-algorithm 
is, however, sufficiently fast as to 
require no special computational 
techniques to keep up with data col
lection rates in this case. In more 
compute resource limited environ
ments such as the real-time pro
cessor for an on-line MBES capture 
system, computational load may be
come a significant issue. (Irrespect
ive of the speed of the processing 
system, there will always be trade
offs between the various tasks re
quired; in a restricted environment 
such as an AUV, these may be 
significant.) In this case, it would 
be straightforward to reconfigure 
the meta-algorithm to compute the 
sub-algorithms sequentially starting 
with argmax^ Pa s (p - 1) and then in 

descending order of probability, until sufficient evi
dence was amassed to make a reliable decision. 
This would allow the meta-algorithm, on average, to 
respond more quickly and with less computational 
load, although it would require some restructuring of 
the fusion feedback measurement since the pmfs
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Figure 16: Example of fusion track in smooth environment towards the 

start of the example line. The fusion algorithm generally ignores spike ef
fects (e.g., from the Variance Excess sub-algorithm around samples 80-85) 

but the integer nature of the decision point can result in some breakpoint 

jitter (e.g., around samples 70-75) in otherwise smooth data.

for all sub-algorithms would not all be available for 
penalty construction.

The configuration here is a specific example of a 
more general problem with inconsistency of swath 
data, particularly where the data is being monitored 
in real-time as it is being captured. Many observed 
problems with field data can be traced to an under
appreciation of the level of data quality that can 
theoretically be achieved with the systems being 
used. If software was available that could predict 
the performance of a sonar system given the real
time environmental conditions and then quantita
tively rate the current data according to this predic
tion, it would provide valuable real-time feedback for 
operators as to the likely quality of the data being 
collected. One potential method for implementing 
such a system would be to continually monitor a 
number of different conditions using schemes such 
as the sub-algorithms used here, which are specifi
cally designed to look for particular problems. Ap
propriate fusion of the individual schemes should 
lead to an overall quality indicator per beam, which 
would then be readily summarized for the user. By 
extension, schemes which included other sources of 
information (such as multiple passes with the same 
sonar) might be possible, and would add significant
ly to the variety of data quality problems that could 
be addressed. Although presently only a sketch, a 
scheme of this kind might then form the basis of a 
realtime integrated quality control mechanism that

had the potential to assist in diagno
sis of problems, as well as providing 
indication to the operator in a timely 
manner.

5 Conclusions

Expecting one algorithm to detect all 
issues with all datasets is unrealistic; 
it is much more likely that an effective 
solution can be built if several sub-al- 
gorithms can be used in concert, each 
one solving a part of the problem well. 
We have shown here that fusion of 
multiple sub-algorithms is feasible in 
the context of swath-based MBES data 
processing, and that the fusion algo
rithm can be made to adapt automati
cally to the current performance of the 
sub-algorithms being fused.

The proposed meta-algorithm is inherently modular 
so that sub-algorithms can be added or removed so 
long as they generate results that are in a form com
patible with the fusion engine. In addition, the fusion 
scheme is sufficiently general so that although in this 
case the target is breakpoint detection, it would be 
possible to adapt the meta-algorithm to more general 
consistency or data quality assurance tasks; in this 
case an adjustment to the bonus/penalty scheme 
would be required for meta-algorithm adaptation.

On the example data, it is clear that the simple sub
algorithms proposed can be used to detect the break
points, and that they complement each other in their 
failure modes, a factor that highlights the benefits of 
the fusion scheme. The flags applied automatically 
to the data are analogous to those (subjective) de
cisions that a human operator would make. Future 
directions include more sub-algorithms, more robust 
data fusion and better methods for adaptive update 
of the sub-algorithm prior probability functions.
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Appendix A. Implementation of the Safe  
Aperture Tracker

In order to provide some resilience against spikes 
in the breakpoints the safe aperture tracker is 
implemented in a feedback loop, modeled after 
a leaky peak-detector circuit. Let the breakpoint 
determined after data fusion be bF(p )  or bF (p )  
(port and starboard side, respectively). If this value 
moves towards nadir from either side, the tracker 
reacts quickly; after the breakpoint returns towards 
the outside of the swath, the tracker slowly returns 
to normal at a rate determined by the user. After 
some manipulation, this idea resolves to iteration 
of the equations:

(p )~  £ (p -0 )  bRF {p)>  B ( p -1)

r/_\ f br(p )  bLF( p ) > 6 ( p - l )  
[5 C p -1 )+ c /# (p ) -  B (p -\ j) bLF(p)<  B ( p - 1)

13) cd =  exp hi (0.5 / zs ) }

where xs is a “safety buffer” specified by the user, 
intended to be the minimum safety margin between 
the start of the aperture and the breakpoint deter
mined, and cd is the time constant for a decay to 
the nominal aperture in nmm pings.
The safe aperture tracker is executed after the 
fusion decision for each ping, and provides guid
ance for the processing of the following ping. An 
example of the tracker’s behavior in synthetic data 
(generated as a power-spectral Fractal with magni
tude of the form |z(cû)|oc1/|cù|p with /3 = 1.1 and 
q>(cù)~u[- jt.jt] ) is shown in Figure 17, where cd 
= 0.74; the fast attack (respectively, "smoothed”) 
behavior of the tracker when the breakpoints de
crease (respectively, increase) the aperture is clear
ly evident. Note that a practical issue is to ensure 
that the predicted apertures do not 
cross if 6 (p ) -B (p )<  2 by adjusting 
the values so that B (p )= B (p )+ 2  
iff bF(p ) -B (p )< b F (p ) -B (p ) ,  and 
B (p )= B (p )~  2 otherwise.

Appendix B. Implementation  
of Sub-Algorithm s

B . l  Grazing Angle Sub-Algorithm
The simplest explanation for prob
lems observed is that the grazing 
angles at which the MBES observes

Figure 17: Example of the safe aperture tracker operating 

in synthetic data. Here, nmax = 20 and t ç = 1 0  so that ca = 
0.74. The “Lower Aperture" corresponds to B(p)  and “Up

per Aperture" to B{p).

the seafloor are too low. At very low grazing an
gles, little acoustic energy is backscattered and 
it becomes difficult to make a reliable detection. 
Normally this is limited because of the maximum 
opening angle of the MBES, which is in turn limited 
by refraction correction and physical aperture con
struction limitations. However on a significant slope 
this condition can occur somewhere in the outer 
beams of the swath. (Indeed, for a steep enough 
slope, it could occur anywhere in the swath.) The 
Grazing Angle sub-algorithm considers the break
point to be at the point where the slope adjusted 
grazing angle reaches the maximum value allowed 
by the manufacturer on flat seafloors (Figure 18).

The meta-algorithm determines an estimate of the 
current slope, and hence the direction of “down
hill", by computing across-track beam-to-beam gra
dients over a small window of WG pings,

Figure 18: Breakpoint determination based on a slope-corrected minimum 

grazing angle argument. Beams that have grazing angle lower than that 

normally allowed when the seafloor is flat are filtered.



14) g B(p ,b ) = -, 7/AZ, [ P’b} 2,  , (S (p )< b  < $(p))

15)

-^Ax2(p ,b )+  Ay2(p ,b )

8 i(.p)=  med0̂6p<'po 
5(p—5p)sA<fi(/j—§p)

16) g2(p )=  med {g X p ~ & p )f
OïSp<lPG

where A x(p ,b )= x(p ,b  + l ) - x ( p ,b )  for ping p and 
beam b with corresponding definitions for the other 
variables, and medx{ - - }  is a simple median filter. 
The first median filter provides a rough estimate 
of gradient from the noisy first differences ga{p,b)', 
the second median filter provides an improved es
timate through re-filtering. It would be possible to 
improve the estimate robustness by filtering over a 
wider window. However, the dual method used here 
re-uses previous filtering and is therefore more 
efficient.

To compute tine maximum aperture allowed, the gra
dient is converted to slope s (p )=  arctan(g2 (p)), 
and the minimum and maximum angles allowed are 
computed:
®cCp)= m ax{0 ,-m in{ - Bp ~ s (p ),-B p^  17)

§g( p )  = min { ô , min {ôs + s ( p ) A  }}  18)

with corresponding beam limits 
%o(p)= N /2 + GgGO/AO and

= jV/2 + 9G(/?)/A0, where 9 and 6 are mini
mum and maximum opening angles for the MBES, 
0p and 0S are the corresponding angles adjusted for 
any static roll applied to the transducer, À0 is the 
beam spacing, and N  is the number of beams.

Finally, to make an output compatible with the 
other sub-algorithms, we must assess the prob
ability associated with the breakpoint detections 

1 beams in the ping. Based on the 
observation that this simple scheme generally un
derestimates the extent of the problem, we model 
the pdf as a half-Gaussian:

N, , (x ; ct2)=  E  exp j -  (* -  n )

where H(x) is Heaviside's step function. Setting 
the variance so that the distribution fails In the 
gap between the breakpoint detected and the safe 
aperture, the port and starboard distributions are 
PL(p ,l\G ) and PR(p,b\G), respectively:

PL{p ,b G )  = Nh(p 'A , I (j>)~ % GOf/9)

Pt ( p 4 G )  = P X M G ) / '£ P L(p ,q G )  19)

Pr ( p A G ) = N* (§o(p)~ b;0,\f)G ( p ) -  S (i7)^/9)

Pg(p,qG) = PK(p,b\G)f£Ç(p,b\G) 20)

where PL{ p ^ G )  is defined over 0 < b < E (p )  and 
PR(p,b\G)  is defined overS ( p ) < ,b < N -1, and are 
both zero elsewhere.

B.2 Variance Excess Sub-Algorithm
The second sub-algorithm examines the ping-to-ping 
variance of the data, which is then compared against 
an estimate of their theoretical variance computed 
from an MBES uncertainty model [18] as implement
ed forthe CUBE MBES data processing algorithm [12,
14]. Let r (p ,b ) be the vector from MBES to sound
ing, r(p ,b )= (x (p ,b )i y (p ,b ^ z(p ,b ) J ,  and com
pute first differences A r ( # , i ) = r ( p ,d + l ) - r ( p ,è }  
O ^ f c c iV - l .  Then, dropping the ping and beam in
dicators for brevity, the uncertainty associated with 
the magnitude of A r, A r  = |Ar| is:

= 2Ar *  f a  ( A r X  + (A r)J a ] ( A r | }  21)

where and cr* are estimated uncertainties forthe 
beam solution in the horizontal and vertical planes, 
respectively.

A robust estimate of the expected variance per 
beam is computed by median filtering:

c 2( p , b ) = m $ f a ( p - 5 p ,b )}  22}

and then sample estimates of the observed mean, 
m (p,b), and variance, s2(p,b ), are computed direct
ly. The distinction between consistent and inconsist
ent beams is typically clearly defined by this method, 
Figure 19, and comparison of sample and theoreti
cal estimates suffices to determine the breakpoint 
location. Normal statistical techniques indicate that 
the test statistic t(p,b)=(jVr - l)s2(p,byu2(p,b) 
is distributed as a random variable given the 
null hypothesis H 0 :s 2 =cr*, and hence an indicator 
function (i.e., indicating that the beam is in the con
sistent region when iy (p ,b )=  1 and in the inconsist
ent region when i r (p ,b )=  0) can be computed for 
each beam as a result of the test:

for suitable significance a.



Finally, we compute the probability that each beam 
is the true breakpoint by observing that the binary 
indicator should be distributed as a Bernoulli trial 
with probability 1 -  a on the safe (interior) side of the 
breakpoint, and probability a on the exterior, and so 
the sum of the indicator towards interior and exte
rior of the swath from the breakpoint are distributed 
as a Binomial random variable Bn(x; N ,p ):

S i (x; N, p )=  [ N  p x (l -  p T~x
KX J

Therefore, the port and starboard probability mass 
functions are PL(p,b\V)  and PR{p,b\V^), respec
tively:

PL (p,A|r) = Ba
6(p)

Z v  (p > j)  
j=b

Bn
j=o

-a

- \
\b + l,a

_ J

P ,(p A V)  = Pl { p A V) I Y . Pl ( p A V)
24)

G»»./)
j= 6(p )

f
Bn

;b- 6 (/>)+l,l-a

X U p J
j=b+I

pX p A v ) = pr( p A v ) I Y , pA p A v )

; N  - 2 - b,a

25)

where P À p ^ | f)  is defined over 0 < b < h {p )  and 
PR(p ,t^V ) is defined over è (p )<  b < N  and both 
are zero elsewhere (see Figure 20).

B.3 Range Limit Sub-Algorithm
The Range Limit sub-algorithm uses the auxiliary 
information from the sonar meta-data about the 
user's selected maximum range (/*(/?)), which is re
corded on a ping-by-ping basis. A characteristic of 
the "noise” observed is that it frequently reaches 
the maximum range set; “real” data seldom does. 
Therefore, if the excess between the maximum 
range and the range per beam is computed, a com
parison against the maximum range clearly shows 
the breakpoint (Figure 21).

To express “close” to the maximum range, a pseu
do-normal metric is computed from the maximum 
range:

Figure 19: Estimated theoretical and observed beam-to- 

beam magnitude variance in real data. Inconsistent beam 
solution in the “noise" area engender significantly higher vari

ance, which is readily detected by comparison with theory.

m Number <pon to mmovtj)

Figure 20: Example of the starboard breakpoint pmf 
estimation algorithm, (23), (25). The blue line (left scale) 

is the binary indicator variable in this case (set if the data 
appears consistent), the red line (right scale) is the prob

ability estimated of the breakpoint being at any specific 
beam. The port breakpoint estimation is simply the mirror 

image of this process. Note that this data corresponds to 

that in Figure 19.

n (p ,b ) = exp\- 26)
2o*(K/>))

<>*(*)=(**)2 27)
where r  (/?,A)=|r(p,è)| and k is a constant de
signed to express the degree of “closeness” as a 
function of the maximum range. The use of a scaled 
version of the maximum range is suggested by prop
erties of the data in our example datasets, but may 
not be everywhere optimal. The ad hoc nature of this 
choice is a potential difficulty with application and 
universality of this sub-algorithm, a topic which is 
addressed in section 4.
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Figure 21: Comparison of per-beam ranges against maxi

mum range selected by user for three typical data swathes. 

In the inconsistent region, the beam solutions are close to 
the maximum range more frequently, allowing for a consist

ent penalty function to be levied based on adjacency to the 

user-selected maximum range.

To form a compatible binary indicator sequence in 
the form of (23), a simple threshold of the pseudo
normal metric is used:

omax̂  {n (p -8 p ,b -5 b )}  28) 
-lw* /2J

iR(p,b) = H (fi(p ,b )-T )

where t  e [0,1) is a suitable threshold value, and the 
maximization of n{p,b) over a small window serves 
to compensate for the randomness of ranges after 
the breakpoint is reached. The remainder of the sub
algorithm follows the form of (24)-(25).

B.4 Turning Angle Sub-Algorithm
The final sub-algorithm uses the angular dependence 
of the beam-to-beam vectors constructed above. 
Observing that the angle between subsequent inter
beam vectors is small in the consistent region and 
therefore will have a relatively peaked distribution, 
but is more closely uniform distributed in angle in 
the inconsistent region, Figure 22, testing for dis
tribution of the turning angles for one beam vector 
across a small window of pings readily distinguishes 
the two regions.
Let u = A r (p,b) and v = A r (p,b + 1) for simplicity in 
nomenclature. Then, the turning angle between sub
sequent inter-beam vectors in the same ping is: 
e(p ,b ) = -sgn(vxuz - u xv j  _

a ™ s( [uxvx + u y z ]/[,/«,* + u] ,/vr2 + vz2 ] )  30)

where Q(p,b)> 0 implies clockwise rotation about 
the ship's direction of motion. Using the theory of 
circular statistics, Mardia [19] shows that the sum
mary statistic:

Figure 22: Example distributions of beam-to-beam vector 
turning angles in consistent and inconsistent regions of the 

swath. Testing the distribution against the null hypothesis of 
uniformity allows for separation of the two regions.

C (p ,b )=
1 zK  sb=-irT sp=-ht

j ] c o s  (0(/>+8/?, è + ôè)) 31)

with K = (2Wt+\)(IH t+\) is sufficient to test the 
hypothesis:
H 0: {©(/?,Z>)}~ U[O,27c) = m(0;O,O)

29) H x\ {0 (j? ,6 )}~ m (0 ;O ,k ), k * 0

(i.e., that the distribution of angles is uniform against 
the alternative of a peaked distribution as shown in 
Figure 22), where M(0;O,k )  is the Von Mises distribu
tion:

1
M(0; h , k  ) = - , exp { k cos (9 -  n)}

K)
and /0(k ) is a modified Bessel function of the first 
kind and order zero. The critical values ofC (p ,b )a re  
difficult to compute exactly, but may be approximat
ed for large samples as C (/ 7,6)~ n (c 7;0,(2« )^ 1/2)  
for n samples, and therefore, the test resolves to 
C (p ,b )>  Cctit = zc(a)/ij{2(2WT + lX2H T + l) )  where 
zc(a) is the corresponding unit Normal critical value 
of a probability of Type I error. Rejection of Ha im
plies that the distribution of turning angles is suf
ficiently far from uniform, and hence that the data is 
most likely consistent. Therefore, a binary variable 
is readily computed as:

-(p ,b )=
1 C (p ,b )>  Ccrit 32)

[0 C (p ,b )<  C crit 
and the remainder of the sub-algorithm computes 
the pmf of the breakpoint location following the form 
of (24)-(25).
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