# University of New Hampshire University of New Hampshire Scholars' Repository

Center for Coastal and Ocean Mapping

Center for Coastal and Ocean Mapping

2011

# U.S. Law of the Sea Cruise to Complete the Mapping of Necker Ridge, Central Pacific Ocean

James V. Gardner University of New Hampshire, Durham, jim.gardner@unh.edu

Brian R. Calder University of New Hampshire, Durham, brian.calder@unh.edu

Follow this and additional works at: https://scholars.unh.edu/ccom



Part of the Oceanography and Atmospheric Sciences and Meteorology Commons

# Recommended Citation

Gardner, James V. and Calder, Brian R., "U.S. Law of the Sea Cruise to Complete the Mapping of Necker Ridge, Central Pacific Ocean" (2011). Center for Coastal and Ocean Mapping. 1252. https://scholars.unh.edu/ccom/1252

This Report is brought to you for free and open access by the Center for Coastal and Ocean Mapping at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Center for Coastal and Ocean Mapping by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

# **CRUISE REPORT**

# RV Kilo Moana

# U.S. Law of the Sea Cruise to Complete the Mapping of Necker Ridge, Central Pacific Ocean

CRUISE KM1121
July 31, to August 10, 2011
Honolulu, HI to Honolulu, HI

# James V. Gardner and Brian R. Calder

Center for Coastal and Ocean Mapping/Joint Hydrographic Center University of New Hampshire Durham, NH 03824



August 15, 2011
UNH-CCOM/JHC Technical Report 11-001

# **Table of Contents**

| Introduction                                                                                                    | 3  |
|-----------------------------------------------------------------------------------------------------------------|----|
| The Multibeam Echosounder System and Associated Systems                                                         | 6  |
| Ancillary Systems                                                                                               | 9  |
| Knudsen 3260 chirp subbottom profiler                                                                           | 9  |
| Carson gravity meter                                                                                            | 9  |
| MBES Data Processing                                                                                            | 10 |
| The Area: Necker Ridge                                                                                          | 11 |
| Daily Log                                                                                                       | 12 |
| References Cited                                                                                                | 18 |
| Appendix 1 - Conversion table of 2011 KM11-21 Kongsberg SIS-assigned .all file to UNH file names by Julian Day. |    |
| Appendix 2 - Conversion table of 2009 EX0909 .all file names to UNH file names Julian Day.                      | •  |
| Appendix 3 - Conversion table of KM11-21 Knudsen-assigned .sgy file names to Ufile names by Julian Day          |    |
| Appendix 4 - Locations of XBT casts                                                                             | 24 |
| Appendix 5. Cruise Calendar                                                                                     | 26 |
| Appendix 6. Gravity land-tie Data                                                                               | 27 |
| Appendix 7. Kongsberg EM122 BIST Test Results                                                                   | 28 |
| Appendix 8 - Cross-check analyses                                                                               | 51 |
| Appendix 9 - Calibration Reports for the CTD                                                                    | 52 |
| Appendix 10 - Color shaded-relief bathymetry and acoustic backscatter maps of N Ridge.                          |    |
| Table 1. Cruise Statistics                                                                                      | 6  |
| Table 2. Kongsberg and Knudsen software version numbers                                                         | 7  |
| Table 3. Initial system sensor offsets                                                                          |    |
| Table 5. Cruise Personnel                                                                                       |    |

#### Introduction

An exhaustive study of the U.S. data holdings pertinent to the formulation of U.S. potential claims of an extended continental shelf under Article 76 of the United Nations Convention of the Law of the Sea (UNCLOS) (Mayer, Jakobsson, & Armstrong, 2002) was undertaken in 2002. The Mayer et al. (2002) report recommended that multibeam echosounder (MBES) data are needed to rigorously define (1) the foot of the slope (FoS), a parameter in the two UNCLOS-stipulated formula lines, and (2) the 2500-m isobath, a parameter in one of the UNCLOS-stipulated cutoff lines. Both of these parameters, the first one a precise geodetic isobath and the second one a geomorphic zone, are used to define an extended continental shelf claim. The Center for Coastal and Ocean Mapping/Joint Hydrographic Center (CCOM/JHC) of the University of New Hampshire was directed by the U.S. Congress, through funding to the U.S. National Oceanic and Atmospheric Administration (NOAA) to conduct the new surveys. Although Necker Ridge was not identified as one of the regions where new bathymetric surveys are needed, subsequent U.S. State Department Extended Continental Shelf (ECS) Task Force teams determined that Necker Ridge should be mapped. The cruise objective was to complete the mapping of the bathymetry of Necker Ridge (Figure 1) that was begun in 2009 using the NOAA Ship Okeanos Explorer (EX0909). Both the 2009 and the present 2011 mapping were in direct support of the U.S. ECS Task Force. The 2009 mapping captured the 2500-m isobath on Necker Ridge, but the junction of Necker Ridge with the Hawaiian Ridge and the lower flanks of Necker Ridge that transition to the adjacent deep-sea floor were not mapped (Figure 2) because the 30-kHz multibeam system of Okeanos Explorer made mapping in water deeper than~4000 m very inefficient. The 12kHz multibeam system of the RV Kilo Moana is designed for these depths.

Other than the 2009 mapping, Necker Ridge has several single multibeam swaths that cross the ridge and one swath along the summit, although these lines were collected with, for the most part, older first- or second-generation multibeam systems (Figure 3) and do not provide the coverage needed at the critical areas mentioned above.

Surprisingly, only one single-channel seismic line that crosses the ridge could be found in the public archives. The regional bathymetry for survey planning used the version 13.1 (2010) updated 1-arc minute predicted bathymetry dataset of Smith and Sandwell (http://topex.ucsd.edu/cgi-bin/get data.cgi).

NOAA contracted through NSF-UNOLS (National Science Foundation University National Oceanographic Laboratory System) with the University of Hawai'i to use their 186-ft, 3060-ton RV *Kilo Moana* (Figure 4), a SWATH (small water area twin hull) vessel with a hull-mounted Kongsberg EM122 MBES as well as a Knudsen 3260 B/R 3.5-kHz chirp sub-bottom profiler and a Carson gravimeter, for the mapping survey.

The UNH chief scientist was responsible for the organization and direction of the cruise, as well as the calibration of the multibeam system prior to mapping. He was also responsible for the collection, quality control and processing of the bathymetry, acoustic-backscatter and chirp sub-bottom data aboard ship. Gravity data were collected on a not-to-interfere basis and the University of Hawaii processed the gravity data post cruise.

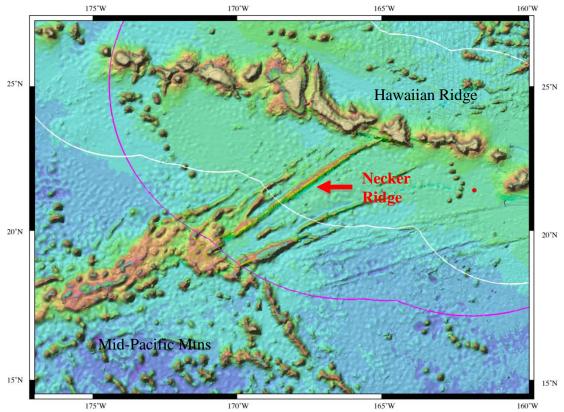



Figure 1. Location of Necker Ridge. Bathymetry from Sandwell and Smith 1-arc-minute bathymetry. White semicircle is U.S. EEZ; purple semicircle is 350 nmi limit.

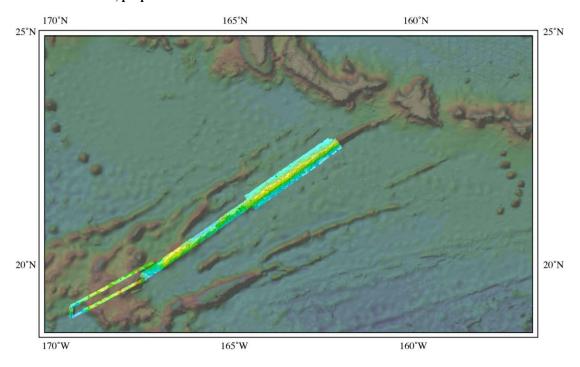



Figure 2. Okeanos Explorer EX0909 multibeam data on Necker Ridge.

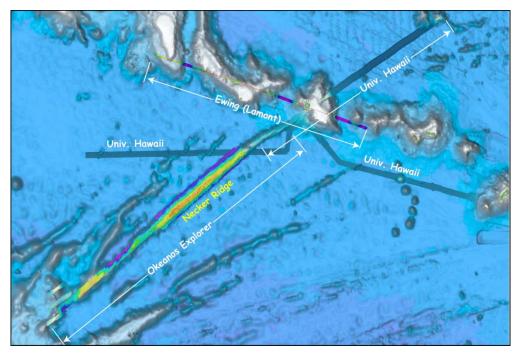



Figure 3. Existing multibeam bathymetry data for Necker Ridge.

The cruise began with a 29-hr transit to an area selected from the predicted bathymetry data to be adequate for a patch test (Figure 5). A full patch test, including a calibration of the XBT system with a CTD cast, was performed here. The patch-test filenames have "patch" as a suffix to the line number. The next 6.5 days consisted of systematically completing the mapping Necker Ridge. The cruise ended with 44 hr 930 km, transit to Honolulu, HI, which paralleled the outward transit for overlapping bathymetric coverage. The cruise mapped a total of 47.394 km² in 6.5 survey days and collected 5077 line km of MBES lines with an average speed of 11.5 knts. A summary of the cruises is given in Table 1.



Figure 4. R/V Kilo Moana used to map the Kingman-Palmyra area.

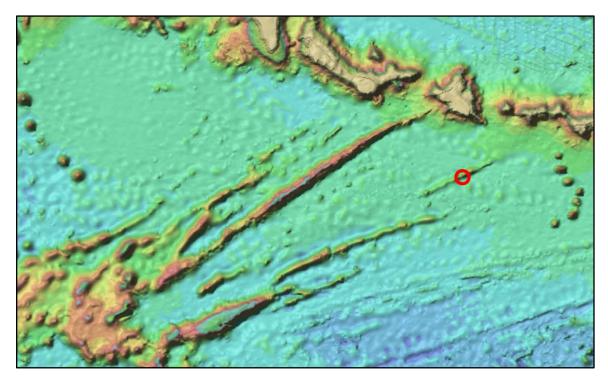



Figure 5. Location of the patch test (red circle).

#### **Table 1. Cruise Statistics**

| Julian dates                      | JD213 to JD223            |
|-----------------------------------|---------------------------|
| DatesJu                           | aly 31 to August 10, 2011 |
| Weather delays                    | 0 days                    |
| Total non-mapping days (transits) | 3.5 days                  |
| Total mapping days                | 6.5 days                  |
| Total area mapped                 | $47,394 \text{ km}^2$     |
| Total line kilometers             | 5077.5 km (2741.6 nmi)    |
| Beginning draft                   | 7.6 m                     |
| Ending draft                      | 7.6 m                     |
| Average ship speed for survey     | 11.6 kts                  |

# The Multibeam Echosounder System and Associated Systems

The hull-mounted Kongsberg Maritime EM122 MBES system aboard RV *Kilo Moana* is a 12-kHz multibeam echosounder that transmits a 1 wide (fore -aft) acoustic pulse and then generates 432-2° receive apertures ("beams") over a 150° swath. The system can automatically adjust the pointing angles of the receive beams to maximize the achievable coverage or a maximum aperture can be defined by the operator. The transmit cycle can be rapidly duplicated to provide two swaths per ping, each transmitted with a small along-track offset that compensates for water depths and ship speed to generate a constant sounding spacing in the along-track direction. This mode can provide as many as 864 soundings per transmit cycle swath (432 soundings per swath) in the high-density dual-swath mode. With more than one sounding generated per beam in the high-density mode, the horizontal resolution is increased and is almost constant over the entire swath

when run in the equidistant mode. In addition, the transmit beams can be steered as much as  $10^{\circ}$  forward or aft to reduce the effects of specular reflection at nadir and near-nadir angles.

The EM122 uses both continuous wave (CW) and frequency modulation (FM) pulses with pulse compression on reception to increase the signal-to-noise ratio. The transmit pulse is split into several independently steered sectors to compensate for vessel yaw. The system is pitch, yaw and roll stabilized to compensate for vehicle motion during transmission. The 15-ms pulse length (deep mode) used in this survey includes a significantly longer FM chirp pulse waveform for the outer transmit sectors. Its bandwidth corresponds to the resolution of the 15-ms CW pulse of the inner and midrange transmit sectors but the longer duration of the FM chirp pulse allows pulse compression on reception for a gain in signal-to-noise ratio of about 15 dB. Kongsberg Maritime states that, at the 15-ms pulse length, the system is capable of depth accuracies of 0.3 to 0.5% of water depth. The Konsberg Maritime EM122 Product Description should be consulted for the full details of the MBES system. The installed software versions used on the Seafloor Information System (SIS) and the transmit-receive unit (TRU) systems are given in Table 2.

Table 2. Kongsberg and Knudsen software version numbers

| System                      | Software Version          |
|-----------------------------|---------------------------|
| Seafloor Information System | 3.8.3, build 89           |
| TRU CPU                     | 1.2.3, March 21, 2011     |
| TRU DDS (DDS)               | 3.5.2 Oct., 13, 20107     |
| TRU BSP (BSV)               | 2.2.3 July 02, 2009 "new" |
| TRU RX (RSV)                | 1.1.11, Feb. 18, 2010     |
| TRU TX (TSV)                | 36 LC1.11, June 17, 2008  |
| PU (PSV)                    | 1.2.3 March 21, 2011      |
| EM122 Datagram (DSV)        | 3.1.2 Sept. 20 2007       |

Knudsen software version number

| EchoControlClient | 2.29 |
|-------------------|------|
|-------------------|------|

A hull-mounted Applied Microsystems Ltd Smart SV&T sound-speed sensor (SN 4844) was used to measure the sound speed at the MBES array for accurate beam forming. The sensor was calibrated at the factory in January 2010. Beam forming during this cruise used the high-density equidistant mode with FM enabled and Automatic mode in deep water. For receive beams at near-normal incidence, the depth values are determined by center-of-gravity amplitude detection, but for most of the beams, the depth is determined by split-beam phase detection. The spacing of individual sounding is approximately every 50 m, regardless of survey speed.

An Applanix POS/MV model 320 version 4 inertial motion unit (IMU) (with TrueHeave) was interfaced to a NovAtel OEM2-3151R global positioning system (GPS) receiver to provide position fixes with an accuracy of  $\sim \pm 2$  m. The IMU provides roll, pitch and yaw at accuracies of better than  $0.02^{\circ}$  at 100 Hz. A 5-minute run-in for each

line insured the IMU settled prior to the start of logging. The MBES system can incorporate transmit beam steering up to  $\pm 10^{\circ}$  from vertical, roll compensation up to  $\pm 10^{\circ}$  and can perform yaw corrections as well. All horizontal positions were georeferenced to the WGS84-derived ellipsoid and vertical referencing was to instantaneous sea level.

The Kongsberg Maritime EM122 is capable of simultaneously collecting full time-series acoustic backscatter that is co-registered with each bathymetric sounding. The full time-series backscatter is a time series of acoustic-backscatter values across each beam footprint on the seafloor. If the received amplitudes are properly calibrated to the outgoing signal strength, receiver gains, spherical spreading, and attenuation, then the corrected backscatter should provide clues as to the composition of the surficial seafloor. However, the interpreter must be cautious because the 12-kHz acoustic signal undoubtedly penetrates the seafloor to an unknown, but significant (meters) depth, thereby generating a received signal that is a function of some unknown combination of acoustic impedance, seafloor roughness and volume reverberation.

The sound-speed profiles derived from frequent XBT casts (see below) were used to raytrace each MBES receive signal to the seafloor and back to the receiver to compensate for the refraction effects within the water column.

In addition to the MBES, the RV *Kilo Moana* is equipped with a Knudsen 3260 high-resolution chirp profiler and a Carson gravimeter. These data were continuously collected throughout the cruise.

All of the raw 2009 *Okeanos Explorer* EX0909 multibeam files from Necker Ridge were reprocessed by the senior author prior to the cruise to ensure uniform editing of the bathymetry and to extract the acoustic backscatter. The original EX0909 field files were renamed NeckerRidge\_line\_X, where X is a consecutive line number starting with 1 (see Appendix 1). Many of the EX0909 lines were outside the area of interest but they were processed for completeness, although they are not included in this report.

The University of Hawai'i (UH) assigned the 2011 cruise designator as KM11-21. All raw MBES files were initially labeled by the Kongsberg Seafloor Information System (SIS) data capture software with a unique file designator but the files were renamed to NeckerRidge\_line\_X, where X is a consecutive line number starting with 100 (see Appendix 2). Transit lines and patch test lines were given line numbers prefixed with "tran" or "patch", respectively. The renaming was done so that the individual lines would be unequivocally identified with the survey area in the future.

Water-column sound-speed profiles were routinely collected every 6 hrs during the cruise as well as anytime the sound speed measured at the hull-mounted transducer differed by 0.5 m/s from the value at the transducer depth from the XBT-derived sound speed. Sound speeds were calculated from measurements of water temperature vs depth using Sippican Deep Blue expendable bathythermographs (XBTs). Deep Blue XBTs have a 760-m maximum depth of measurement so the profiles were extrapolated to 12,000 m using Kongsberg software to provide a profile throughout the water column. A Sea Bird Electronics model SBE-911+917+ CTD was used to calibrate the XBTs during the patch test. The two temperature sensors (serial no. 2013 and 2700), the conductivity sensor (serial no. 3326) and the pressure sensor (serial number 92859) were last calibrated by Sea Bird Electronics on May 27, 2011 (Appendix 8). Derived sound-speed

profiles derived from the two systems (CTD vs XBT) from data collected during the patch test were compared between the systems to calibrate the XBT (see Daily Log JD213).

A full patch test was conducted in the survey area to ensure sensor offsets were correct. Table 3 and Table 4 show the sensor offsets used for the survey.

Table 3. Initial system sensor offsets

| Location Offsets |         |        | A     | ngular Offse | ets   |         |
|------------------|---------|--------|-------|--------------|-------|---------|
| Sensor           | Forward | Stbd   | Down  | Roll         | Pitch | Heading |
| POS 1            | 0.00    | 0.00   | 0.00  | _            | _     | _       |
| POS 2            | 0.00    | 0.00   | 0.00  | _            | -     | _       |
| POS 3            | 0.00    | 0.00   | 0.00  | _            | -     | _       |
| Tx tdr           | -3.27   | -0.053 | 0.803 | -0.064       | 0.024 | 0.026   |
| Rx tdr           | 1.156   | -1.225 | 0.804 | -0.092       | 0.044 | 0.046   |
| Attitude 1       | 0.00    | 0.00   | 0.00  | 0.09         | 0.00  | 0.00    |
| Attitude 2       | 0.00    | 0.00   | 0.00  | 0.00         | 0.00  | 0.00    |

Departure draft....7.6 m bow Final draft....7.6 m

Table 4. Offset corrections determined by Patch Test.

| Offset  | Value  |
|---------|--------|
| roll    | -0.05° |
| pitch   | 0      |
| yaw     | 0      |
| latency | 0      |

#### **Ancillary Systems**

# Knudsen 3260 chirp subbottom profiler

A Knudsen 3260 chirp subbottom profiler was deployed throughout the cruise. The system is a hull-mounted system that produces a 3.5-kHz FM signal with a 2-kHz bandwidth. The system has adjustable pulse lengths up to 64 ms, power and gain settings that allows it to acquire good bottom detection and subbottom resolution to about 50 m subbottom. The profiler was synchronized with the EM122 so that the EM122 took precedence over the profiler during the profiler transmit and receive cycles. The synchronization eliminated any interference of the profiler signal with the multibeam signal. The chirp digital data were recorded in SEG-Y format and processed with Chesapeake Technologies, Inc. SonarWeb software. SEG-Y line names were changed to Necker\_3.5kHz\_line\_X.sgy (Appendix 2) where X is a consecutive line number. The sgy line numbers do not correspond with the MBES line numbers.

# Carson gravity meter

A Carson gravimeter (Carson Gravity Meter and Instrument Co. model 6300), a refurbished LaCoste-Romberg Model S-33 meter, was run on a hands-off basis, not to interfere with the MBES operations. Land ties were made at Honolulu prior to and at the end of the cruise (see Appendix 4). Post-cruise processing of the gravity data will be done by the University of Hawai'i geophysics group.

#### **MBES Data Processing**

The raw multibeam bathymetry and acoustic backscatter data were processed aboard ship using the University of New Brunswick's SwathEd software suite, version 20091218. Each Kongsberg all file was collected by the onboard Kongsberg SIS data-acquisition system. Once a line was completed, the all file was copied to a server that could be accessed by the UNH computer via the shipboard network. Each all file was renamed from the Kongsberg-generated file name to <code>NeckerRidge\_line\_n.all</code> (see Appendix 2) so that later each file could be easily identified to the area and cruise. The line numbers commenced with <code>NeckerRidge\_line\_tran100</code> beginning with the transit to <code>Necker Ridge</code> and then commenced to <code>NeckerRidge\_line\_1XX</code> when the actual mapping began. Each all file is composed of individual data packets of beam bathymetry (range and angle), beam average and full time-series acoustic backscatter, navigation, parameters, sound-speed profiles, orientation and sound speed at the transducer. The first step in the processing separates each of these data packets into the individual files.

The second step in the processing plots the navigation file so that any bad fixes can be flagged. Once this step is completed, the validated navigation is merged with the bathymetry and acoustic backscatter files.

The third step involves editing (flagging) individual soundings that appear to be fliers, bad points, multipaths, etc. The entire file of soundings is viewed and edited in a sequence of steps through the file. Once the bathymetry file has been edited, the valid individual soundings are gridded into subarea DTM maps and the co-registered valid acoustic backscatter full beam time series is assembled into a file and gridded into subarea mosaics.

The entire region to be mapped was subdivided into 14 subarea bathymetry maps and (Fig. 6). Each subarea map was designed to maximize the spatial resolution allowed by the mapped water depths within the area.

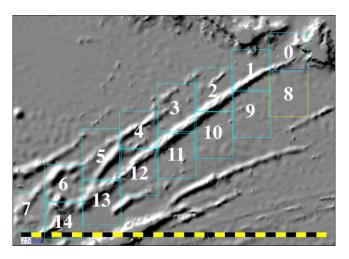



Figure 6. Subareas for Necker Ridge.

### The Area: Necker Ridge

Necker Ridge is an aseismic bathymetric elevation that spans 650 km from the Mid-Pacific Mountains on the southwest to the Hawaiian Ridge on the northeast (Figure 1). The summit of the ridge varies in water depths from ~1800 to ~3500 m and the ridge rises 2500 to 3000 m above the adjacent abyssal seafloor. Two large, generally flat-topped areas of Necker Ridge are shallower than ~1850 m; one a 70-km long section in the southwest and the other a 165-km long section in the northeast. The southern flank of the ridge is steeper (~20) than the northern flank (~10°). The ridge trends N55E to 22.77°N/166.13°W where the northern-most 165 km has a trend of N65E. There is a pronounced N31E cross grain of summit ridges that occurs in the central deeper region. The *Okeanos Explorer* multibeam bathymetry shows the morphology of the ridge is composed of numerous stacked lobate volcanic flows.

The origin of the ridge has been debated since the 1970s. Dredged rocks from Necker Ridge have been dated at 82.5 Ma (Saito and Ozima (1977) whereas Atwater et al. (1989) show from marine magnetics that the adjacent oceanic crust was formed within the Cretaceous Quiet Zone that spans from 83 to 119 Ma. Necker Island, at the junction of Necker Ridge and the Hawaiian Ridge, has been dated at ~10 Ma by Dalrymple et al. (1974), clearly demonstrating no genetic relationship between the two ridges. The trend of Necker Ridge is oblique to the trends of the nearby Murray and Molokai Fracture Zones, suggesting the ridge is not related to either fracture zone. Dredged rocks from the SW flank of Necker Island were dated at ~71 Ma (Clague and Dalrymple (1975), which suggests that Necker Island may be the NE end of Necker ridge that was uplifted as it passed over the Hawaiian hot spot. Bridges (1997) observed that the trend of some seamounts SW of the Hawaiian Ridge are parallel to the Necker Ridge trend, which suggests the seamounts formed at the same time as Necker Ridge. Consequently, Necker Ridge may have formed by mid-plate volcanism.

The depths of the two flat-topped sections of Necker Ridge occur at roughly the same water depth as the flat top of nearby Horizon Guyot (1500 to 1850 m depths). This suggests that both ridges might have been at sea level sometime in their past and that the entire region has since subsided nearly 2 km. However, Lonsdale et al. (1972) argue that the flat surfaces of Horizon Guyot are not the result of erosion at sea level but perhaps are the result of overlapping volcanic flows. Nevertheless, DSDP Site 171 drilled a 173-m section from the summit of Horizon Guyot and recovered Cretaceous (100 to 110 Ma) lagoonal sediments at the basalt-sediment contact (Winterer et al., 1973). These results demonstrate that Horizon Guyot clearly was at sea level during the Cretaceous.

Strong currents (>15 cm/s) on the summit of nearby Horizon Guyot were measured by Lonsdale et al (1972; Cacchione et al., 1978) and, in addition, they recovered sediment cores that show evidence of winnowing and erosion. This suggests that the surficial sediments of both Horizon Guyot and Necker Ridge are presently being modified by relative strong deep-sea currents.

#### **Daily Log**

# JD 212 (Sunday, July 31, 2011)

We departed Honolulu at 0800L (1800Z) and steamed at 12 knts to the patch test site. The MBES and Knudsen 3260 subbottom profiler were turned on and the transit line (NeckerRidge\_line\_tran100) began at 1935Z. A Deep Blue XBT was cast once in 2500+ m of water to get a proper sound-speed profile for the transit line. XBTs will be cast every 6 hr during the transit. We continued to configure the MBES and Knudsen systems as we transited and began to collect excellent-quality data on both systems. The MBES was achieving 2.9 x water depth in 4400 m depths.

When processing the first line, it was discovered that the Knudsen was not recording navigation information into the SEG-Y header. It turned out that the NMEA data was not set at 9600 baud rate on the COM1 Peripheral Port assignment window. Once set at 9600, navigation began to be received. A short line was recorded to make certain navigation was being properly recorded. However, the SonarWeb software could not read the navigation.

# JD 213 (Monday, August 1, 2011)

We continued on the transit to the patch test site under ideal conditions. The MBES continued to collect good-quality data with a swath width that varied between 2.6 and 2.9 x water depth. Although the Knudsen SEG-Y files could not be read by SonarWeb, the software brought out on the cruise to read these data, because of some issue with the navigation format, we confirmed that the navigation is being properly written into the SEG-Y file. Consequently, we continued to record the Knudsen data and will sort out the issue post-cruise.

We arrived at the patch test site (22.062308°N/164.197602°W, ~4750 m water depth) at 1315L (2325Z) and made a CTD cast to establish the standard against which we will compare the sound-speed profile calculated from the XBT cast. The seafloor is very flat in this area and without any potential dangers to the CTD. Conditions were perfect for the cast. The first dip was halted because the SeaBird CTD deck unit would not record any data being collected. The CTD was brought back aboard and about a half hour was spent rebooting the deck unit and checking all connections, etc. Finally, the unit began to record data. The CTD cast was made to 4500 m and took about 4 hrs because the light weight of the unit required the line speed to be slow. An XBT cast (no. 763; see Appendix 4) was made after the CTD was secured on deck. A comparison of the two casts (Figure 7) shows good agreement between the two.

We next transited to WP1 to begin the pitch and timing calibration run of the patch test. No data were recorded on the transit to WP1. The pitch and timing patch tests (patch109, patch110 and patch111; Figure 8.) show no static offset was necessary. From there we moved to a flat area to conduct the roll test (patch112 and patch113). A roll bias of -0.05° was found, using both SwathEd and SIS analyses, and was entered into the EM122 SIS. A small knoll was mapped on the starboard swath of line patch112 so, after the roll test was completed, we steamed a reciprocal course offset by 12 km that put the knoll on our port swath for the test for yaw misalignment. The heading test showed no static offset was necessary.

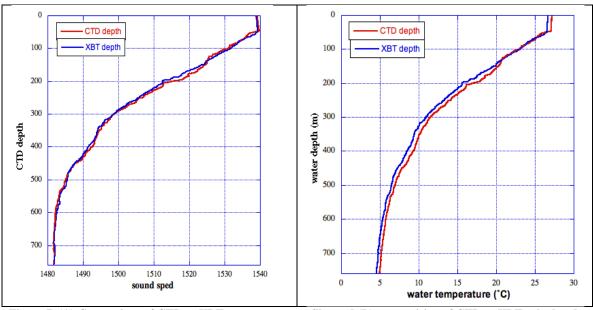



Figure 7. (A) Comparison of CTD vs XBT temperature profiles and (B) comparision of CTD vs XBT calculated sound speeds.

Summary of patch test lines (see Fig. 8).

The pitch line running from WP1 to WP2 at 12 knts is line patch109. The pitch line running from WP2 to WP1 at 12 knts is line patch110. The timing line running from WP1 to WP2 at 6 knts is line patch111. The roll line running from WP3 to WP4 at 12 knts is line patch112. The roll line running from WP4 to WP3 at 12 knts is line patch113. The yaw line running from WP5 to WP5 at 12 knts is line patch114. Line patch 112 and line patch114 were used for yaw calibration.

As part of re-ballasting, engineering ran pumps from approx. 1840-1855; no interference was observed on EM122 or Knudsen 3260.

#### JD 214 (Tuesday, August 2, 2011)

An ideal day for mapping with relatively small seas and ~15 knt winds. Both the MBES and the Knudsen were collecting high-quality data. The first half of the day was spent completing the transit to the beginning of the mapping lines.

The first survey line (NeckerRidge\_line 117) was begun at 2354Z (1354L). An XBT cast (XBT no. 766) was made at the start of this line. This line trends NW along the southern base of Necker Island. The remainder of the day was spent in routine mapping.

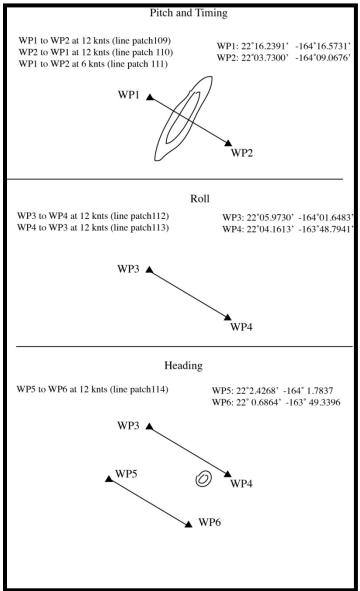



Figure 8. Patch test design.

# JD 215 (Wednesday, August 3, 2011)

Today was a routine day of mapping, collecting high-quality data with ideal conditions. We completed the mapping of the northern-most Necker Ridge as it approaches the Hawaiian Ridge (Figure 9). The remainder of the cruise will be focused on mapping the base-of-slope zone on both the north and south sides of Necker Ridge.

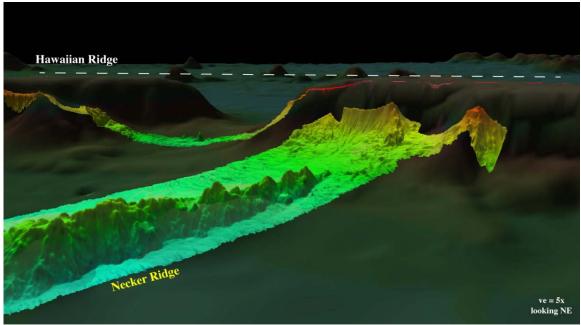



Figure 9. Perspective view of Necker Ridge as it approaches the Hawaiian Ridge.

# *JD216 (Thursday, August 4, 2011)*

Routine day of mapping. Conditions ideal and collecting high-quality data. The day was spent mapping the southeast side of Necker Ridge and outside the Papahānaumokuākea Marine National Monument boundary.

# JD217 (Friday, August 5, 2011)

Routine day of mapping. Conditions ideal and collecting high-quality data. The day was spent mapping on the southern portion of the southeast side of Necker Ridge down to the Mid-Pacific Mountains. The e-mail satellite link failed in the middle of the afternoon, leaving us without email to the outside world.

# JD218 (Saturday, August 6, 2011)

Routine day of mapping. Conditions ideal and collecting high-quality data. The day was spent mapping on the southern portion of the northwest side of Necker Ridge as far south as the Mid-Pacific Mountains. The wind picked up to 20 knts in the afternoon and the swell and seas built up to ~6 to 8 ft and directly on our bow on line 143. The e-mail satellite link was still down.

The Kongsberg SIS began to report grossly inaccurate port and starboard ranges even though the SIS map view showed soundings at the appropriate ranges.

The data so far show that Necker Ridge formed as a series of stacked volcanic flows (Figure 10); and surprisingly, little evidence of landslides.

At 0505Z (1705L) just before the start of line 143, the Knudsen crashed. The Knudsen client and the power supply were rebooted but to no avail. Finally, the Windows machine was rebooted and the Knudsen came back alive at 1721L. However, it reset the Knudsen-assigned SEG-Y line number to 116.

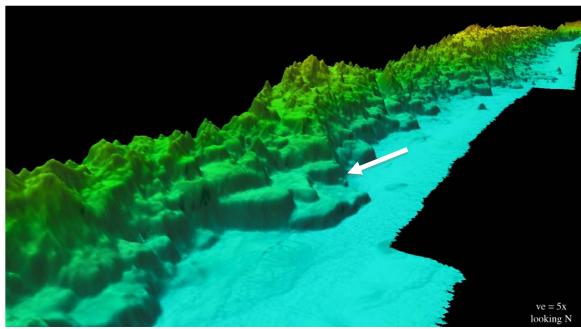



Figure 10. Perspective view of southern side of Necker Ridge showing construction of ridge by stacked volcanic flows (white arrow).

# JD219 (Sunday, August 7, 2011)

Conditions were a bit lumpy with ~20 knt winds and 6 ft seas, but data quality continued to be high. About 0117L the Knudsen reported no GPS was available, presumably because the GPS feed was being interpreted as a serial mouse due to the recent reboot. Rebooted the Knudsen without the GPS being plugged in and the system appeared to recover appropriately. It did, however, reset the line numbers again, so stopped, reset to the next sequential line number, confirmed GPS operation again, and then restarted logging.

Line 148 was extended to the NE to capture the ridge that trends north off the southern guyot (Fig. 12).

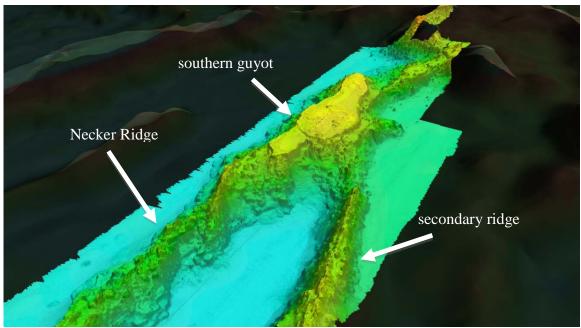



Figure 11. Perspective view of southern guyot and secondary ridge that branches off of the main Necker Ridge. Vertical exaggeration 5x, looking south.

# JD220 (Monday, August 8, 2011)

Line 153 was broken off at 0700L (1800Z) and the mapping of Necker Ridge was completed. We turned east for the transit to Honolulu with all systems continuing to collect data to the buoy at Honolulu.

# JD221 (Tuesday, August 9, 2011)

Continued to transit to Honolulu with all systems collecting data.

# JD222 (Wednesday, August 10, 2011)

Continued to transit to Honolulu with all systems collecting data. Data collection terminated 0445L (1445Z), with the lights of Honolulu to port. Arrived at Sand Island, Snug Harbor dock at 0735L (1735Z).

#### **References Cited**

- Atwater, T., Sclater, J., Sandwell, D., Severinghaus, J. and Marlow, M.S., 1993, Fracture zone traces across the North Pacific Cretaceous Quiet Zone and their tectonic implications. In Pringle, M.S., Sager, W.W., Sliter, W.V. and Stein, S. (eds.), The Mesozoic Pacific: Geology, tectonics and volcanism, Geophysical Monograph 77, American Geophysical Union, Washington DC, p. 137-154.
- Bridges, N.T., 1997, Characteristics of seamounts near Hawaii as viewed by GLORIA. Marine Geology, v. 138, p. 273-301.
- Cacchione, D.A., Schwab, W.C., Noble, M., and Tate, G.B., 1978, Internal tides and sediment movement on Horizon Guyot, Mid-Pacific Mountains. Geo-Marine Letters, v. 8, p. 11-17.
- Clague, D.A. and Dalrymple, G.B., 1975, Cretaceous K-Ar ages of volcanic rocks from the Musicians seamounts and the Hawaiian ridge. Geophysical Research Letters, v. 2, p. 305-308.
- Dalrymple, G.B., Lanphere, M.A., and Jackson, E.D., 1974, Contributions to the petrology and geochronology of volcanic rocks from the leeward Hawaiian Islands. Geological Society of America Bulletin, v. 85, p. 727-738.
- Lonsdale, P., Normark, W.R., and Newman, W.A., 1972, Sedimentation and erosion on Horizon Guyot. Geological Society of America Bulletin, v. 85, p. 289-316.
- Mayer, L., Jakobsson, M, and Armstrong, A, 2002, The compilation and analysis of data relevant to a U.S. Claim under United Nations Law of the Sea Article 76: A preliminary Report. Univ. of New Hampshire Technical Report, 75p.
- Saito, K. and Ozima, M., 1977, <sup>40</sup>Ar/<sup>39</sup>Ar geochronological studies ob submarine rocks from the western Pacific area. Earth and Planetary Science Letters, v. 33, p. 353-367.
- Winterer, E.L., Ewing, J.I., Douglas, R.G., Jarrard, R.D., Lancelot, Y., Moberly, R.M., Moore, T.C., Roth, P.H. and Schlanger, S.O., 1973, Initial Reports of the Deep Sea Drilling Project, v. 17, p. 283-334.
- Winterer, E.L. and Metzler, C.V., 1984, Origin and subsidence of Guyots in Mid-Pacific Mountains. Journal of Geophysical Research, v. 89, p. 9969-9979.

# Table 5. Cruise Personnel.

| Dr. James V. Gardner       | UNH Chief Scientist    |
|----------------------------|------------------------|
| Dr. Brian R. Calder        | UNH Co-Chief Scientist |
| Capt. Richard (Rick) Meyer | Ship's Master          |
| Mr. Ben Colello            | UH Party Chief         |
| Mr. Paul Johnson           | UNH Data Manager       |
| Mr. Dave Hashisaka         | UH Technician          |
| Mr. David Armstrong        | UNH Watchstander       |
| Ms. Briana Sullivan        | UNH Watchstander       |
| Mr. Hadar Sade             | UNH Watchstander       |
| Dr. Barry Eakin            | NOAA Watchstander      |

 $Appendix\ 1\ -\ Conversion\ table\ of\ 2011\ KM11\ -21\ Kongsberg\ SIS\ -assigned\ . all\ file\ names\ to\ UNH\ file\ names\ by\ Julian\ Day.$ 

| JD  | Data   | Kongsberg file name  | UNH file name             | Notes             |
|-----|--------|----------------------|---------------------------|-------------------|
| 212 | Folder | KM.all               | .all                      |                   |
| 212 | 110731 | 0000_20110731_193526 | NeckerRidge_line_tran100  | transit from Hono |
|     |        | 0001_20110731_200531 | NeckerRidge_line_tran101  | transit           |
|     |        | 0001_20110731_210159 | NeckerRidge_line_tran102  | transit           |
|     |        | 0002_20110731_224837 | NeckerRidge_line_tran103  | transit           |
| 213 | 110801 | 0003 20110801 000017 | NeckerRidge_line_tran104  | transit           |
|     |        | 0004_20110801_060014 | NeckerRidge_line_tran105  | transit           |
|     |        | 0005_20110801_120010 | NeckerRidge_line_tran106  | transit           |
|     |        | 0006_20110801_180129 | NeckerRidge_line_tran107  | transit           |
|     |        | 0007_20110801_220507 | NeckerRidge_line_tran108  | transit           |
|     |        |                      |                           |                   |
| 214 | 110802 | 0008_20110802_061430 | NeckerRidge_line_patch109 | WP1-WP2 patch     |
|     |        | 0009_20110802_074715 | NeckerRidge_line_patch110 | WP2-WP1 patch     |
|     |        | 0010_20110802_091001 | NeckerRidge_line_patch111 | WP1-WP2 patch     |
|     |        | 0011_20110802_123450 | NeckerRidge_line_patch112 | WP3-WP4 patch     |
|     |        | 0012_20110802_135942 | NeckerRidge_line_patch113 | WP4-WP3 patch     |
|     |        | 0013_20110802_153526 | NeckerRidge_line_patch114 | WP5-WP6 patch     |
|     |        | 0014_20110802_170158 | NeckerRidge_line_tran115  | transit           |
|     |        | 0015_20110802_180025 | NeckerRidge_line_tran116  | transit           |
|     | 440003 | 0014 00110000 007101 |                           |                   |
| 215 | 110803 | 0016_20110803_235131 | NeckerRidge_line_117      | survey            |
|     |        | 0017_20110803_012144 | NeckerRidge_line_118      | survey            |
|     |        | 0018_20110803_060004 | NeckerRidge_line_119      | survey            |
|     |        | 0019_20110803_090942 | NeckerRidge_line_120      | survey            |
|     |        | 0020_20110803_120011 | NeckerRidge_line_121      | survey            |
|     |        | 0021_20110803_171631 | NeckerRidge_line_122      | survey            |
|     |        | 0022_20110803_182334 | NeckerRidge_line_123      | survey            |
|     |        | 0023_20110803_000009 | NeckerRidge_line_124      | survey            |
| 216 | 110804 | 0024_20110804_024554 | NeckerRidge_line_125      | survey            |
|     | 11000  | 0025 20110804 060000 | NeckerRidge_line_126      | survey            |

| JD   | Data   | Kongsberg file name  | UNH file name            | Notes               |
|------|--------|----------------------|--------------------------|---------------------|
|      | Folder | KM.all               | .all                     |                     |
|      |        | 0026_20110804_104444 | NeckerRidge_line_127     | survey (cross-line) |
|      |        | 0027_20110804_110912 | NeckerRidge_line_128     | survey              |
|      |        | 0028_20110804_120203 | NeckerRidge_line_129     | survey              |
|      |        | 0029_20110804_180011 | NeckerRidge_line_130     | survey              |
|      |        | 0030_20110804_184303 | NeckerRidge_line_131     | survey              |
| 217  | 110005 | 0021 20110904 000017 | N. J. Dil. 120           |                     |
| 217  | 110805 | 0031_20110804_000016 | NeckerRidge_line_132     | survey              |
|      |        | 0032_20110805_062119 | NeckerRidge_line_133     | survey              |
|      |        | 0033_20110805_120501 | NeckerRidge_line_134     | survey              |
|      |        | 0034_20110805_180026 | NeckerRidge_line_135     | survey              |
|      |        | 0035_20110805_204713 | NeckerRidge_line_136     | survey              |
| 210  | 110007 | 0026 20110006 000026 | N. 1 . D' 1 1' 127       |                     |
| 218  | 110806 | 0036_20110806_000026 | NeckerRidge_line_137     | survey              |
|      |        | 0037_20110806_060020 | NeckerRidge_line_138     | survey              |
|      |        | 0038_20110806_120604 | NeckerRidge_line_139     | survey, cross-line  |
|      |        | 0039_20110806_140847 | NeckerRidge_line_140     | survey              |
| • 10 | 11000= | 0040_20110806_180025 | NeckerRidge_line_141     | survey              |
| 219  | 110807 | 0041_20110807_000004 | NeckerRidge_line_142     | survey              |
|      |        | 0042_20110807_050601 | NeckerRidge_line_143     | survey              |
|      |        | 0043_20110807_060004 | NeckerRidge_line_144     | survey              |
|      |        | 0044_20110807_124949 | NeckerRidge_line_145     | survey              |
|      |        | 0045_20110807_155654 | NeckerRidge_line_146     | survey, spare (DNG) |
|      |        | 0046_20110807_162946 | NeckerRidge_line_147     | survey              |
|      |        | 0047_20110807_180004 | NeckerRidge_line_148     | survey              |
|      |        | 0048_20110807_225021 | NeckerRidge_line_149     | survey              |
| 220  | 440000 | 0040 40440000 000044 | N 1 D11 11 450           |                     |
| 220  | 110808 | 0049_20110808_000011 | NeckerRidge_line_150     | survey              |
|      |        | 0050_20110808_015700 | NeckerRidge_line_151     | survey              |
|      |        | 0051_20110808_060006 | NeckerRidge_line_152     | survey              |
|      |        | 0052_20110808_120253 | NeckerRidge_line_153     | survey              |
|      |        | 0053_20110808_170523 | NeckerRidge_line_tran154 | transit to Honolulu |
| 221  | 440000 | 0074 20110000 00000  | N. 1. D. 1. 1            |                     |
| 221  | 110809 | 0054_20110809_000003 | NeckerRidge_line_tran155 | transit to Honolulu |
|      |        | 0055_20110809_060010 | NeckerRidge_line_tran156 | transit to Honolulu |
|      |        | 0056_20110809_092337 | NeckerRidge_line_tran157 | transit to Honolulu |
|      |        | 0057_20110809_120015 | NeckerRidge_line_tran158 | transit to Honolulu |
|      |        | 0058_20110809_181118 | NeckerRidge_line_tran159 | transit to Honolulu |
| 222  | 440040 | 0050 20110010 000015 | N 1 D'1 1' 450           | , ',, TY 1 1        |
| 222  | 110810 | 0059_20110810_000016 | NeckerRidge_line_tran160 | transit to Honolulu |
|      |        | 0060_20110810_060004 | NeckerRidge_line_tran161 | transit to Honolulu |
|      |        | 0061_20110810_120104 | NeckerRidge_line_tran162 | transit to Honolulu |

Appendix 2 - Conversion table of 2009 EX0909 .all file names to UNH file names by Julian Day.

| JD  | Data<br>Folder | NOAA file name<br>EX.all | UNH file name<br>raw.all | Notes      |
|-----|----------------|--------------------------|--------------------------|------------|
| 269 | 090826         | 0000_20090826_060627     | NeckerRidge_line_1       | cross line |
|     |                | 0001_20090826_074756     | NeckerRidge_line_2       |            |
|     |                | 0002_20090826_134758     | NeckerRidge_line_3       |            |

|      |        | 0003_20090826_194800                                | NeckerRidge_line_4                      |      |
|------|--------|-----------------------------------------------------|-----------------------------------------|------|
| 250  | 000027 | 0004 20000027 014001                                | Ml D. 1 1                               |      |
| 270  | 090827 | <b>0004_20090827_014801</b><br>0005_20090827_014801 | NeckerRidge_line_5                      | tram |
|      |        | 0005_20090827_014801                                | NeckerRidge_line_6                      | turn |
|      |        | 0006_20090827_014801                                | NeckerRidge_line_7 NeckerRidge_line_8   |      |
|      |        | 0007_20090827_014801                                |                                         |      |
|      |        |                                                     | NeckerRidge_line_9 NeckerRidge_line_10  |      |
|      |        | 0009_20090827_014801                                |                                         |      |
|      |        | 00010_20090827_014801                               | NeckerRidge_line_11                     |      |
| 271  | 090828 | 00011_20090828_000005                               | NeckerRidge_line_12                     |      |
|      |        | 00012_20090828_060009                               | NeckerRidge_line_13                     |      |
|      |        | 00013_20090828_120001                               | NeckerRidge_line_14                     |      |
|      |        | 00014_20090828_180003                               | NeckerRidge_line_15                     |      |
| 252  | 000020 | 00015 20000020 225054                               | N 1 D'1 1' 1'                           |      |
| 272  | 090829 | 00015_20090829_235954                               | NeckerRidge_line_16                     |      |
|      |        | 00016_20090829_060000                               | NeckerRidge_line_17                     |      |
|      |        | 00017_20090829_071403                               | NeckerRidge_line_18                     | turn |
|      |        | 00018_20090829_075708                               | NeckerRidge_line_19                     |      |
|      |        | 00019_20090829_135707                               | NeckerRidge_line_20                     |      |
|      |        | 00020_20090829_195712                               | NeckerRidge_line_21                     |      |
|      |        | 00021_20090829_225506                               | NeckerRidge_line_22                     | turn |
| 273  | 090830 | 00022 20090830 001857                               | NeckerRidge_line_23                     |      |
|      |        | 00023 20090830 045121                               | NeckerRidge_line_24                     |      |
|      |        | 00024 20090830 105121                               | NeckerRidge_line_25                     |      |
|      |        | 00025_20090830_152556                               | NeckerRidge_line_26                     | turn |
|      |        | 00026_20090830_155314                               | NeckerRidge_line_27                     |      |
|      |        | 00027_20090830_215315                               | NeckerRidge_line_28                     |      |
| 27.4 | 000021 | 00000 20000021 000200                               | N. I. D.I. II. 40                       |      |
| 274  | 090831 | 00028_20090831_000200                               | NeckerRidge_line_29                     | 4    |
|      |        | 00029_20090831_053021                               | NeckerRidge_line_30                     | turn |
|      |        | 00030_20090831_071142                               | NeckerRidge_line_31                     |      |
|      |        | 000310_20090831_074507<br>00032_20090831_075255     | NeckerRidge_line_32 NeckerRidge line 33 |      |
|      |        |                                                     | 8                                       |      |
|      |        | 00033_20090831_15248                                | NeckerRidge_line_34                     |      |
|      |        | 00034_20090831_195248                               | NeckerRidge_line_35                     | 4    |
|      |        | 00035_20090831_212522                               | NeckerRidge_line_36                     | turn |
|      |        | END OF EX0909 LEG 1                                 | END OF EX0909 LEG 1                     |      |

| JD  | Data   | NOAA file name        | UNH file name       | Notes |
|-----|--------|-----------------------|---------------------|-------|
|     | Folder | EX.all                | raw.all             | Notes |
| 288 | 090915 | 00000_20090915_183202 | NeckerRidge_line_37 |       |
|     |        | 00001_20090915_200611 | NeckerRidge_line_38 |       |
|     |        | 00002_20090915_231400 | NeckerRidge_line_39 |       |
|     |        |                       |                     |       |
| 289 | 090916 | 00003_20090916_000008 | NeckerRidge_line_40 |       |
|     |        | 00004_20090916_060005 | NeckerRidge_line_41 |       |
|     |        | 00005_20090916_090305 | NeckerRidge_line_42 |       |
|     |        | 00006_20090916_104732 | NeckerRidge_line_43 | turn  |
|     |        | 00007_20090916_105216 | NeckerRidge_line_44 | turn  |
|     |        | 00008_20090916_112543 | NeckerRidge_line_45 |       |

| JD  | Data     | NOAA file name         | UNH file name       | NT - 4   |
|-----|----------|------------------------|---------------------|----------|
|     | Folder   | EX.all                 | raw.all             | Notes    |
|     |          | 00009_20090916_112751  | NeckerRidge_line_46 |          |
|     |          | 00010_20090916_172750  | NeckerRidge_line_47 |          |
|     |          | 00011_20090916_180858  | NeckerRidge_line_48 | turn     |
|     |          | 00012_20090916_191853  | NeckerRidge_line_49 | turn     |
|     |          | 00013_20090916_220359  | NeckerRidge_line_50 |          |
|     |          | 00014_20090916_233127  | NeckerRidge_line_51 |          |
| 290 | 090917   | 00015_20090917_053129  | NeckerRidge_line_52 |          |
| 290 | 090917   | 00015_20090917_061300  | NeckerRidge_line_53 |          |
|     |          | 00010_20090917_001300  | NeckerRidge_line_53 |          |
|     |          | 00017_20090917_121300  | NeckerRidge_line_55 | turn     |
|     |          | 00019_20090917_161841  | NeckerRidge_line_56 | turri    |
|     |          | 00019_20090917_101841  | NeckerRidge_line_57 | turn     |
|     |          | 00020_20090917_174411  | NeckerRidge_line_58 | tuiii    |
|     |          | 00021_20090917_173028  | NeckerRidge_line_59 |          |
|     |          | 00022_20090917_223131  | rveckerridge_ime_s/ |          |
| 291 | 090918   | 00023_20090918_000006  | NeckerRidge_line_60 |          |
|     |          | 00024_20090918_060010  | NeckerRidge_line_61 |          |
|     |          | 00025_20090918_080622  | NeckerRidge_line_62 | turn     |
|     |          | 00026_20090918_081059  | NeckerRidge_line_63 | turn     |
|     |          | 00027_20090918_093101  | NeckerRidge_line_64 | turn     |
|     |          | 00028_20090918_093549  | NeckerRidge_line_65 |          |
|     |          | 00029_20090918_153550  | NeckerRidge_line_66 |          |
|     |          | 00030_20090918_210712  | NeckerRidge_line_67 | turn     |
|     |          | 00031_20090918_210834  | NeckerRidge_line_68 | turn     |
|     |          | 00032_20090918_221256  | NeckerRidge_line_69 |          |
|     |          | 00033_20090918_231052  | NeckerRidge_line_70 |          |
|     |          | 00034_20090918_235957  | NeckerRidge_line_71 |          |
| 292 | 090919   | 00035_20090919_002823  | NeckerRidge_line_72 |          |
|     | 070717   | 00036_20090919_062816  | NeckerRidge_line_73 |          |
|     |          | 00037_20090919_070208  | NeckerRidge_line_74 |          |
|     |          | 00038 20090919 130211  | NeckerRidge_line_75 |          |
|     |          | 00039_20090919_153938  | NeckerRidge_line_76 | turn     |
|     |          | 00040 20090919 154221  | NeckerRidge_line_77 | tarr     |
|     |          | 00041 20090919 182357  | NeckerRidge_line_78 |          |
|     |          | 00042_20090919_231617  | NeckerRidge line 79 |          |
| 293 | 090920   | 00043 20090920 0000043 | NeckerRidge line 80 |          |
|     | 020220   | 00044_20090920_060005  | NeckerRidge_line_81 |          |
|     |          | 00045_20090920_083624  | NeckerRidge_line_82 | turn     |
|     |          | 00046_20090920_084808  | NeckerRidge_line_83 |          |
|     |          | 00047 20090920 101204  | NeckerRidge_line_84 |          |
|     |          | 00048_20090920_104419  | NeckerRidge_line_85 | 60 pings |
|     |          | 00049_20090920_104528  | NeckerRidge_line_86 | 1 0      |
|     |          | 00050_20090920_164527  | NeckerRidge_line_87 |          |
|     |          | 00051_20090920_215028  | NeckerRidge_line_88 |          |
| 204 | 000021   | 00053 30000031 0000043 | Machault 1 12 00    |          |
| 294 | 090921   | 00052_20090921_0000043 | NeckerRidge_line_89 |          |
|     |          | 00053_20090921_0000043 | NeckerRidge_line_90 | 4        |
|     |          | 00054_20090921_0000043 | NeckerRidge_line_91 | turn     |
|     |          | 00055_20090921_0000043 | NeckerRidge_line_92 |          |
|     | <u> </u> | 00056_20090921_0000043 | NeckerRidge_line_93 |          |

| JD | Data<br>Folder | NOAA file name<br>EX.all | UNH file name<br>raw.all | Notes |
|----|----------------|--------------------------|--------------------------|-------|
|    |                |                          |                          |       |
|    |                | END OF EX0909 LEG 2      | END OF EX0909 LEG 2      |       |

 $\label{lem:second} \begin{tabular}{ll} Appendix 3 - Conversion table of KM11-21 Knudsen-assigned .sgy file names to UNH file names by Julian Day. \end{tabular}$ 

| JD  | Data   | Knudsen file name | UNH file name           | NT 4  |
|-----|--------|-------------------|-------------------------|-------|
|     | Folder | .sgv              | .sgv                    | Notes |
| 216 | 110803 | Necker 70884 121  | Necker_3.5kHz_line_117  |       |
|     |        | Necker_70884_122  | Necker_3.5kHz_line_118  |       |
|     |        | Necker_70884_123  | Necker_3.5kHz line_119  |       |
|     |        | Necker_70884_124  | Necker_3.5kHz line_120  |       |
|     |        | Necker_70884_125  | Necker_3.5kHz line_121  |       |
|     |        | Necker_70884_126  | Necker_3.5kHz line_122  |       |
|     |        | Necker_70884_127  | Necker_3.5kHz line_123  |       |
| 216 | 110804 | Necker_70884_128  | Necker_3.5kHz line_124  |       |
| 210 | 110004 | Necker 70884 129  | Necker_3.5kHz line_125  |       |
|     |        | Necker_70884_130  | Necker_3.5kHz line_126  |       |
|     |        | Necker_70884_131  | Necker_3.5kHz line_127  |       |
|     |        | Necker_70884_132  | Necker_3.5kHz line_128  |       |
|     |        | Necker 70884 133  | Necker 3.5kHz line 129  |       |
|     |        | Necker_70884_134  | Necker_3.5kHz line_130  |       |
|     |        |                   |                         |       |
| 217 | 110805 | Necker_70884_135  | Necker_3.5kHz line_131  |       |
|     |        | Necker_70884_136  | Necker_3.5kHz line_132  |       |
|     |        | Necker_70884_137  | Necker_3.5kHz line_133  |       |
|     |        | Necker_70884_138  | NeckerR_3.5kHz line_134 |       |
|     |        | Necker_70884_139  | Necker_3.5kHz line_135  |       |
| 218 | 110806 | Necker 70884 140  | Necker_3.5kHz line_136  |       |
|     | 110000 | Necker_70884_141  | Necker_3.5kHz line_137  |       |
|     |        | Necker 70884 142  | Necker_3.5kHz line_138  |       |
|     |        | Necker_70884_143  | Necker_3.5kHz line_139  |       |
|     |        | Necker_70884_144  | Necker_3.5kHz line_140  |       |
|     |        |                   |                         |       |
| 219 | 110807 | Necker_70884_145  | Necker_3.5kHz line_141  |       |
|     |        | Necker_70884_116  | Necker_3.5kHz line_142  |       |
|     |        | Necker_70884_146  | Necker_3.5kHz_line_143  |       |
|     |        | Necker_70884_147  | Necker_3.5kHz_line_144  |       |
|     |        | Necker_70884_148  | Necker_3.5kHz_line_145  |       |
|     |        | Necker_70884_149  | Necker_3.5kHz_line_146  |       |
|     |        | Necker_70884_150  | Necker_3.5kHz_line_147  |       |
|     |        | Necker_70884_151  | Necker_3.5kHz_line_148  |       |
|     |        | Necker_70884_152  | Necker_3.5kHz_line_149  |       |
|     |        | Necker_70884_153  | Necker_3.5kHz_line_150  |       |
|     |        | Necker_70884_154  | Necker_3.5kHz_line_151  |       |

| JD  | Data   | Knudsen file name | UNH file name              | Notes                |
|-----|--------|-------------------|----------------------------|----------------------|
|     | Folder | .sgy              | .sgy                       | Notes                |
|     |        | Necker_70884_155  | Necker_3.5kHz_line_152     |                      |
| 220 | 110808 | Necker_70884_156  | Necker_3.5kHz line_153     |                      |
|     |        | Necker_70884_157  | Necker_3.5kHz_line_154     |                      |
|     |        | Necker_70884_158  | Necker_3.5kHz_line_155     |                      |
|     |        | Necker_70884_159  | Necker_3.5kHz_line_tran156 | start transit 2 Hono |
|     |        |                   |                            |                      |
| 221 | 110809 | Necker_70884_160  | Necker_3.5kHz_line_tran157 | transit 2 Hono       |
|     |        | Necker_70884_161  | Necker_3.5kHz_line_tran158 | transit to Honolulu  |
|     |        | Necker_70884_162  | Necker_3.5kHz_line_tran159 | transit to Honolulu  |
|     |        | Necker_70884_163  | Necker_3.5kHz_line_tran160 | transit to Honolulu  |
|     |        | Necker_70884_164  | Necker_3.5kHz_line_tran161 | transit to Honolulu  |
|     |        |                   |                            |                      |
| 222 | 110810 | Necker_70884_165  | Necker_3.5kHz_line_tran162 | transit to Honolulu  |
|     |        | Necker_70884_166  | Necker_3.5kHz_line_tran163 | transit to Honolulu  |
|     |        | Necker_70884_167  | Necker_3.5kHz_line_tran164 | transit to Honolulu  |

# **Appendix 4 - Locations of XBT casts**

| XBT number | Latitude  | Longitude  | Serial Number | TYPE      |
|------------|-----------|------------|---------------|-----------|
| 757        | 21.25865  | -158.39360 | 01097246      | Deep Blue |
| 758        | 21.35522  | -160.41613 | 01097017      | Deep Blue |
| 759        | 21.56947  | -161.67417 | 01097016      | Deep Blue |
| 759a       | 21.69073  | -162.28493 | 01097016      | Deep Blue |
| 761        | 21.82892  | -162.97842 | 01097014      | Deep Blue |
| 762        | 21.88713  | -163.24093 | 01097018      | Deep Blue |
| 763        | 22.08502  | -164.05143 | 01097019      | Deep Blue |
| 764        | 22.24447  | -163.96942 | 01097020      | Deep Blue |
| 765        | 22.69783  | -164.27242 | 01097021      | Deep Blue |
| 766        | 22.80417  | -164.34303 | 01097025      | Deep Blue |
| 767        | 23.25517. | -164.65208 | 01097022      | Deep Blue |
| 768        | 22.97627  | -165.76603 | 01097024      | Deep Blue |
| 769        | 23.04292  | -164.81800 | 01097023      | Deep Blue |
| 770        | 23.42208  | -164.76317 | 01160562      | Deep Blue |
| 771        | 23.12700  | -165.28758 | 01160563      | Deep Blue |
| 772        | 22.84867  | -165.83167 | 01160564      | Deep Blue |
| 773        | 22.86400  | -165.62178 | 01160558      | Deep Blue |
| 774        | 23.19290  | -164.97600 | 01160559      | Deep Blue |
| 775        | 23.25517  | -164.65208 | 01160565      | Deep Blue |
| 776        | 22.57200  | -166.01225 | 01160561      | Deep Blue |
| 777        | 22.10283  | -166.70922 | 01160557      | Deep Blue |
| 778        | 22.03200  | -166.80817 | 01160560      | Deep Blue |
| 779        | 23.25517  | -164.65208 | 01160556      | Deep Blue |
| 780        | 21.61285  | -167.39247 | 01160555      | Deep Blue |
| 781        | 21.20033  | -168.14973 | 01160554      | Deep Blue |
| 782        | 20.59400  | -169.02958 | 01097230      | Deep Blue |
| 783        | 19.85600  | -170.09785 | 01097231      | Deep Blue |

| 784 | 19.76817 | -170.22367 | 01097232 | Deep Blue |
|-----|----------|------------|----------|-----------|
| 785 | 19.87633 | -169.92250 | 01097237 | Deep Blue |
| 786 | 20.56478 | -168.92750 | 01097236 | Deep Blue |
| 787 | 21.20900 | -168.00467 | 01097234 | Deep Blue |
| 788 | 21.45535 | -168.26460 | 01097235 | Deep Blue |
| 789 | 20.37000 | -169.82717 | 01097238 | Deep Blue |
| 790 | 19.94833 | -170.43000 | 01097239 | Deep Blue |
| 791 | 19.91892 | -170.63317 | 01097240 | Deep Blue |
| 792 | 20.13148 | -170.32835 | 01097241 | Deep Blue |
| 793 | 20.59983 | -169.65317 | 01097233 | Deep Blue |
| 794 | 20.58042 | -170.00392 | 01096653 | Deep Blue |
| 795 | 19.76817 | -170.22367 | 01096649 | Deep Blue |
| 796 | 21.07428 | -168.97668 | 01096645 | Deep Blue |
| 797 | 21.73633 | -168.02567 | 01096652 | Deep Blue |
| 798 | 21.95883 | -167.70425 | 01096648 | Deep Blue |
| 799 | 22.32442 | -167.13917 | 01096644 | Deep Blue |
| 800 | 22.32258 | -166.54450 | 01096643 | Deep Blue |
| 801 | 22.32377 | -165.76337 | 01096647 | Deep Blue |
| 802 | 22.32433 | -165.61967 | 01096651 | Deep Blue |
| 803 | 22.32495 | -165.12718 | 01096650 | Deep Blue |
| 804 | 22.32500 | -164.54000 | 01096646 | Deep Blue |
| 805 | 22.32750 | -163.85833 | 01096642 | Deep Blue |
| 806 | 22.12413 | -163.35917 | 01097266 | Deep Blue |
| 807 | 21.76642 | -162.16633 | 01097267 | Deep Blue |
| 808 | 21.52383 | -160.95133 | 01097270 | Deep Blue |
| 809 | 21.45770 | -160.48287 | 01097274 | Deep Blue |
| 810 | 21.37000 | -159.24467 | 01097271 | Deep Blue |

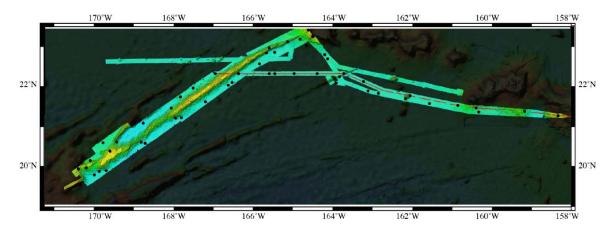



Figure 12. Map of locations of XBT (black dots). Foreground is bathymetry acquired on this cruise. See Appendix 4 for positions.

# Appendix 5. Cruise Calendar

# July-August 2011

| <b>Sunday</b>               | Monday                                                                   | Tuesday                                                          | Wednesday                                          |         | Friday  | Saturday |
|-----------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------|---------|---------|----------|
| depart<br>Honolulu<br>0800L | transit & patch test                                                     | JD215 <mark>2</mark><br>completed<br>patch test<br>start mapping |                                                    | mapping | mapping | mapping  |
| mapping                     | <sup>JD221</sup> <mark>8</mark><br>began transit<br>to Honolulu<br>0700L | transit to Honolulu                                              | <sup>JD223</sup> 10<br>arrive<br>Honolulu<br>0800L | 11      | 12      | 13       |
| 14                          | 15                                                                       | 16                                                               | 17                                                 | 18      | 19      | 20       |
| 21                          | 22                                                                       | 23                                                               | 24                                                 | 25      | 26      | 27       |
| 28                          | 29                                                                       | 30                                                               | 31                                                 |         |         |          |

# Appendix 6. Gravity land-tie Data

**Date:** July 30, 2011 (pre-cruise tie)

**Base Station Code:** ISGN 71 gravity = 978923.4 mgal

**Port:** Snug Harbor, Sand Island, Honolulu, HI

Cruise: KM11-21

# **Gravity Base Station Location (Lat/lon):**

Ship's meter

| Time (UTC) | Reading | <b>Spring Tension</b> | Height above sea<br>level |
|------------|---------|-----------------------|---------------------------|
| 2219       | 6995.93 | 6996.26               | 1.85 m                    |
| 2225       | 6995.66 | 6996.00               | 1.85 m                    |
| 2242       | 6995.89 | 6995.89               | 1.85 m                    |

**Base station value (mgal)** 

**Ship Location (Port, Pier, etc.):** water to pier = 1.85 m; ship to land tie+28.9 m; deck height to pier= 1.9 m

Land Meter ID (Serial No.): Carson (LaCoste Romberg,) s/n 1

| Location                | Time (UTC) | Reading       | Height above<br>Sea level |
|-------------------------|------------|---------------|---------------------------|
| First pier measurement  | 2219       | 2119.42       |                           |
| Second pier measurement | 2225       | 2119.465      |                           |
|                         | 2242       | 2119.62       |                           |
|                         |            | From portable |                           |
|                         |            | meter         |                           |

**Comments:** 

**Operator:** Ben Colello

### **Appendix 7. Kongsberg EM122 BIST Test Results**

#### BIST test at Sand Island dock, Honolulu prior to departure

```
Saved: 2011.07.31 00:20:45
Sounder Type: 122, Serial no.: 109
          Time Ser. No. BIST Result
Date
2011.07.31 00:13:01.986 109
                                     0
                                              OK
Number of BSP67B boards: 2
BSP 1 Master 2.3 090702 4.3 070913 4.3 070913
BSP 1 Slave 2.3 090702 6.0 080902
BSP 1 RXI FPGA 3.6 080821
BSP 1 DSP FPGA A 4.0 070531
BSP 1 DSP FPGA B 4.0 070531
BSP 1 DSP FPGA C 4.0 070531
BSP 1 DSP FPGA D 4.0 070531
BSP 1 PCI TO SLAVE A1 FIFO: ok
BSP 1 PCI TO SLAVE A2 FIFO: ok
BSP 1 PCI TO SLAVE A3 FIFO: ok
BSP 1 PCI TO SLAVE B1 FIFO: ok
BSP 1 PCI TO SLAVE B2 FIFO: ok
BSP 1 PCI TO SLAVE B3 FIFO: ok
BSP 1 PCI TO SLAVE C1 FIFO: ok
BSP 1 PCI TO SLAVE C2 FIFO: ok
BSP 1 PCI TO SLAVE C3 FIFO: ok
BSP 1 PCI TO SLAVE D1 FIFO: ok
BSP 1 PCI TO SLAVE D2 FIFO: ok
BSP 1 PCI TO SLAVE D3 FIFO: ok
BSP 1 PCI TO MASTER A HPI: ok
BSP 1 PCI TO MASTER B HPI: ok
BSP 1 PCI TO MASTER C HPI: ok
BSP 1 PCI TO MASTER D HPI: ok
BSP 1 PCI TO SLAVE A1 HPI: ok
BSP 1 PCI TO SLAVE A2 HPI: ok
BSP 1 PCI TO SLAVE A3 HPI: ok
BSP 1 PCI TO SLAVE B1 HPI: ok
BSP 1 PCI TO SLAVE B2 HPI: ok
BSP 1 PCI TO SLAVE B3 HPI: ok
BSP 1 PCI TO SLAVE C1 HPI: ok
BSP 1 PCI TO SLAVE C2 HPI: ok
BSP 1 PCI TO SLAVE C3 HPI: ok
BSP 1 PCI TO SLAVE D1 HPI: ok
BSP 1 PCI TO SLAVE D2 HPI: ok
BSP 1 PCI TO SLAVE D3 HPI: ok
BSP 2 Master 2.3 090702 4.3 070913 4.3 070913
BSP 2 Slave 2.3 090702 6.0 080902
BSP 2 RXI FPGA 3.6 080821
BSP 2 DSP FPGA A 4.0 070531
BSP 2 DSP FPGA B 4.0 070531
BSP 2 DSP FPGA C 4.0 070531
BSP 2 DSP FPGA D 4.0 070531
BSP 2 PCI TO SLAVE A1 FIFO: ok
BSP 2 PCI TO SLAVE A2 FIFO: ok
BSP 2 PCI TO SLAVE A3 FIFO: ok
BSP 2 PCI TO SLAVE B1 FIFO: ok
```

```
BSP 2 PCI TO SLAVE B2 FIFO: ok
BSP 2 PCI TO SLAVE B3 FIFO: ok
BSP 2 PCI TO SLAVE C1 FIFO: ok
BSP 2 PCI TO SLAVE C2 FIFO: ok
BSP 2 PCI TO SLAVE C3 FIFO: ok
BSP 2 PCI TO SLAVE D1 FIFO: ok
BSP 2 PCI TO SLAVE D2 FIFO: ok
BSP 2 PCI TO SLAVE D3 FIFO: ok
BSP 2 PCI TO MASTER A HPI: ok
BSP 2 PCI TO MASTER B HPI: ok
BSP 2 PCI TO MASTER C HPI: ok
BSP 2 PCI TO MASTER D HPI: ok
BSP 2 PCI TO SLAVE A1 HPI: ok
BSP 2 PCI TO SLAVE A2 HPI: ok
BSP 2 PCI TO SLAVE A3 HPI: ok
BSP 2 PCI TO SLAVE B1 HPI: ok
BSP 2 PCI TO SLAVE B2 HPI: ok
BSP 2 PCI TO SLAVE B3 HPI: ok
BSP 2 PCI TO SLAVE C1 HPI: ok
BSP 2 PCI TO SLAVE C2 HPI: ok
BSP 2 PCI TO SLAVE C3 HPI: ok
BSP 2 PCI TO SLAVE D1 HPI: ok
BSP 2 PCI TO SLAVE D2 HPI: ok
BSP 2 PCI TO SLAVE D3 HPI: ok
Summary:
BSP 1: OK
BSP 2: OK
2011.07.31 00:13:03.469 109
                             1
                                             OK
High Voltage Br. 1
TX36 Spec: 108.0 - 132.0
0 - 1
     120.9
0 - 2
     121.7
0 - 3
     121.3
     120.9
0 - 4
0 - 5
     121.7
    122.1
0-6
     122.1
0 - 7
8 - 0
      121.7
     121.3
0-9
0 - 10
       121.3
0-11 121.7
0 - 12
     121.7
     121.3
0 - 13
0-14 121.7
0-15 121.7
0-16 121.7
0-17 121.7
0-18 121.3
0-19 121.3
0-20 121.7
0-21 121.3
0-22 121.3
0-23 121.3
0-24 121.3
```

```
High Voltage Br. 2
TX36 Spec: 108.0 - 132.0
0-1 	 12\overline{0.9}
0-2 120.9
0 - 3
      120.9
0 - 4
      121.3
0-5
      122.2
0-6
      122.2
0 - 7
       121.7
8-0
      121.7
      120.9
0-9
0-10 121.7
0-11 122.2
0-12 121.7
0-13 120.9
0-14 121.7
0-15 121.3
0-16 120.9
0-10 120.9

0-17 120.9

0-18 122.2

0-19 121.7

0-20 122.2

0-21 121.7

0-22 121.3

0-23 121.3

\begin{array}{cccc}
0-23 & 121.3 \\
0-24 & 121.7
\end{array}

Input voltage 12V
_____
TX36 Spec: 11.0 - 13.0
0 - 1
         11.9
0 - 2
         11.9
0 - 3
         11.9
         11.8
0 - 4
0 - 5
         11.8
0-6
         11.9
0 - 7
         11.9
0-8
         11.9
        11.8
0-9
0 - 10
         11.8
0 - 11
         11.8
0 - 12
         11.9
0 - 13
         11.8
0 - 14
         11.8
0 - 15
         11.9
0-16
         11.8
0 - 17
         11.8
0 - 18
         11.9
0-19
         11.8
0 - 20
         11.9
0 - 21
         11.9
0-22
         11.8
0-23
         11.9
0 - 24
         11.9
Digital 3.3V
_____
                   2.8 - 3.5
TX36 Spec:
        3.3
0 - 1
0 - 2
         3.3
```

```
3.3
0 - 3
0 - 4
        3.3
0-5
        3.3
0-6
       3.3
0 - 7
       3.3
0-8
        3.3
       3.3
0-9
0 - 10
        3.3
       3.3
0-11
       3.3
0-12
0-13
        3.3
0 - 14
        3.3
0-15
       3.3
0-16
        3.3
0-17
       3.3
0 - 18
        3.3
0-19
       3.3
0 - 20
        3.3
0-21
       3.3
0-22
       3.3
0-23
       3.3
0-24
        3.3
Digital 2.5V
_____
TX36
       Spec:
              2.4 - 2.6
      2.5
0 - 1
0 - 2
       2.5
0 - 3
        2.5
0 - 4
        2.5
       2.5
0 - 5
0-6
       2.5
       2.5
0 - 7
8 - 0
        2.5
       2.5
0-9
0-10
        2.5
        2.5
0 - 11
0 - 12
        2.5
0 - 13
        2.5
0 - 14
        2.5
0 - 15
        2.5
0-16
        2.5
        2.5
0 - 17
0 - 18
        2.5
0 - 19
        2.5
0 - 20
        2.5
0 - 21
        2.5
0-22
        2.5
0-23
        2.5
0 - 24
        2.5
Digital 1.5V
_____
TX36
              1.4 - 1.6
       Spec:
0 - 1
       \bar{1}.5
0 - 2
        1.5
0 - 3
        1.5
0-4
        1.5
0-5
        1.5
0-6
        1.5
0 - 7
        1.5
```

```
8 - 0
       1.5
0-9
       1.5
0 - 10
        1.5
0 - 11
        1.5
0 - 12
        1.5
0-13
        1.5
0 - 14
        1.5
0-15
        1.5
0-16
        1.5
        1.5
0 - 17
0-18
        1.5
        1.5
0 - 19
0 - 20
        1.5
0 - 21
        1.5
0-22
        1.5
0 - 23
        1.5
0 - 24
         1.5
Temperature
TX36
       Spec: 15.0 - 75.0
0 - 1
       32.0
0 - 2
       32.0
0 - 3
       31.2
0 - 4
       30.4
0 - 5
       31.2
0-6
       31.6
0 - 7
       31.6
0 - 8
       29.6
0-9
       31.6
0 - 10
        31.2
0 - 11
       30.0
0-12
       29.6
0 - 13
       30.4
0 - 14
       31.2
0 - 15
       30.8
0-16
       30.0
0 - 17
       31.6
0 - 18
       32.4
0 - 19
       31.6
0-20
       32.4
0 - 21
       32.4
0-22
       31.2
0 - 23
       32.0
0 - 24
       32.4
Input Current 12V
______
TX36
       Spec: 0.3 - 1.5
       0.6
0 - 1
0-2
        0.6
0-3
        0.6
0 - 4
        0.5
0-5
        0.5
0-6
        0.5
0 - 7
        0.5
8 - 0
        0.5
0-9
        0.5
0-10
         0.5
```

0 - 11

0.5

```
\begin{array}{ccc}
0-12 & 0.5 \\
0-13 & 0.5
\end{array}

0 - 14
     0.6
0-15
       0.6
0-16
       0.5
0 - 17
       0.5
0 - 18
      0.5
0-19
       0.5
0-20
      0.5
0 - 21
       0.5
0-22
       0.5
0.5
0-23
0 - 24
       0.5
TX36 power test passed
IO TX MB Embedded PPC Embedded PPC Download
2.11 One CPU1.13 Reduced Performance: 1 voice/Mar 5 2007/1.07 Jun
17 2008/1.11
TX36 unique firmware test OK
2011.07.31 00:13:18.170 109
                                 2
                                            OK
Input voltage 12V
RX32 Spec: 11.0 - 13.0
7-1 11.7
7-2 11.7
7-2
      11.7
Input voltage 6V
RX32 Spec: 5.0 - 7.0
7-1 5.7
7-2 5.7
Digital 3.3V
_____
RX32 Spec: 2.8 - 3.5
7-1 3.3
7-2 3.3
Digital 2.5V
_____
RX32 Spec: 2.4 - 2.6
7-1 2.5
7-2 2.5
Digital 1.5V
_____
RX32 Spec: 1.4 - 1.6
7-1 1.5
7-2 1.5
Temperature
_____
RX32 Spec: 15.0 - 75.0
7-1 30.0
7-2 31.0
```

```
Input Current 12V
_____
RX32 Spec: 0.4 - 1.5
7-1 0.6
7-2 0.6
Input Current 6V
_____
RX32 Spec: 2.4 - 3.3
7-1 2.9
7-2 2.7
RX32 power test passed
IO RX MB Embedded PPC Embedded PPC Download
1.12 Generic1.14 GenericMay 5 2006/1.06 May 5 2006/1.07 Feb 18
2010/1.11
RX32 unique firmware test OK
                                   3
                                                OK
2011.07.31 00:13:18.236 109
High Voltage Br. 1
TX36 Spec: 108.0 - 132.0
0-1 120.9
0-2 121.3
     121.3
0 - 3
     120.9
0 - 4
     121.7
0 - 5
     121.7
0-6
      121.7
0 - 7
      121.7
8 - 0

\begin{array}{ccc}
0-9 & 121.3 \\
0-10 & 121.3
\end{array}

0-10 121.3

0-11 121.7

0-12 121.7

0-13 121.3

0-14 121.7

0-15 121.7

0-16 121.3

0-17 121.7
0-18 121.3
0-19 121.3
0-20 121.7
0-20 121.7
0-21 121.3
0-22 121.3
0-23 121.3
0-24 121.3
High Voltage Br. 2
_____
TX36 Spec: 108.0 - 132.0
0-1 120.9
0 - 2
     120.9
0 - 3
     120.9
0-4 121.3
0-5 121.7
```

```
0-6 121.7
0 - 7
     121.7
0-8 121.7
     120.9
0-9
0-10 121.7
0-11 122.2
0-12 121.7
0-13 120.9
0-14 121.7
0-15 121.3
0-16 120.9
0-17 120.5
0-18 122.2
0-19 121.7
0-20 122.6
0-21 121.7
0-22 121.3
0-23 121.3
0-24 121.7
Input voltage 12V
-----
TX36 Spec: 11.0 - 13.0
TX36 Spec:

0-1 11.9

0-2 11.9

0-3 11.9

0-4 11.8

0-5 11.8

0-6 11.9

0-7 11.9

0-8 11.9

0-9 11.8
11.9
0-10
0-11
        11.8
      11.8
0 - 12
       11.9
0 - 13
       11.8
0 - 14
       11.8
0 - 15
       11.9
0-16
        11.8
0 - 17
        11.8
0 - 18
        11.9
0-19
        11.8
0 - 20
        11.9
0 - 21
        11.9
0 - 22
        11.8
0-23
        11.9
0 - 24
        11.9
      Spec: 11.0 - 13.0
RX32
7-1
        11.8
      11.7
7-2
Input voltage 6V
_____
RX32 Spec: 5.0 - 7.0
      5.7
5.7
7-1
7-2
TRU power test passed
______
```

```
2011.07.31 00:13:18.353 109
                                      4 OK
EM 122 High Voltage Ramp Test
Test Voltage: 20.00 Measured Voltage: 18.00 PASSED
Test Voltage: 60.00 Measured Voltage: 59.00 PASSED
Test Voltage: 100.00 Measured Voltage: 100.00 PASSED
Test Voltage: 120.00 Measured Voltage: 121.00 PASSED
Test Voltage: 80.00 Measured Voltage: 85.00 PASSED
Test Voltage: 40.00 Measured Voltage: 45.00 PASSED
6 of 6 tests OK
2011.07.31 00:15:42.443 109
                                         5 OK
BSP 1 RXI TO RAW FIFO: ok
BSP 2 RXI TO RAW FIFO: ok
2011.07.31 00:15:47.326 109
                                         6
                                                    OK
Receiver impedance limits [350.0 700.0] ohm
Board 1 2 3 4
 1: 565.6 514.9
1: 565.6 514.9

2: 568.6 553.4

3: 565.2 563.5

4: 567.7 563.3

5: 571.0 574.0

6: 547.7 581.1

7: 560.7 585.5

8: 571.2 582.9

9: 528.8 500.0

10: 541.3 560.2

11: 572.5 548.5

12: 561.5 549.3

13: 538.3 582.3

14: 588.2 529.6
14: 588.2 529.6
15: 526.5 571.0
16: 559.1 575.7
17: 514.3 560.1
18: 517.3 576.5
19: 575.0 581.4
20: 577.7 583.3
21: 575.8 526.3
22: 531.2 585.4
23: 570.9 586.0
24: 568.2 555.5
25: 543.9 582.1
26: 584.6 602.5
27: 576.0 508.1
28: 555.6 563.8
29: 563.1 519.4
30: 509.2 575.3
31: 553.9 610.9
32: 556.4 553.2
Receiver Phase limits [-20.0 20.0] deg
Board 1 2 3 4
 1: -0.8
              3.8
 2: -1.3 0.1
```

```
3: -1.3 -0.4
 4: -1.1 -0.1
 5:
   -0.6 \quad -1.4
 6:
    0.1 - 1.2
7: -0.5 -1.4
8: -1.2
          -2.3

\begin{array}{cccc}
2.2 & 4.7 \\
0.7 & -0.2
\end{array}

9:
10:
11: -1.1 0.8
12: -0.1
           0.2
13:
    1.8 -1.1
14: -2.4 2.8
4.2 0.4
3.5 -1.6
17:
18:
19: -1.5 -1.5
20:
    -2.0 -2.3
    -1.8 3.4
21:
    2.3 -2.1
-1.0 -1.6
22:
23:
24:
    -1.4 1.1
    1.3 -2.0
-2.2 -2.9
25:
26:
    -0.9
27:
           4.3
28:
    -0.1 -0.3
29:
    -0.6
           4.3
   3.6 -0.4
0.6 -3.2
-0.5 1.5
30:
31:
32:
Rx Channels test passed
2011.07.31 00:16:19.261 109 7 OK
Tx Channels test passed
2011.07.31 00:19:00.085 109 8 OK
RX NOISE LEVEL
Board No: 1
                 75.1
74.2
73.9
69.5
71.4
 0:
         76.5
                           dΒ
         74.8
 1:
                           dΒ
         76.5
 2:
                           dΒ
         72.6
 3:
                           dВ
         65.1
 4:
                           dВ
         75.7
                    67.2
 5:
                           dВ
         76.3
                    73.8
 6:
                           dВ
         75.4
                    76.1
 7:
                           dВ
         73.7
                    77.5
 8:
                           dВ
         75.7
 9:
                    69.5
                           dВ
         75.7
                    62.6
10:
                           dВ
         74.3
                    74.2
11:
                           dВ
         76.0
                    71.6
12:
                           dΒ
         74.2
13:
                    69.8
                           dΒ
         75.1
                    75.9
14:
                           dВ
                    76.1 dB
15:
         66.1
         77.0
16:
                    75.4
                           dВ
```

```
72.5
              59.7
60.7
17:
                       dВ
18:
        74.8
                       dВ
                64.0
19:
        75.8
                       dВ
20:
        74.3
                67.9
                       dВ
21:
                62.9
        74.9
                       dВ
        74.7
                 63.5
22:
                       dВ
23:
        72.1
                 76.1
                       dВ
        77.3
24:
                 73.9
                       dВ
25:
        75.4
                 72.0
                       dΒ
26:
        75.3
                 74.7
                       dВ
        74.7
27:
                 70.8
                       dВ
28:
        71.4
                 72.4
                       dВ
        65.3
29:
                 75.2
                       dВ
30:
        76.3
                 69.1
                       dВ
31:
                 77.6
        73.1
                       dВ
```

Maximum noise at Board 2 Channel 31 Level: 77.6 dB

### Broadband noise test

Average noise at Board 1 74.7 dB OK Average noise at Board 2 73.1 dB OK

2011.07.31 00:19:06.435 109 9 OK

### RX NOISE SPECTRUM

```
10.0 kHz: 67.1 65.8

10.2 kHz: 69.1 67.0

10.3 kHz: 69.7 67.9

10.4 kHz: 71.0 69.3

10.6 kHz: 72.4 70.5

10.7 kHz: 72.4 70.7

10.9 kHz: 72.9 70.8

11.0 kHz: 72.7 70.6

11.2 kHz: 73.1 70.8

11.3 kHz: 71.5 70.2

11.4 kHz: 72.1
Board No:
                    1
                                        2
                                                      dВ
                                                      dВ
                                                      dВ
                                                      dВ
                                                      dΒ
                                                      dΒ
                                                      dВ
                                                      dΒ
                                                      dВ
                                                      dΒ
                                                      dВ
11.6 kHz:
                        72.6
                                          70.2
                                                      dВ
11.7 kHz:
                       72.2
                                          70.2
                                                      dВ
11.9 kHz:
                       72.1
                                          69.9
                                                      dВ
                       72.7
12.0 kHz:
                                         69.8
                                                      dВ
12.1 kHz:
                        70.1
                                         69.1
                                                      dΒ
12.3 kHz:
                        70.8
                                         68.9
                                                      dΒ
12.4 kHz:
                        70.1
                                         68.6
                                                      dВ
70.1
12.7 kHz: 69.1
12.9 kHz: 68.7
13.0 kHz: 68.1
12.6 kHz:
                                          67.9
                                                      dВ
                                          67.6
                                                      dВ
                                          66.8
                                                      dВ
                                          66.6
                                                      dΒ
```

Maximum noise at Board 1 Frequency 11.2 kHz Level: 73.1 dB

### Spectral noise test

Average noise at Board 1 71.2 dB OK Average noise at Board 2 69.3 dB OK

```
2011.07.31 00:19:12.785 109
                              10
                                             OK
CPU: KOM CP6011
Clock 1795 MHz
Die 42 oC (peak: 40 oC @ 2011-07-31 - 00:13:04)
Board 43 oC (peak: 44 oC @ 2011-07-31 - 00:19:10)
Core 1.33 V
3V3
    3.28 V
12V 11.91 V
-12V -12.04 V
BATT 3.49 V
Primary network: 157.237.14.60:0xffff0000
Secondary network: 192.168.1.122:0xffffff00
2011.07.31 00:19:12.819 109
                                  15
                                             OK
EM 122
BSP67B Master: 2.2.3 090702
BSP67B Slave: 2.2.3 090702
CPU: 1.2.3 110321
DDS: 3.5.2 101013
RX32 version : Feb 18 2010 Rev 1.11
TX36 LC version : Jun 17 2008 Rev 1.11
VxWorks 5.5.1 Build 1.2/2-IX0100 May 16 2007, 11:31:17
```

### **End of dock BIST Test**

### BIST test underway in 4000 m water depths with Knudsen 3260 subbottom profiler on

```
Saved: 2011.07.31 22:48:20
Sounder Type: 122, Serial no.: 109
Date Time Ser. No. BIST Result
2011.07.31 22:39:48.507 109 0 OK
Number of BSP67B boards: 2
BSP 1 Master 2.3 090702 4.3 070913 4.3 070913
BSP 1 Slave 2.3 090702 6.0 080902
BSP 1 RXI FPGA 3.6 080821
BSP 1 DSP FPGA A 4.0 070531
BSP 1 DSP FPGA B 4.0 070531
BSP 1 DSP FPGA C 4.0 070531
BSP 1 DSP FPGA D 4.0 070531
BSP 1 PCI TO SLAVE A1 FIFO: ok
BSP 1 PCI TO SLAVE A2 FIFO: ok
BSP 1 PCI TO SLAVE A3 FIFO: ok
BSP 1 PCI TO SLAVE B1 FIFO: ok
BSP 1 PCI TO SLAVE B2 FIFO: ok
BSP 1 PCI TO SLAVE B3 FIFO: ok
BSP 1 PCI TO SLAVE C1 FIFO: ok
BSP 1 PCI TO SLAVE C2 FIFO: ok
BSP 1 PCI TO SLAVE C3 FIFO: ok
BSP 1 PCI TO SLAVE D1 FIFO: ok
BSP 1 PCI TO SLAVE D2 FIFO: ok
BSP 1 PCI TO SLAVE D3 FIFO: ok
BSP 1 PCI TO MASTER A HPI: ok
BSP 1 PCI TO MASTER B HPI: ok
BSP 1 PCI TO MASTER C HPI: ok
```

```
BSP 1 PCI TO MASTER D HPI: ok
BSP 1 PCI TO SLAVE A1 HPI: ok
BSP 1 PCI TO SLAVE A2 HPI: ok
BSP 1 PCI TO SLAVE A3 HPI: ok
BSP 1 PCI TO SLAVE B1 HPI: ok
BSP 1 PCI TO SLAVE B2 HPI: ok
BSP 1 PCI TO SLAVE B3 HPI: ok
BSP 1 PCI TO SLAVE C1 HPI: ok
BSP 1 PCI TO SLAVE C2 HPI: ok
BSP 1 PCI TO SLAVE C3 HPI: ok
BSP 1 PCI TO SLAVE D1 HPI: ok
BSP 1 PCI TO SLAVE D2 HPI: ok
BSP 1 PCI TO SLAVE D3 HPI: ok
BSP 2 Master 2.3 090702 4.3 070913 4.3 070913
BSP 2 Slave 2.3 090702 6.0 080902
BSP 2 RXI FPGA 3.6 080821
BSP 2 DSP FPGA A 4.0 070531
BSP 2 DSP FPGA B 4.0 070531
BSP 2 DSP FPGA C 4.0 070531
BSP 2 DSP FPGA D 4.0 070531
BSP 2 PCI TO SLAVE A1 FIFO: ok
BSP 2 PCI TO SLAVE A2 FIFO: ok
BSP 2 PCI TO SLAVE A3 FIFO: ok
BSP 2 PCI TO SLAVE B1 FIFO: ok
BSP 2 PCI TO SLAVE B2 FIFO: ok
BSP 2 PCI TO SLAVE B3 FIFO: ok
BSP 2 PCI TO SLAVE C1 FIFO: ok
BSP 2 PCI TO SLAVE C2 FIFO: ok
BSP 2 PCI TO SLAVE C3 FIFO: ok
BSP 2 PCI TO SLAVE D1 FIFO: ok
BSP 2 PCI TO SLAVE D2 FIFO: ok
BSP 2 PCI TO SLAVE D2 FIFO: OK
BSP 2 PCI TO SLAVE D3 FIFO: OK
BSP 2 PCI TO MASTER A HPI: OK
BSP 2 PCI TO MASTER B HPI: OK
BSP 2 PCI TO MASTER C HPI: OK
BSP 2 PCI TO MASTER D HPI: OK
BSP 2 PCI TO SLAVE A1 HPI: OK
BSP 2 PCI TO SLAVE A2 HPI: OK
BSP 2 PCI TO SLAVE A3 HPI: OK
BSP 2 PCI TO SLAVE B1 HPI: ok
BSP 2 PCI TO SLAVE B2 HPI: ok
BSP 2 PCI TO SLAVE B3 HPI: ok
BSP 2 PCI TO SLAVE C1 HPI: ok
BSP 2 PCI TO SLAVE C2 HPI: ok
BSP 2 PCI TO SLAVE C3 HPI: ok
BSP 2 PCI TO SLAVE D1 HPI: ok
BSP 2 PCI TO SLAVE D2 HPI: ok
BSP 2 PCI TO SLAVE D3 HPI: ok
Summary:
BSP 1: OK
BSP 2: OK
2011.07.31 22:39:49.991 109
                                          1
                                                       OK
High Voltage Br. 1
______
TX36 Spec: 108.0 - 132.0
0 - 1
       120.9
0 - 2
     121.7
```

```
0 - 3
       121.3
0 - 4
       121.3
0 - 5
       121.7
0-6
       122.1
0 - 7
       122.1
8 - 0
       121.7
0-9
       121.3
0 - 10
       121.7
0-11 122.1
0-12 121.7
0-13 121.7
0-14 121.7

\begin{array}{cccc}
0-15 & 121.7 \\
0-16 & 121.7
\end{array}

\begin{array}{cccc} 0 - 17 & 121.7 \\ 0 - 18 & 121.3 \end{array}

\begin{array}{cccc}
0-19 & 121.3 \\
0-20 & 121.7
\end{array}

0-21 121.3
0-22 121.3
0-23 121.3
0-24 121.3
High Voltage Br. 2
TX36 Spec: 108.0 - 132.0
0 - 1
        120.9
0 - 2
        120.9
0 - 3
       120.9
0 - 4
       121.3
0 - 5
       122.2
0-6
       122.2
0 - 7
       121.7
       121.7
8 - 0
       121.3
0-9
0-10
        121.3
0-11 122.2
0 - 12
       121.7
0 - 13
       120.9
0 - 14
       121.7
       121.3
0 - 15
       120.9
0-16
       120.5
0 - 17
       122.2
0 - 18
       121.7
0 - 19
0-20 122.6
0 - 21
       121.7
0 - 22
       121.3
0-23 121.3
0-24 121.7
Input voltage 12V
_____
TX36
         Spec: 11.0 - 13.0
0 - 1
         11.8
0 - 2
         11.8
0 - 3
         11.9
0 - 4
         11.8
0 - 5
         11.8
0-6
         11.9
0 - 7
         11.9
```

```
0-8 11.9
0-9
          11.8
 0 - 10
            11.8
0 - 11
          11.8
0-12
            11.9
0 - 13
            11.8
0 - 14
            11.8
0-15
            11.8
0-16
            11.7
0 - 17
            11.8
0-18
            11.9
            11.8
0-19
0 - 20
            11.9
0-21
            11.8
0-22
           11.8
0-23
            11.8
0 - 24
          11.9
Digital 3.3V
 _____
TX36 Spec:
0-1 3.3
0-2 3.3
0-3 3.3
0-4 3.3
0-5 3.3
0-6 3.3
0-7 3.3
0-8 3.3
0-9 3.3
0-10 3.3
0-11 3.3
0-12 3.3
0-13 3.3
0-14 3.3
0-15 3.3
0-15 3.3
0-16 3.3
0-17 3.3
0-18 3.3
0-17 3.3
0-18 3.3
0-19 3.3
0-19 3.3
0-19 3.3
0-19 3.3
0-19 3.3
0-19 3.3
0-19 3.3
0-19 3.3
0-19 3.3
0-19 3.3
0-20 3.3
0-21 3.3
0-22 3.3
TX36 Spec: 2.8 - 3.5
0 - 22
              3.3
0-23
              3.3
0 - 24
              3.3
Digital 2.5V
-----
TX36 Spec: 2.4 - 2.6
           2.5
0 - 1
0-2
            2.5
0-3
            2.5
0 - 4
             2.5
0-5
             2.5
0-6
             2.5
0 - 7
            2.5
8-0
             2.5
0-9
            2.5
0 - 10
             2.5
0-11
            2.5
0-12
            2.5
```

```
0 - 13
       2.5
0 - 14
        2.5
        2.5
0 - 15
0-16
        2.5
0 - 17
        2.5
0 - 18
         2.5
0-19
        2.5
0-20
         2.5
0-21
         2.5
0-22
         2.5
0-23
         2.5
         2.5
0 - 24
Digital 1.5V
_____
TX36 Spec:
               1.4 - 1.6
0 - 1
      1.5
0 - 2
         1.5
0 - 3
        1.5
0 - 4
        1.5
0-5
        1.5
0-6
        1.5
0 - 7
        1.5
0-8
         1.5
       1.5
0-9
         1.5
0 - 10
0 - 11
         1.5
0 - 12
         1.5
0 - 13
         1.5
0 - 14
         1.5
0-15
         1.5
0-16
         1.5
0 - 17
         1.5
0 - 18
         1.5
         1.5
0 - 19
0 - 20
         1.5
0 - 21
         1.5
0 - 22
         1.5
0 - 23
         1.5
0 - 24
         1.5
Temperature
-----
TX36
        Spec: 15.0 - 75.0
0 - 1
        39.6
0 - 2
        40.0
0 - 3
        39.2
0 - 4
        37.6
0-5
        39.2
0-6
       39.2
0-7
        39.2
0-8
        37.2
0-9
        38.8
0 - 10
        38.0
0 - 11
        37.2
0 - 12
        36.8
0-13
        37.6
0 - 14
        38.4
0-15
        38.0
0-16
        38.0
0 - 17
        39.6
```

```
0 - 18
      40.4
0 - 19
        40.0
0-20 40.4
0-21 40.4
0 - 22
      38.8
0-23 39.6
0-24 40.0
Input Current 12V
TX36 Spec: 0.3 - 1.5
0-1 0.6
       0.6
0.6
0 - 2
0 - 3
       0.5
0.5
0 - 4
0-5
       0.5
0-6
0 - 7
0-8 0.5
0-9 0.5
0-10 0.5
0-11 0.6
       0.5
0 - 12
0-13
       0.5
0 - 14
        0.6
       0.6
0-15
        0.5
0-16
        0.6
0 - 17
       0.5
0 - 18
0-16 0.5

0-19 0.5

0-20 0.5

0-21 0.6

0-22 0.6

0-23 0.6

0-24 0.5
TX36 power test passed
IO TX MB Embedded PPC Embedded PPC Download 2.11 One CPU1.13 Reduced Performance: 1 voice/Mar 5 2007/1.07 Jun
17 2008/1.11
TX36 unique firmware test OK
2011.07.31 22:39:50.108 109
                                    2
                                                      OK
Input voltage 12V
______
RX32 Spec: 11.0 - 13.0
7-1 11.7
7-2 11.7
Input voltage 6V
_____
RX32 Spec: 5.0 - 7.0
7-1 5.7
7-2 5.7
Digital 3.3V
```

```
RX32 Spec: 2.8 - 3.5
7-1 3.3
7-2 3.3
Digital 2.5V
_____
RX32 Spec: 2.4 - 2.6
7-1 2.5
7-2 2.5
Digital 1.5V
_____
RX32 Spec: 1.4 - 1.6
7-1 1.5
7-2 1.5
Temperature
RX32 Spec: 15.0 - 75.0
7-1 40.0
7-2 40.0
Input Current 12V
RX32 Spec: 0.4 - 1.5
7-1 0.6
7-2 0.6
Input Current 6V
RX32 Spec: 2.4 - 3.3
7-1 2.8
7-2 2.7
RX32 power test passed
IO RX MB Embedded PPC Embedded PPC Download 1.12 Generic1.14 GenericMay 5 2006/1.06 May 5 2006/1.07 Feb 18
2010/1.11
RX32 unique firmware test OK
______
                              3
2011.07.31 22:39:50.174 109
                                        OK
High Voltage Br. 1
______
TX36 Spec: 108.0 - 132.0
0-1 120.9
    121.7
0 - 2
     121.3
0 - 3
     121.3
0 - 4
0-5
     121.7
0-6
     121.7
0 - 7
     122.1
    121.7
8 - 0
0-9 121.3
0-10 121.7
0-11 121.7
```

\_\_\_\_\_

```
\begin{array}{cccc} 0 - 12 & 121.7 \\ 0 - 13 & 121.7 \end{array}
0-14 121.7
0-15 121.7
0-16 121.7
0-17 121.7
0-18 121.3
0-19 121.3
0-20 121.7
0-21 121.3
0-22 121.3
0-23 121.3
0-24 121.7
High Voltage Br. 2
TX36 Spec: 108.0 - 132.0
0-1 	 12\overline{0.9}
0-2
      120.9
0 - 3
      120.9
0 - 4
      121.3
      122.2
0-5
       121.7
0-6
0 - 7
        121.7
0-8
       121.7
       120.9
0-9
0-10 121.7
0-11 122.2
0-11 122.2

0-12 121.7

0-13 120.9

0-14 121.7

0-15 121.3

0-16 120.9

0-17 120.9

0-18 122.2

0-19 121.7

0-20 122.6
0 - 21
        121.7
\begin{array}{ccc} 0-22 & 121.3 \\ 0-23 & 121.3 \end{array}
0-24 121.7
Input voltage 12V
_____
TX36 Spec: 11.0 - 13.0
0 - 1
          11.8
0 - 2
          11.8
0 - 3
          11.9
0 - 4
          11.8
0-5
          11.8
0-6
          11.9
0 - 7
          11.9
0-8
          11.9
0-9
         11.8
0 - 10
          11.8
0 - 11
          11.8
0 - 12
          11.9
0-13
          11.8
0 - 14
          11.8
```

```
0 - 15
        11.9
0-16
        11.7
0 - 17
        11.8
0 - 18
        11.9
0 - 19
        11.8
0 - 20
        11.9
0 - 21
        11.9
0-22
        11.8
0-23
        11.9
0 - 24
        11.8
RX32
        Spec: 11.0 - 13.0
7-1
        11.8
7 – 2
        11.7
Input voltage 6V
RX32 Spec: 5.0 - 7.0
7-1 5.7
7-2
        5.7
TRU power test passed
2011.07.31 22:39:50.291 109
                                           4
                                                       OK
EM 122 High Voltage Ramp Test
Test Voltage: 20.00 Measured Voltage: 19.00 PASSED Test Voltage: 60.00 Measured Voltage: 59.00 PASSED
Test Voltage:100.00 Measured Voltage: 100.00 PASSED
Test Voltage:120.00 Measured Voltage: 121.00 PASSED
Test Voltage:80.00 Measured Voltage: 85.00 PASSED
Test Voltage:40.00 Measured Voltage: 45.00 PASSED
6 of 6 tests OK
                                      5
2011.07.31 22:42:14.381 109
                                                       OK
BSP 1 RXI TO RAW FIFO: ok
BSP 2 RXI TO RAW FIFO: ok
2011.07.31 22:42:19.264 109
                                                        OK
Receiver impedance limits [350.0 700.0] ohm
Board 1 2
                       3 4
 1: 555.2 506.9
 2: 554.9 544.7
 3: 553.0 554.6
 4: 555.8 562.7
 5: 561.7
            568.0
            576.4
 6: 538.5
 7: 547.9
            580.8
 8: 559.4 569.8
 9: 519.7 495.5
10: 532.7 555.8
11: 560.3 542.2
```

```
12: 549.5 548.1
13: 529.2 581.4
14: 575.0 530.9
15: 518.8 568.8
16: 552.9 569.5
17: 508.5 557.2
18: 509.9 566.8
19: 562.3 572.8
20: 566.6 581.3
21: 562.1 521.8
22: 524.4 582.4
23: 559.4 582.6
24: 557.6 551.3
25: 536.9 569.7
26: 570.7 592.4
27: 563.7 502.3
28: 544.8 557.9
29: 554.5 515.7
30: 504.5 570.9
31: 544.5 608.7
32: 547.5 553.7
Receiver Phase limits [-20.0 20.0] deg
Board 1 2 3 4
1: -0.7 4.0
2: -1.0 0.4
3: -1.0 -0.1
 4:
     -1.0 -0.5
 5:
     -0.6 -1.4
 6:
     0.1 - 1.2
     -0.3
            -1.4
 7:
            -1.7
 8:
     -1.0
    2.0
0.6
-0.9
 9:
             4.5
            -0.3
10:
11:
             0.9
     0.1
1.7
12:
             -0.1
            -1.4
13:
    -2.1
14:
             2.3
15:
     2.7
             -0.6
    -0.8
            -0.9
16:
     3.8
3.2
17:
             0.3
18:
             -1.2
    -1.4
19:
             -1.2
     -2.0
            -2.5
20:
     -1.5
21:
             3.3
     1.9
22:
             -2.2
     -1.0
            -1.8
23:
             1.0
24:
     -1.3
     1.0
25:
             -1.4
    -1.9
26:
            -2.5
     -0.8
             4.3
27:
28:
    -0.1
             -0.3
    -0.8
             4.2
29:
30:
      3.1
             -0.4
     0.5
31:
            -3.4
32: -0.6 1.2
Rx Channels test passed
```

2011.07.31 22:42:51.216 109 7

OK

```
Tx Channels test passed
______
2011.07.31 22:45:32.023 109 8 OK
RX NOISE LEVEL
Board No: 1
                 2
        70.0 58.9
64.8 57.7
 0:
                       dΒ
1:
        64.8
                       dВ
 2:
        65.3
                57.1
                       dВ
        60.0
 3:
                 53.1
                       dВ
        52.4
                 54.1
 4:
                       dВ
                 50.4
                       dВ
 5:
        61.6
        61.9
 6:
                 58.7
                       dВ
 7:
                 61.9
        62.9
                       dВ
 8:
        58.2
                 67.2
                       dВ
 9:
                 53.6
        60.2
                       dΒ
       60.8
                       dВ
10:
                 46.4
       58.6
                       dВ
11:
                 57.1
       59.8
                       dВ
12:
                 54.9
13:
       58.4
                 53.3
                       dВ
14:
       60.1
                 59.7
                       dВ
       56.2
                 59.8
15:
                       dВ
       63.0
                 59.0
16:
                       dВ
17:
        55.3
                 44.9
                       dВ
        58.2
18:
                 44.7
                       dВ
        59.3
                 47.6
19:
                       dВ
        58.2
                 50.5
20:
                       dВ
21:
        59.0
                 48.0
                       dВ
        58.8
22:
                 47.9
                       dВ
        61.8
23:
                 60.0
                       dВ
        68.2
                 58.4
24:
                       dВ
                 56.2
25:
        59.2
                       dВ
                 59.4
26:
        59.4
                       dВ
27:
        58.1
                 55.6
                       dВ
28:
        57.2
                 58.4
                       dВ
29:
        52.4
                 62.0
                       dВ
30:
        60.4
                  57.8
                       dВ
                  70.1
31:
        58.6
                        dВ
Maximum noise at Board 2 Channel 31 Level: 70.1 dB
Broadband noise test
______
Average noise at Board 1 61.8 dB OK Average noise at Board 2 59.8 dB OK
______
2011.07.31 22:45:38.373 109 9 OK
RX NOISE SPECTRUM
                   2
Board No:
         1
10.0 kHz: 58.6
10.2 kHz: 61.2
10.3 kHz: 61.1
                  57.0
                          dВ
                  58.3
```

dВ

dВ

dВ dВ

58.1 60.8 61.3

60.2 dB

10.4 kHz: 63.9 10.6 kHz: 62.4 10.7 kHz: 64.2

```
10.9 kHz: 65.4 59.9 dB
11.0 kHz: 63.9 60.5 dB
11.2 kHz: 60.8 59.0 dB
11.3 kHz: 61.2 58.8 dB
11.4 kHz: 61.7 59.6 dB
11.6 kHz: 62.4 61.5 dB
11.7 kHz: 62.8 60.9 dB
11.9 kHz: 61.7 59.0 dB
12.0 kHz: 60.5 57.9 dB
12.1 kHz: 60.5 57.9 dB
12.1 kHz: 60.8 57.7 dB
12.3 kHz: 62.1 57.1 dB
12.4 kHz: 63.2 58.1 dB
12.6 kHz: 60.6 56.4 dB
12.7 kHz: 59.5 56.2 dB
12.9 kHz: 58.2 54.6 dB
13.0 kHz: 57.1 54.2 dB
Maximum noise at Board 1 Frequency 10.9 kHz Level: 65.4 dB
Spectral noise test
Average noise at Board 1 61.9 dB OK
Average noise at Board 2 58.9 dB
                                                  OK
2011.07.31 22:45:44.723 109 10 OK
CPU: KOM CP6011
Clock 1795 MHz
Die 48 oC (peak: 58 oC @ 2011-07-31 - 21:09:06)
Board 51 oC (peak: 54 oC @ 2011-07-31 - 21:47:54)
Core 1.33 V
      3.28 V
3V3
12V 11.91 V
-12V -12.04 V
BATT 3.50 V
Primary network: 157.237.14.60:0xffff0000
Secondary network: 192.168.1.122:0xffffff00
                                               15
2011.07.31 22:45:44.757 109
                                                            OK
EM 122
BSP67B Master: 2.2.3 090702
BSP67B Slave: 2.2.3 090702
CPU: 1.2.3 110321
DDS: 3.5.2 101013
RX32 version : Feb 18 2010 Rev 1.11
TX36 LC version : Jun 17 2008 Rev 1.11
VxWorks 5.5.1 Build 1.2/2-IX0100 May 16 2007, 11:31:17
______
```

### END OF BIST TEST

# Appendix 8 - Cross-check analyses

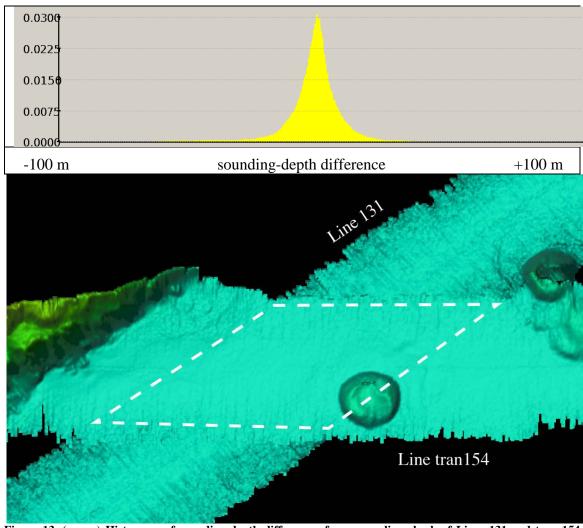



Figure 13. (upper) Histogram of sounding-depth differences from cross-line check of Lines 131 and tran 154 (lower) DTM showing area of cross-line check (dashed polygon).

| Line 131 vs tran154 | Mean water depth       | 4700 m     |
|---------------------|------------------------|------------|
|                     | Mean Z difference      | -2.6 m     |
|                     | Standard deviation     | 11.31 m    |
|                     | Number of samples      | 186,457    |
|                     | Percent of water depth | 0.5% at 2σ |

# **Appendix 9 - Calibration Reports for the CTD**

## SEA-BIRD ELECTRONICS, INC.

13431 NE 20th Street, Bellevue, Washington, 98005-2010 USA Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 2242 CALIBRATION DATE: 27-May-11 SBE3 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

### ITS-90 COEFFICIENTS

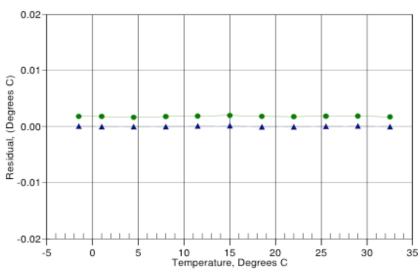
| g =  | 4.36526092e-003 |
|------|-----------------|
| h =  | 6.46066134e-004 |
| i =  | 2.32699210e-005 |
| j =  | 2.15842452e-006 |
| f0 = | 1000.0          |

#### IPTS-68 COEFFICIENTS

| a =  | 3.68120908e-003 |
|------|-----------------|
| b =  | 6.02925053e-004 |
| c =  | 1.61890703e-005 |
| d =  | 2.15997251e-006 |
| f0 = | 2997.533        |

| BATH TEMP<br>(ITS-90) | INSTRUMENT FREO<br>(Hz) | INST TEMP<br>(ITS-90) | RESIDUAL<br>(ITS-90) |
|-----------------------|-------------------------|-----------------------|----------------------|
| -1.4998               | 2997.533                | -1.4998               | 0.00004              |
| 1.0002                | 3169.461                | 1.0002                | -0.00004             |
| 4.5002                | 3421.992                | 4.5002                | -0.00004             |
| 8.0002                | 3688.671                | 8.0002                | -0.00003             |
| 11.5002               | 3969.884                | 11.5003               | 0.00007              |
| 15.0002               | 4265.988                | 15.0003               | 0.00013              |
| 18.5002               | 4577.319                | 18.5001               | -0.00008             |
| 22.0002               | 4904.264                | 22.0001               | -0.00009             |
| 25.5002               | 5247.148                | 25.5002               | 0.00001              |
| 29.0002               | 5606.277                | 29.0003               | 0.00006              |
| 32.5002               | 5981.947                | 32.5002               | -0.00002             |

Temperature ITS-90 =  $1/\{g + h[ln(f_0/f)] + i[ln^2(f_0/f)] + j[ln^3(f_0/f)]\} - 273.15$  (°C)


Temperature IPTS-68 =  $1/\{a + b[ln(f_0/f)] + c[ln^2(f_0/f)] + d[ln^3(f_0/f)]\} - 273.15 (°C)$ 

Following the recommendation of JPOTS:  $T_{68}$  is assumed to be 1.00024 \*  $T_{90}$  (-2 to 35 °C)

Residual = instrument temperature - bath temperature

Date, Offset(mdeg C)





13431 NE 20th Street, Bellevue, Washington, 98005-2010 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 2242 CALIBRATION DATE: 27-May-11

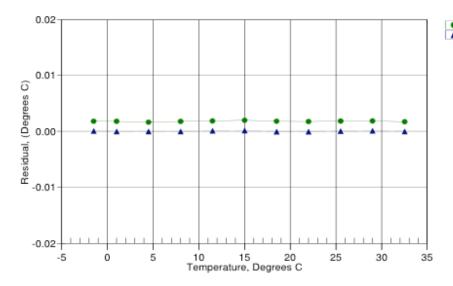
SBE3 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

#### ITS-90 COEFFICIENTS

| g =  | 4.36526092e-003 |
|------|-----------------|
| h =  | 6.46066134e-004 |
| i =  | 2.32699210e-005 |
| j =  | 2.15842452e-006 |
| fn = | 1000.0          |

#### IPTS-68 COEFFICIENTS

| а  | = | 3 |   | 6 | 8 | 1 | 2 | 0 | 9 | 0 | 8 | e- | 00 | 3 |
|----|---|---|---|---|---|---|---|---|---|---|---|----|----|---|
| b  | = | б |   | 0 | 2 | 9 | 2 | 5 | 0 | 5 | 3 | e- | 00 | 4 |
| С  | = | 1 |   | 6 | 1 | 8 | 9 | 0 | 7 | 0 | 3 | e- | 00 | 5 |
| d  | = | 2 |   | 1 | 5 | 9 | 9 | 7 | 2 | 5 | 1 | e- | 00 | б |
| £0 | = | 2 | g | Ġ | 7 |   | ς | ٦ | ٦ |   |   |    |    |   |


| BATH TEMP<br>(ITS-90) | INSTRUMENT FREO<br>(Hz) | INST TEMP<br>(ITS-90) | RESIDUAL<br>(ITS-90) |
|-----------------------|-------------------------|-----------------------|----------------------|
| -1.4998               | 2997.533                | -1.4998               | 0.00004              |
| 1.0002                | 3169.461                | 1.0002                | -0.00004             |
| 4.5002                | 3421.992                | 4.5002                | -0.00004             |
| 8.0002                | 3688.671                | 8.0002                | -0.00003             |
| 11.5002               | 3969.884                | 11.5003               | 0.00007              |
| 15.0002               | 4265.988                | 15.0003               | 0.00013              |
| 18.5002               | 4577.319                | 18.5001               | -0.00008             |
| 22.0002               | 4904.264                | 22.0001               | -0.00009             |
| 25.5002               | 5247.148                | 25.5002               | 0.00001              |
| 29.0002               | 5606.277                | 29.0003               | 0.00006              |
| 32.5002               | 5981.947                | 32.5002               | -0.00002             |

Temperature ITS-90 =  $1/\{g + h[ln(f_0/f)] + i[ln^2(f_0/f)] + j[ln^3(f_0/f)]\} - 273.15$  (°C) Temperature IPTS-68 =  $1/\{a + b[ln(f_0/f)] + c[ln^2(f_0/f)] + d[ln^3(f_0/f)]\} - 273.15$  (°C)

Following the recommendation of JPOTS:  $T_{68}$  is assumed to be 1.00024 \*  $T_{00}$  (-2 to 35 °C)

Residual = instrument temperature - bath temperature

Date, Offset(mdeg C)



## 13431 NE 20th Street, Bellevue, Washington, 98005-2010 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 1579 CALIBRATION DATE: 08-Jul-10

GHIJ COEFFICIENTS

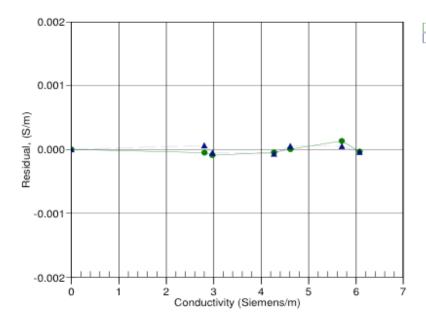
SBE4 CONDUCTIVITY CALIBRATION DATA PSS 1978: C(35,15,0) = 4.2914 Seimens/meter

#### ABCDM COEFFICIENTS

| Ţ   | =    | -4.09660741e+000 |           | а | = | 4.07434998e-004  |
|-----|------|------------------|-----------|---|---|------------------|
| 1   | =    | 5.23370055e-001  |           | b | = | 5.23643498e-001  |
|     | =    | 5.06487439e-004  |           | C | = | -4.09746615e+000 |
| į   | =    | 3.45563621e-006  |           | d | = | -8.84908464e-005 |
| · F | ممرد | r = -9.5700e-008 | (nominal) | m | _ | 3.1              |

CTcor = 3.2500e-006 (nominal) CPcor = -9.5700e-008 (nominal)

| BATH TEMP<br>(ITS-90) | BATH SAL<br>(PSU) | BATH COND<br>(Siemens/m) | INST FREO<br>(kHz) | INST COND<br>(Siemens/m) | RESIDUAL<br>(Siemens/m) |
|-----------------------|-------------------|--------------------------|--------------------|--------------------------|-------------------------|
| 0.0000                | 0.0000            | 0.00000                  | 2.79389            | 0.00000                  | 0.00000                 |
| -1.0000               | 34.7633           | 2.80070                  | 7.80111            | 2.80077                  | 0.00006                 |
| 0.9999                | 34.7644           | 2.97194                  | 8.00548            | 2.97189                  | -0.00005                |
| 15.0000               | 34.7660           | 4.26610                  | 9.40664            | 4.26603                  | -0.00007                |
| 18.4999               | 34.7653           | 4.61232                  | 9.74706            | 4.61237                  | 0.00005                 |
| 29.0000               | 34.7642           | 5.69474                  | 10.74061           | 5.69479                  | 0.00005                 |
| 32 5000               | 3.4 75.97         | 6.06724                  | 11 06149           | 6.06720                  | -0.00004                |


Conductivity =  $(g + hf^2 + if^3 + jf^4)/10(1 + \delta t + \epsilon p)$  Siemens/meter

Conductivity =  $(af^{m} + bf^{2} + c + dt) / [10 (1 + \epsilon p) Siemens/meter$ 

 $t = temperature[^{\circ}C)]; p = pressure[decibars]; \delta = CTcor; \epsilon = CPcor;$ 

Residual = (instrument conductivity - bath conductivity) using g, h, i, j coefficients

Date, Slope Correction



## 13431 NE 20th Street, Bellevue, Washington, 98005-2010 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 2725 CALIBRATION DATE: 02-Feb-11

SBE4 CONDUCTIVITY CALIBRATION DATA

PSS 1978: C(35,15,0) = 4.2914 Seimens/meter

### GHIJ COEFFICIENTS

| g = -9.99719479e+000 |           |
|----------------------|-----------|
| h = 1.50552688e+000  |           |
| i = -1.00179950e-003 |           |
| j = 1.63633375e-004  |           |
| CPcor = -9.5700e-008 | (nominal) |
| CTcor = 3.2500e-006  | (nominal) |

| ABCDM COEFFICIENTS |                  |  |  |  |  |
|--------------------|------------------|--|--|--|--|
| a =                | 1.08360687e-005  |  |  |  |  |
| b =                | 1.50332089e+000  |  |  |  |  |
| c =                | -9.99365187e+000 |  |  |  |  |
| d =                | -8.67873860e-005 |  |  |  |  |
| m =                | 4.9              |  |  |  |  |

CPcor = -9.5700e-008 (nominal)

| BATH TEMP<br>(ITS-90) | BATH SAL<br>(PSU) | BATH COND<br>(Siemens/m) | INST FREO<br>(kHz) | INST COND<br>(Siemens/m) | RESIDUAL<br>(Siemens/m) |
|-----------------------|-------------------|--------------------------|--------------------|--------------------------|-------------------------|
| 0.0000                | 0.0000            | 0.00000                  | 2.57816            | 0.00000                  | 0.00000                 |
| -1.0000               | 34.9786           | 2.81643                  | 5.03612            | 2.81641                  | -0.00002                |
| 1.0000                | 34.9774           | 2.98842                  | 5.14827            | 2.98844                  | 0.00003                 |
| 15.0000               | 34.9755           | 4.28907                  | 5.92746            | 4.28904                  | -0.00003                |
| 18.5000               | 34.9729           | 4.63689                  | 6.11895            | 4.63691                  | 0.00001                 |
| 29.0001               | 34.9691           | 5.72453                  | 6.68201            | 5.72455                  | 0.00002                 |
| 32.5000               | 34.9608           | 6.09833                  | 6.86474            | 6.09831                  | -0.00001                |

Conductivity =  $(g + hf^2 + if^3 + jf^4)/10(1 + \delta t + \epsilon p)$  Siemens/meter

Conductivity =  $(af^{m} + bf^{2} + c + dt) / [10 (1 + \epsilon p) Siemens/meter$ 

 $t = temperature[^{\circ}C)]; p = pressure[decibars]; \delta = CTcor; \epsilon = CPcor;$ 

Residual = (instrument conductivity - bath conductivity) using g, h, i, j coefficients

Date, Slope Correction

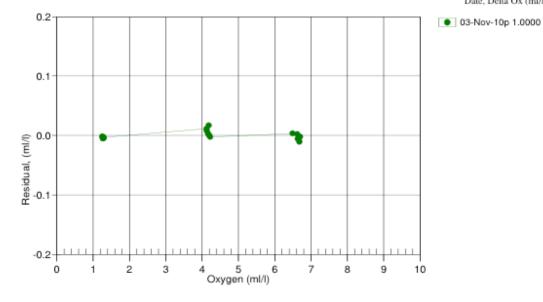


● 10-Mar-10 0.9999824 ▲ 02-Feb-11 1.0000000

## 13431 NE 20th Street, Bellevue, Washington, 98005-2010 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

### SENSOR SERIAL NUMBER: 0134 CALIBRATION DATE: 03-Nov-10p


### SBE 43 OXYGEN CALIBRATION DATA

| COEFFICIENTS        | A = -3.0763e-003   | NOMINAL DYNAMIC COEFFICIENTS       |
|---------------------|--------------------|------------------------------------|
| Soc = 0.3831        | B = 2.6206e-004    | D1 = 1.92634e-4 $H1 = -3.30000e-2$ |
| Voffset = $-0.4994$ | C = -4.4179e - 006 | D2 = -4.64803e-2 $H2 = 5.00000e+3$ |
| Tau20 = 2.02        | E nominal = 0.036  | H3 = 1.45000e+3                    |

| BATH OX<br>(ml/l) | BATH TEMP<br>ITS-90 | BATH SAL<br>PSU | INSTRUMENT<br>OUTPUT(VOLTS) | INSTRUMENT<br>OXYGEN(ml/l) | RESIDUAL<br>(ml/l) |
|-------------------|---------------------|-----------------|-----------------------------|----------------------------|--------------------|
| 1.25              | 2.00                | 0.01            | 0.839                       | 1.25                       | -0.00              |
| 1.26              | 6.00                | 0.02            | 0.879                       | 1.25                       | -0.00              |
| 1.26              | 12.00               | 0.02            | 0.938                       | 1.26                       | -0.01              |
| 1.28              | 20.00               | 0.02            | 1.019                       | 1.28                       | -0.00              |
| 1.29              | 26.00               | 0.02            | 1.081                       | 1.29                       | -0.00              |
| 1.29              | 30.00               | 0.02            | 1.121                       | 1.29                       | -0.00              |
| 4.12              | 6.00                | 0.02            | 1.750                       | 4.13                       | 0.01               |
| 4.13              | 12.00               | 0.02            | 1.941                       | 4.14                       | 0.01               |
| 4.17              | 20.00               | 0.02            | 2.196                       | 4.17                       | 0.00               |
| 4.18              | 2.00                | 0.01            | 1.637                       | 4.20                       | 0.02               |
| 4.20              | 26.00               | 0.02            | 2.393                       | 4.20                       | -0.00              |
| 4.22              | 30.00               | 0.02            | 2.531                       | 4.22                       | -0.00              |
| 6.49              | 30.00               | 0.02            | 3.629                       | 6.50                       | 0.00               |
| 6.62              | 20.00               | 0.02            | 3.194                       | 6.62                       | 0.00               |
| 6.63              | 12.00               | 0.02            | 2.810                       | 6.63                       | -0.01              |
| 6.67              | 6.00                | 0.02            | 2.516                       | 6.66                       | -0.01              |
| 6.67              | 2.00                | 0.01            | 2.306                       | 6.66                       | -0.01              |
| 6.70              | 26.00               | 0.02            | 3.519                       | 6.69                       | -0.00              |

 $\begin{aligned} & \text{Oxygen (ml/l) = Soc * (V + Voffset) * (1.0 + A * T + B * T^2 + C * T^3) * OxSol(T,S) * exp(E * P / K) } \\ & \text{V = voltage output from SBE43, T = temperature [deg C], S = salinity [PSU] K = temperature [deg K] } \\ & \text{OxSol(T,S) = oxygen saturation [ml/l], P = pressure [dbar], Residual = instrument oxygen - bath oxygen} \\ \end{aligned}$ 

Date, Delta Ox (ml/l)



13431 NE 20th Street, Bellevue, Washington, 98005-2010 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

SENSOR SERIAL NUMBER: 2013 CALIBRATION DATE: 07-Oct-10

SBE3 TEMPERATURE CALIBRATION DATA ITS-90 TEMPERATURE SCALE

### ITS-90 COEFFICIENTS

g = 4.16195950e-003 h = 6.36470633e-004i = 2.20311047e-005

j = 2.33530550e-006

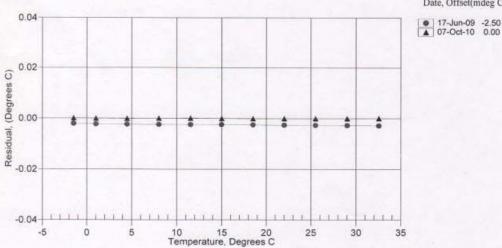
f0 = 1000.0

**IPTS-68 COEFFICIENTS** 

a = 3.68121179e-003 b = 6.06697593e-004

c = 1.66337921e-005 d = 2.33691975e-006

f0 = 2169.280


| BATH TEMP<br>(ITS-90) | INSTRUMENT FREO<br>(Hz) | INST TEMP<br>(ITS-90) | RESIDUAL<br>(ITS-90) |
|-----------------------|-------------------------|-----------------------|----------------------|
| -1.5000               | 2169.280                | -1.5000               | 0.00004              |
| 1.0000                | 2292,910                | 1.0000                | -0.00003             |
| 4.5001                | 2474.438                | 4.5000                | -0.00007             |
| 8.0000                | 2666.051                | 8.0000                | 0.00002              |
| 11.5000               | 2868.023                | 11.5001               | 0.00009              |
| 15.0001               | 3080.602                | 15.0001               | -0.00001             |
| 18.5001               | 3304.038                | 18.5001               | -0.00003             |
| 22.0001               | 3538.576                | 22.0001               | -0.00001             |
| 25.5001               | 3784.441                | 25.5001               | -0.00001             |
| 29.0001               | 4041.856                | 29.0001               | -0.00000             |
| 32.5001               | 4311.033                | 32.5001               | 0.00001              |

Temperature ITS-90 =  $1/\{g + h[ln(f_0/f)] + i[ln^2(f_0/f)] + j[ln^3(f_0/f)]\} - 273.15$  (°C)

Temperature IPTS-68 =  $1/\{a + b[ln(f_n/f)] + c[ln^2(f_n/f)] + d[ln^3(f_n/f)]\} - 273.15$  (°C)

Following the recommendation of JPOTS:  $T_{68}$  is assumed to be 1.00024 \*  $T_{00}$  (-2 to 35 °C)

Residual = instrument temperature - bath temperature

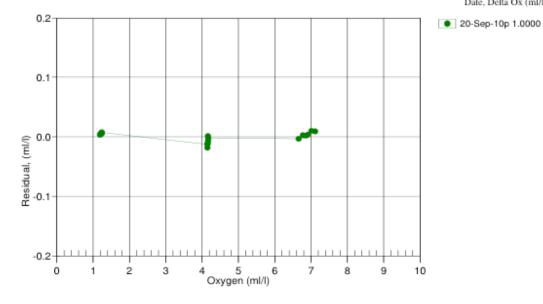


Date, Offset(mdeg C)

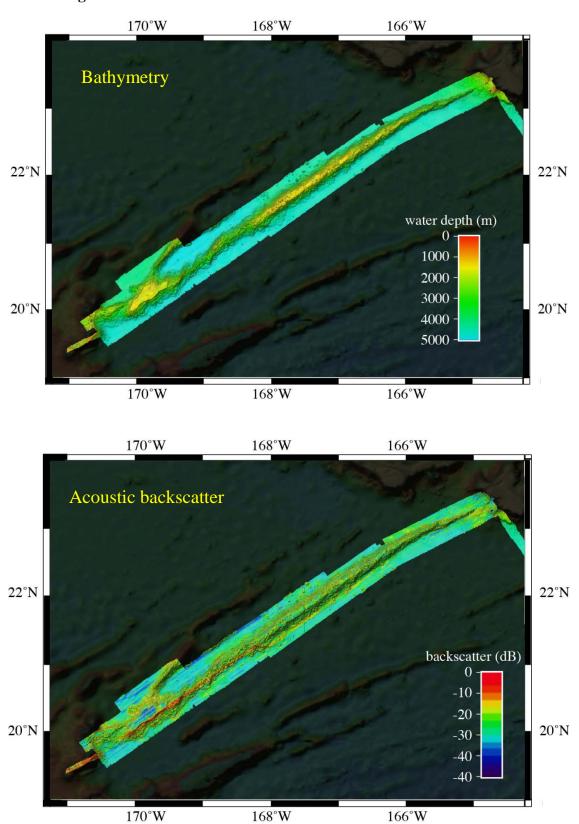
## 13431 NE 20th Street, Bellevue, Washington, 98005-2010 USA

Phone: (425) 643 - 9866 Fax (425) 643 - 9954 Email: seabird@seabird.com

### SENSOR SERIAL NUMBER: 0301 CALIBRATION DATE: 20-Sep-10p


### SBE 43 OXYGEN CALIBRATION DATA

| COEFFICIENTS        | A = -2.4282e - 003 | NOMINAL DYNAMIC COEFFICIENTS       |  |  |
|---------------------|--------------------|------------------------------------|--|--|
| Soc = 0.4064        | B = 1.5236e-004    | D1 = 1.92634e-4 $H1 = -3.30000e-2$ |  |  |
| Voffset = $-0.5066$ | C = -2.6521e - 006 | D2 = -4.64803e-2 $H2 = 5.00000e+3$ |  |  |
| Tau20 = 1.22        | E nominal = 0.036  | H3 = 1.45000e+3                    |  |  |


| BATH OX<br>(ml/l) | BATH TEMP<br>ITS-90 | BATH SAL<br>PSU | INSTRUMENT<br>OUTPUT(VOLTS) | INSTRUMENT<br>OXYGEN(ml/l) | RESIDUAL<br>(ml/l) |
|-------------------|---------------------|-----------------|-----------------------------|----------------------------|--------------------|
| 1.19              | 2.00                | 0.00            | 0.811                       | 1.19                       | 0.00               |
| 1.20              | 6.00                | 0.00            | 0.849                       | 1.20                       | 0.00               |
| 1.21              | 12.00               | 0.00            | 0.907                       | 1.21                       | 0.01               |
| 1.23              | 20.00               | 0.00            | 0.988                       | 1.23                       | 0.00               |
| 1.24              | 26.00               | 0.00            | 1.051                       | 1.25                       | 0.01               |
| 1.24              | 30.00               | 0.00            | 1.091                       | 1.25                       | 0.01               |
| 4.15              | 6.00                | 0.00            | 1.686                       | 4.13                       | -0.01              |
| 4.15              | 2.00                | 0.00            | 1.561                       | 4.13                       | -0.02              |
| 4.15              | 12.00               | 0.00            | 1.875                       | 4.14                       | -0.01              |
| 4.16              | 30.00               | 0.00            | 2.457                       | 4.16                       | 0.00               |
| 4.17              | 20.00               | 0.00            | 2.130                       | 4.16                       | -0.01              |
| 4.17              | 26.00               | 0.00            | 2.327                       | 4.17                       | -0.00              |
| 6.66              | 30.00               | 0.00            | 3.627                       | 6.66                       | -0.00              |
| 6.77              | 26.00               | 0.00            | 3.464                       | 6.78                       | 0.00               |
| 6.86              | 20.00               | 0.00            | 3.186                       | 6.87                       | 0.00               |
| 6.91              | 12.00               | 0.00            | 2.790                       | 6.91                       | 0.00               |
| 7.01              | 6,00                | 0.00            | 2.510                       | 7.02                       | 0.01               |
| 7.11              | 2.00                | 0.00            | 2.325                       | 7.12                       | 0.01               |

Oxygen (ml/l) = Soc \* (V + Voffset) \* (1.0 + A \* T + B \*  $T^2$  + C \*  $T^3$ ) \* OxSol(T,S) \* exp(E \* P / K) V = voltage output from SBE43, T = temperature [deg C], S = salinity [PSU] K = temperature [deg K] OxSol(T,S) = oxygen saturation [ml/l], P = pressure [dbar], Residual = instrument oxygen - bath oxygen

Date, Delta Ox (ml/l)



 ${\bf Appendix} \ {\bf 10 \cdot Color} \ {\bf shaded\text{-}relief} \ {\bf bathymetry} \ {\bf and} \ {\bf acoustic} \ {\bf backscatter} \ {\bf maps} \ {\bf of} \ {\bf Necker} \ {\bf Ridge}.$ 

