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On the Uncertainty of Archive Hydrographic Datasets

Brian Calder

Center for Coastal and Ocean Mapping & NOAA-UNH Joint Hydrographic Center, University of
New Hampshire, Durham, NH 03824, USA

Abstract

As the international hydrographic community contin-
ues to address the question of the irreducible uncer-
tainty in modern surveys, we must ask how we do
the same with archived Vertical Beam Echosounder
(VBES) and leadline datasets.

The ONR funded Strataform project surveyed an
area of the New Jersey shelf around 39◦12’N 72◦50’W
using an EM1000 Multibeam Echosounder (MBES).
This area is also covered by NOAA surveys from 1936-
38 (assumed to be leadline) and 1975-76 (VBES). By
comparison of the archival soundings to the MBES
data, estimates of measurement error for the archival
surveys are constructed as a function of depth. The
analysis shows that archival leadline smoothsheets
are heavily biased in deeper water because of ‘hy-
drographic rounding’ and may be unrecoverable, but
that the VBES data appear approximately unbiased
and may be used to construct products compatible
with modern surveys. Estimates of uncertainty for
a surface model generated from the archive data are
then constructed, taking into account measurement,
interpolation, and hydrographic uncertainty (address-
ing the problems of unobserved areas and surface re-
construction stability). Finally, the paper addresses
the generality of the method, and its implications for
the community’s duty to convey our uncertainty to the
end user.

1 Introduction

In the recent past, many strides have been made to-
wards assessing and using the implied uncertainty of
echosounder systems for processing and evaluation of
hydrographic data. Most of these efforts have been
directed towards modern surveys on the reasonable
grounds that these are most important for our future
needs. However, the vast majority of hydrographic
data holdings in the US are archive datasets collected
with either Vertical Beam Echosounders (VBES) or

leadlines and stretch back over a hundred and fifty
years. These datasets are typically sparse (i.e., at the
scale of the survey smoothsheet or less), and in most
cases, if the original data was denser (e.g., continuous
recording fathograms with paper or digital recording),
this data is no longer extant. In some cases the only
record is the hard-copy smoothsheet and the only dig-
ital forms of these sheets are formed by scanning and
re-registering the data from the hard-copy. If we are
to assess the uncertainty of the data, we have to do it
based on whatever we have, with at best descriptive
reports from the hydrographic effort for support.

Our ultimate goal is to construct grided bathymetry
from the archive data that is compatible with the forms
being used for modern surveys, i.e., a depth and uncer-
tainty pair. This inevitably leads to interpolation and
hence we must also account for uncertainty amplifica-
tion caused by the methods that we use, in addition to
the basic measurement uncertainties of the data and
that engendered by sub-sampling the dataset before
committing it to the archive.

In the remainder of this paper, we consider these
error sources in detail and show methods for their es-
timation. As an example, we consider an area off the
east coast of the US where we have leadline (ca. 1936-
38), VBES (ca. 1975-76) and EM1000 MBES (1996,
[17]) data to compare. We then conclude with some
observations on the generality of these methods, in-
cluding their use with dense modern VBES data.

2 Methods

We aim to construct a surface from the archive data so
that it can be used in the same way as current genera-
tion systems [23, 24]. However, in doing so we have to
interpolate the data in some form, introducing another
error source due to the measurement errors inherent in
the data (which we do not know a priori). We also
move, literally, into uncharted territory, since we have
no real knowledge of what is between the soundings.
In this case, we must estimate our best understanding
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of the depth and its associated uncertainty.

We assume that we know the technology used and
since these change infrequently, we may also assume
that the achievable accuracy of the survey instruments
should change slowly given the platform. Therefore,
if we can determine a location where we have overlap
between modern high resolution data and archive data
of suitable vintage, we can use the former to calibrate
the latter, and hence determine the actual accuracy of
the archive surveys, at least in terms of the increase
of uncertainty as a function of depth. With the mild
assumption that the survey instrumentation has not
changed, we can then apply this model elsewhere that
the same survey platform operated, providing a much
wider degree of applicability.

This measure reflects the vertical error of the data,
but says nothing about the horizontal errors. Again,
we appeal to temporal continuity and assume that we
can assess the errors of the horizontal positioning for
a survey by knowledge of the equipment in use at the
time. Since we are concerned primarily with vertical
incidence sounding in relatively shallow water, we may
also assume that the positioning error of the sounding
is approximately that of the positioning system itself,
avoiding any amplification due to off-nadir refraction
of the single beam. This may not be valid in all cases,
and particularly where there is significant local sub-
footprint roughness. However, it is typically not pos-
sible to assess deviations from this assumption from
archive scale surveys, and we retain it for simplicity.

Geostatistical techniques can be used for uncer-
tainty estimation in addition to interpolation, and our
approach is similar in spirit to Kielland & Dagbert
[15], save that we must work only with the archived
data. We are assisted by the realisation that a hy-
drographic survey is not conducted at random: there
are very distinct reasons why the data that were pre-
served were preserved. Typically, a hydrographic sur-
vey also has cross-lines used to check the consistency
of the soundings. Therefore, we gain some insight into
the variability of the bathymetry at scales closer than
might be implied by the survey scales, and can use it
to determine the likely variability of the surface be-
tween the mainscheme survey lines. Since the goal is
to make a surface suitable for hydrography, however,
we must also be careful to ensure that we account for
‘the thing unseen’; that is, there is a possibility of a ge-
ological erratic or man-made object to occur at scales
less than that of the closest pair of points in the archive
dataset, a situation in which geostatistics can say noth-
ing of value. In this case we appeal to a measure of
hydrographic caution and observe that we may add an
arbitrary additional variability to the surface to reflect

our comfort level for the area of the world and the
significance of the hydrographic regime. We pursue
this in the same geostatistical framework using a de-
composition of the overall surface into microscale and
macroscale roughness.

It is possible to express horizontal uncertainty in a
geostatistical framework, but we pursue an alternative
solution using a Monte Carlo approach [13] which sim-
ulates multiple virtual datasets from the archive data
using an estimate of the horizontal error magnitude.
The resulting datasets are processed in the same man-
ner as the archive data, and a sample estimate of depth
variation is computed and used to estimate the stabil-
ity of the reconstruction of the depth surface given
the density of the survey, typically emphasising slopes
where any horizontal error immediately gives rise to
vertical errors.

A source of error we do not treat here is alias-
ing noise cause by sub-sampling of the seafloor both
through the use of survey lines, and through sub-
sampling of those survey lines to give the archive
dataset. Aliasing is difficult to assess a posteriori,
although methods for its estimation exist [21, 22],
and have the potential to be verified where alterna-
tive higher resolution data exists. An interesting phe-
nomenon is that hydrographic surveys are not sampled
at random: from all of the data gathered, a specific
subset is chosen (in a shoal-biased manner) to best
represent the most hydrographically significant detail
in the area. This significantly complicates the analy-
sis of the aliasing effects, and is the topic of on-going
research. We return to the implications in section 5.

The flow-path of the method is outlined in Figure 1.
Inputs are marked with square terminals, and the com-
posite outputs consist of grided depth and uncertainty
in a co-registered pair. Note that although we show
MBES data, it is used only to calibrate the measure-
ment error model of the archive data, and is not re-
quired after this stage.

3 Datasets

3.1 Archive Datasets

We focus on an area of the New Jersey shelf around
39◦12’N 72◦50’W, Figure 2, where we have extant
MBES data gathered in support of the US Office
of Naval Research’s Strataform [10] program area.
Through use of a GIS developed at CCOM [14], we
identified two generations of US National Ocean Ser-
vice (NOS) archive survey, as indicated in Table 1.

The portions of the databased surveys that overlap
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Figure 1: Data flow-path for the estimation method. Sparse archive data is used to estimate a trend surface for
geostatistical interpolation, which takes into account the spatial variability of the archive data. An estimate of
reconstruction stability is made using Monte Carlo methods. Aliasing error [22] is a potentially important error
source, but is neglected in the current work (see section 5). Multibeam Echosounder data is used as a bootstrap to
estimate the measurement error of the archive data, but is not required thereafter.

Survey ID Year Method Platform Scale

H09547 1975 VBES WHITING 1:40,000
H09548 1975 VBES WHITING 1:80,000
H09553 1975 VBES MT. MITCHELL 1:80,000
H09556 1975 VBES MT. MITCHELL 1:40,000
H09574 1975 VBES WHITING 1:80,000
H09623 1976 VBES MT. MITCHELL 1:80,000
H06192 1936 Leadline OCEANOGRAPHER 1:120,000
H06219 1937 Leadline GILBERT 1:120,000
H06220 1938 Leadline LYDONIA 1:120,000
H06345 1938 Leadline OCEANOGRAPHER 1:80,000
H06346 1938 Leadline OCEANOGRAPHER 1:40,000

Table 1: Data sources found in NOAA/NGDC Hydrographic Databases for the study area. The survey metadata is
marked ‘Lead Line assumed’ for the 1936-38 surveys, and that they were generated from ‘Smooth sheets digitized
for N.O.S. under contract’; for those in 1975-76, the metadata is marked ‘Digital Echo Sounder w(ith) Graphical
Record assumed’.
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Figure 2: Position of the survey site in the New Jer-
sey continental margin area. The site is centred at
39◦ 12’N 72◦ 50’W, and slopes gently from approxi-
mately 35m to 110m depth.

with the work area were extracted from the NGDC
GeoDAS database CD [20] as flat-file data, including
latitude, longitude, depth (converted to meters) and
survey ID. The data were positioned with respect to
NAD27, and were converted using the NGDC software
to NAD83. The soundings were then projected using
UTM coordinates (zone 18N) and the WGS-84 ellip-
soid; all data were gathered correct to Mean Low Water
(MLW). The archive provided 9344 leadline soundings,
of which 2813 are coincident with the study region, and
16791 VBES soundings, of which 5031 are coincident.
The study area is 78.7 km×72.0 km (EW×NS) in size.

3.2 Multibeam Data

The MBES data was collected with the CHS Creed
in April 1996 [17] using the Simrad EM1000 MBES
system and a POS/MV 320 motion sensor. The data
was available in the manufacturer’s archive format
and in hand-edited form using the University of New
Brunswick’s (UNB) archive format. We re-processed
the data from the UNB format since it incorporates
empirical refraction corrections that were essential to
reducing the effects of sound speed changes observed in
the area; a number of artifacts remain in the data, but
are of small magnitude [10] and we ignored these in this
work. Data were corrected to Mean Lower Low Water
(MLLW) using the NOAA tide gauge at Atlantic City
(Station ID 8534720). CUBE [1, 2] was used at 5m res-
olution to carry out the processing, limited to at most
110m (for stability across all datasets). A comparison
of the level of detail available in the data is shown in
Figure 3, illustrating the loss of detail inherent in the

archive dataset. The CUBE process produces an es-
timate of uncertainty in addition to the bathymetry,
which highlights a number of other problems with the
data (Figure 4).

3.3 Dataset Comparison

Preliminary comparison of surfaces generated by re-
digitising TINs of the archive datasets, separated by
generation (i.e., leadline in one surface, VBES in an-
other) showed the same general character of the ge-
omorphology, but variability estimates generated by
comparing source soundings from one archive set to
the surface generated from the other showed a sig-
nificant shift in mean of 1.67m (standard deviation
1.87m) with the leadline data being shoalest; com-
pared against the MBES surface, the leadline is still
biased (mean 1.48m, standard deviation 1.48m), while
the VBES is approximately unbiased (mean −0.02 m,
standard deviation 0.75m). Geological context from
the area suggests that changes in morphology should
be slow; iceberg scour features in the northeast of the
region are more than 10,000yr old, and are still evi-
dent in the MBES data. The region was chosen for
the Strataform study because it is sediment starved,
so sedimentation is unlikely (and in any case would
generally make the VBES archive shoaler). Geologi-
cal opinion is divided as to whether there is migration
of features on the shelf due to storm rework. A pre-
liminary examination of historical hurricane tracks [19]
from 1939 to 1974 and 1977 to 1995 suggests that there
was no significant storm activity. As corroboration,
this is unlikely to be a suitable explanation since the
bias occurs approximately equally at all depth ranges.
Storm rework would tend to redistribute the material,
so a consistent bias would be unlikely.

Many other explanations for the difference were con-
sidered, including tidal datum differences and epoch
shifts, errors in sound speed profile determination
from the VBES datasets, errors from current effects
on sounding machine leadline measurements, and sys-
tematic bias in the sounding machine measurements.
However, the differences in each case are small, cer-
tainly too small to explain the significant bias term.
NOAA CO-OPS observations indicate that tidal level
changes at the Atlantic City gauge have averaged ap-
proximately 4 mm/yr since 1900 [18] giving approxi-
mately 0.11m of shift given the datum epochs which
were pre-1924 and 1941-59 for the two surveys; at the
last datum change (from 1960-78 to 1983-2001), the
MLW level changed by 0.37m, and the difference be-
tween MLW and MLLW was 0.06-0.17m, none of which
are big enough to explain the observation. Errors in
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(a) MBES Dataset

(b) VBES Dataset

Figure 3: Comparison of level-of-detail available with
MBES and archive VBES data in the study area. This
VBES surface was constructed by computing a Trian-
gulated Irregular Network (TIN) for the dataset, and
then re-digitising the TIN onto a regular grid (resolu-
tion 120m).

Figure 4: CUBE output surface showing depth esti-
mates (left) and uncertainty estimates (right) colour-
coded over the estimated bathymetry. The uncertainty
here measures the standard deviation of the soundings,
with increasing uncertainty being represented in a hue
spectrum from blue to red. Note effects of cross-line
in upper right, indicating some systematic error, and
along-track within-swath stripes of higher uncertainty,
indicating a beam-to-beam and ping-to-ping inconsis-
tency.
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sound speed determination were probably on the or-
der of 5ms−1 in 1975-76 [26], which would only con-
tribute approximately 0.20m, and would be randomly
distributed in any case instead of forming a bias as
observed. Effects on current putting a bow into the
leadline are probably small, and would (a) be compen-
sated in measurement, and (b) would cause the line
to read deep; sounding machine biases were likewise
small, probably no more than 1-2%.

However, examination of the differences as a scat-
terplot against depth, using the MBES depth surfaces,
immediately suggests a more likely cause. Figure 5
shows clearly that the depths are heavily quantised,
which is consistent with the attribution in the meta-
data that the data comes from “Smooth sheets dig-
itized for N.O.S. under contract.” In these surveys,
soundings were portrayed in integer fathom units (i.e.,
1.8288m), except for H06346, which is in feet, and
H06345, which is in fathoms and fractions, both of
which are only used to a very limited extent in the
very shallow regions of the survey area (they may be
seen in the reduced quantisation error in the 30-50m
depth range). However, the depths were reduced to
integer fathoms according to ‘hydrographic rounding
rules’ or tables; the NOS survey manual of the period
[25, §7716] indicates that surveys of this type would
be carried out in fathoms using a sounding machine
(i.e., a mechanical leadline), captured to fractions of
a fathom in the survey log, and then rounded on the
smoothsheet such that “When the units are the same
as those in the sounding record, but in integers on the
sheet, any partial units shall be converted into whole
units by changing 0.75 or more into the next greatest
integer, and changing decimals below 0.75 into the next
lowest integer unit.” That is, we might see a shoal-bias
of around 1.37m from the transfer of the soundings on
to the smoothsheet and into the archive.

Therefore, we conclude that the use of an archive
smoothsheet, re-digitised, is the most probable cause
of the bias, and hence that the leadline data cannot
be combined with the other data sources and must be
dropped from further consideration in this study given
we have alternative data.

The VBES data, under the same comparison, shows
an approximately central, unbiased (mean estimate
−0.02 m over all depth ranges, and < 0.8% of depth in
all ranges of interest) distribution of error with stan-
dard deviation of 0.75m overall. The surveys were
recorded in fathoms and tenths, so that there is lit-
tle quantisation noise and rounding bias (at worst ≈
0.1-0.15m). Hence, we conclude that the singlebeam
archive data may be compared against the MBES data
for further processing.
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Figure 5: Scatterplot of leadline soundings as com-
pared to the MBES depth surfaces. Significant evi-
dence of quantisation is observed, generated by round-
ing to integer fathoms on the smoothsheet, which is the
source for this digital data. The asymmetric rounding
of hydrographic practice causes a significant bias to
develop.

4 Error Sources and Modeling

4.1 Measurement Error

Our assessment of measurement error extends directly
from the distribution of VBES data about the MBES
surface. Sample statistic estimates of the variance of
the soundings were computed at different depths using
depth bins of 5.0m. The values in the bins centred
at 42.5m, 47.5m and 52.5m were censored due to the
limited number of data points in them and the evi-
dence of outliers in the sample. Further work requires
a model that describes potential measurement error at
all depths, and so a model of the form:

σm(95%) =
√

σ2
f + k2

vz2 (1)

⇒ σ2
m = σ2

f/1.962 + k2
vz2/1.962 (2)

corresponding to the IHO S.44 error model for sound-
ings [12] was fitted to the data. The Levenberg-
Marquadt method [16] for non-linear least squares was
used to make the fit suitably robust, Figure 6, resulting
in estimates of:

σf = 0.735 m (3)

kv = 0.0125 (4)

This is approximately in accordance with the cur-
rent S.44 error limits, which have σf = 0.5 m and
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Figure 6: Measurement error estimates by compar-
ison of VBES data to MBES data, and estimated
IHO S.44-inspired model (Equation 2) with parame-
ters σf = 0.735 m, kv = 0.0125.

kv = 0.013 for Order 1 survey. The increased base un-
certainty may come from at least three sources. First,
we are comparing against a surface that itself has an
uncertainty, which will increase the estimate accord-
ingly. Second, low numbers of samples in some depth
ranges can lead to reduced stability of the sample vari-
ance estimator, which is not robust to small sample
variations. Third, there is the potential for a small up-
ward bias to the soundings due to hydrographic round-
ing and shoal-bias in selection of points in a traditional
hydrographic processing chain (i.e., the soundings se-
lected are chosen as the shoalest of all those available
in the immediate vicinity, with no respect to measure-
ment error, leading to artificial shoaling of the data).
This bias will leak into a variance estimate inflation.

Overestimation of variance, as long as it is not egre-
gious, is not objectionable. This does not really affect
the depth predictions to be made, just the uncertain-
ties. If anything, this will make the predictions safer.

4.2 Interpolation Error

We aim to generate a surface from the sparse archive
data; interpolation is therefore inevitable. However,
since each measurement over which we interpolate has
errors, we must also consider the associated uncer-
tainty. We restrict ourselves to linear interpolators [8],
so that the operation can be written in general form
as:

ẑ(s) =
∑

i∈N (s)

λizi (5)

where si = (xi, yi) ∈ R
2, N (s) = {i : d(si, s) < d0}

(d(si, s) = ||si − s ||) is the set of neighbours of the lo-
cation s , and the λi are suitable weighting values that
can be described as a function solely of the location si

of the samples, and not the actual value. Then, under
assumptions of normality and independence of the zi,
we can predict the variance of the estimate as:

σ̂2(s) =
∑

i∈N (s)

λ2
i σ

2
i (6)

(see [21]). Interpolation models make some assumption
as to the nature of the underlying surface from which
the data is taken. Following Cressie [6], we decompose
the surface into a mean trend, a stochastic process, and
a measurement error:

Z(s) = µ(s) + R(s) + ε(s) (7)

where µ(s) is the mean trend, R(s) is a second or-
der intrinsically stationary random process, and ε(s) ∼
N (0, σ2

m(s)) is a spatially uncorrelated non-stationary
noise process representing measurement error. We es-
timate the measurement noise as above, estimate the
mean trend using a suitable smoothing function, and
finally model the residuals at the data points after re-
moving the trend by a suitable variogram and Kriging
analysis. Each of these processes contribute some error
to the final depth surface, and we compute the final er-
ror by quadratic sum of the standard deviations (i.e.,
addition of the variances).

Following Plant et al. [21], we concentrate on the
Quadratic Loess interpolator (QLI) [4, 5] for the trend
surface, which fits a quadratic surface to the data given
weighting to limit the bandwidth of the surface that is
reconstructed [22]. This allows us to better decompose
the surface into trend and stochastic functions, and
allows us to focus on sampling rates and aliasing. We
use the model:

ẑ(s) = p
T (s)βQ(s) (8)

βQ(s) = (β5(s), . . . , β0(s))T (9)

p(s) = (x2, y2, xy, x, y, 1)T (10)

and determine β(s) by minimising q2(s):

q2(s) =
∑

i∈N (s)

wi(s) {zi − ẑi(s)}2
(11)

ẑi(s) = p
T (si)βQ(s) (12)

wi(s) =
(

1 − (min{1, d(s , si)/d0})
3
)3

(13)

The weighting function wi(s) provides the localisation
and weighting of the QLI, and limits the range of inter-
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polation to ±d0, hence also limiting the spectral com-
ponents of the interpolated surface. Solution of Equa-
tion 11 can be specified in terms of the normal equa-
tions (suppressing the spatial notation for simplicity),
solving for βQ in:

DβQ = Ωz (14)

D = [dij ] (15)

dij =
∑

k∈N (s)

wkpi(sk)pj(sk) (16)

Ω = [ωij ] (17)

ωij = wjpi(sj) (18)

z = (z1, . . . , z|N (s)|)
T (19)

To give an explicit model in the form of Equation 5,
we observe:

ẑ(s) = p
T (s)βQ

= p
T (s)D−1Ωz

=
(

p
T (s)D−1Ω

)

z

= λT
Qz (20)

Let y
T = p

T (s)D−1 so that Dy = p(s) (D is symmet-
ric by definition). Solving for y , we may then compute
λQ = y

T Ω to avoid computing D−1 explicitly, and
hence compute the trend surface and interpolation er-
ror via Equations 8 and 6 respectively. The stability
of the QLI depends on the configuration of the points
in space around the point of interest. To robustify the
estimation, we compute the sample mean vector m(s)
and covariance matrix C(s) of the neighbour points,
and then remove any estimates which are more than
three units of Mahalanobis distance from the mean.
The Mahalanobis distance is defined as:

M(s ,m , C) = (s −m)T C−1(s −m) (21)

which may be evaluated as above by substituting y =
C−1(s −m) and solving Cy = s −m .

An example of the trend estimator for d0 = 2500 m
and d0 = 5000 m are shown in Figure 7 and Figure 8,
which also show the associated uncertainty. The in-
crease in smoothing is readily evident as the fitting
distance increases, and the uncertainty reduces accord-
ingly.

The sample spacing in the majority of the area is ap-
proximately one sample every 500m along-track; the
line spacing is slightly less. Hence, we cannot resolve
any features with wavelengths below approximately
1 km, and we use d0 = 5.0 km to compute the trend
surface. There is no loss here, since the residuals mod-
eled by the stochastic process contain all of the ‘infor-
mation’ removed by the trend surface. Over-smoothing

(a) Depth estimate (m)

(b) Uncertainty estimate (m, 95% CI)

Figure 7: Quadratic Loess estimate of trend surface
with smoothing limit d0 = 2500 m. Note vertical exag-
geration is 100×, and depths are colour-coded in me-
ters.
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(a) Depth estimate (m)

(b) Uncertainty estimate (m, 95% CI)

Figure 8: Quadratic Loess estimate of trend surface
with smoothing limit d0 = 5000 m. Note reduction in
uncertainty with respect to that of Figure 7, reflected
in extra energy passed to the residuals and higher un-
certainty in the residual surface estimate.

the trend surface also aids in stabilising the variogram
estimates described below.

Residuals are computed by interpolating to the po-
sition of the inputs:

ri = zi − ẑi(si) (22)

and are modeled as an intrinsically stationary second
order process by estimating the isotropic variogram
2γ0(h) = E

[

(ri − rj)
2|d(si, sj) = h

]

with the Method
of Moments [6] estimator:

2γ̂0(h) =
1

|E(h)|

∑

(i,j)∈E(h)

(ri − rj)
2 (23)

E(h) = {(i, j) : h − ∆h/2 ≤ d(si, sj)

< h + ∆h/2} (24)

using ∆h = 100 m and trimming the residuals to the
estimated 95% density region to avoid skewing the
variance estimate by significant outliers. A robusti-
fied (fourth-root [6, §2.4.3]) variogram estimator was
also used, and confirms the values reported here. The
estimate takes the form of a spherical model with sill
distance of approximately 2.1 km. A spherical model
of the form:

2γ0(h) = a0 + a1(1.5 min{1, (h/a2)}

− 0.5(min{1, (h/a2)})
3)
(25)

was fitted using the Levenberg-Marquadt non-linear
least-squares method as before [16], Figure 9. The pa-
rameters determined are:

a0 = 0.176 m2 (26)

a1 = 2.074 m2 (27)

a2 = 2058.611 m (28)

This model is known to be unconditionally valid in
R

2 [3]. Note that the variogram estimates are stable
below 500m (the nominal minimum observable separa-
tion) due to cross-lines in the archive dataset, although
the stationarity of these estimates is not well defined.
The assumptions made above only require that the in-
crements ri − rj are stationary, however, so there is
probably little loss. Of course, in more complex envi-
ronments, multiple variograms might be required de-
pending on the complexity of the topography, a matter
for further research. Note also that there is a non-zero
variance at zero lag, representing the mean measure-
ment error in the surface. We remove the a0 term
from the variogram before further work, and add the
spatially varying ε(s) term later. This has the side ef-
fect of enforcing the residuals where they occur (i.e.,
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Figure 9: Estimated variogram of residuals, and fit-
ted spherical variogram model (Equation 25). Sub-
500m estimates of variance arise from cross-lines in
the archive dataset.

of exact interpolation) so that values of the archive
soundings are maintained after the trend surface is re-
inserted.

We turn now to the problem of hydrographic cer-
titude. It is not possible to see very small details in
the surface from the sub-sampled soundings, and it is
possible that, in some environments, an object might
not be observed if it were to fall between the ∼ 500 m
line spacing of the main-scheme lines. Along-track,
there is no reason to believe that this is the case, since
the soundings are selected for recording based on rules
which would preserve exactly this sort of effect. How-
ever, small erratics might be missed and we must al-
low for some model of this in the uncertainty measure-
ments. It is not possible to predict where these erratics
might occur, and therefore the only suitable model is
to incorporate a variance term corresponding to ‘hy-
drographic oversight’, which increases as a function of
distance away from the soundings according to some
suitable form. Since a sum of two variograms is also
a valid variogram, we may implement this simply by
adding another term to the estimate variogram above.

We have chosen a linear isotropic variogram form:

2γH(h) = a0 + a1h (29)

although it might be argued that the variogram should
be anisotropic to follow the survey line’s direction.
This would overly complicate the implementation, and
require meta-information that would be difficult to
extract robustly from the archive dataset; we there-
fore simplify by assuming isotropic form. The next
question is how to choose the a1 value (we assume

a0 , 0). This choice is essentially arbitrary, and re-
flects our degree of ‘hydrographic comfort’ with the
data and the geology of the area (or of the likelihood
of small man-made objects). For example, if we are
working in a relatively flat shelf environment such as
the Gulf of Mexico, we might expect to see no errat-
ics, and set a1 ∼ 6.51 × 10−4 m so that 2γH(h) in-
creases to give a 95% CI envelope of 0.05m/m. In
a glacial moraine (or a harbour), we might suspect
something rather rougher, and increase a1 accordingly.
The Strataform area is south of the main glacial
moraines on the east coast, which occur in Long Is-
land Sound, although there are iceberg scours in the
northeast section of the extended area (towards the
Hudson Canyon). Therefore, in this example, we have
set a1 = 6.51× 10−4 m.

Once the variograms are established, we proceed by
Ordinary Kriging of the residuals [6, 7]. That is, with
the same model as before, we minimise:

E





(

r(s) −
n
∑

i=1

λiri

)2


− 2m

(

n
∑

i=1

λi − 1

)

(30)

(where n = |N (x, y)|, the number of neighbours at
the location of interest), subject to the constraint that
∑n

i=1 λi = 1. In matrix form, and again dropping the
explicit spatial notation for simplicity, we solve:

GλK = γ (31)

G = [gij ] (32)

gij =



















γ(d(si, sj)) 1 ≤ i, j ≤ n

1
(1 ≤ i ≤ n, j = n + 1),

(1 ≤ j ≤ n, i = n + 1)

0 i = j = n + 1

(33)

λK = (λ1, . . . , λn, m)T (34)

γ = (γ(d(s , s1)), . . . , γ(d(s , sn)), 1)T (35)

where m is a Lagrangian multiplier to enforce the con-
straint on the coefficients. Solution for λK(s) follows
immediately, and we predict interpolated residual r̂(s)
and uncertainty σ̂2(s) as:

r = (r1, . . . , rn, 0) (36)

r̂(s) = λT
K(s)r (37)

σ̂2(s) = λT
K(s)γ(s) (38)

An example of the residual surface and the associ-
ated uncertainty are shown in Figure 10. The surface
contains all of the small detail in the data lost in the
QLI trend, and the uncertainty reflects the positions of
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the data, the data density and the observed variabil-
ities, including the ‘hydrographic comfort’ variogram
γH(h). A close-up of the area in the west of the re-
gion, Figure 11(a), shows the expected form ‘egg-cup’
shapes around the sounding locations, and we observe
predictions of approximately 1-2m (95%) in the (rel-
atively) sparse areas. Much of this comes from γH(h)
as can be seen from Figure 11(b), which was computed
without this amplification factor. Some caution in the
arbitrary use of γH(h) is clearly justified, since we will
otherwise find all surveys to be insufficiently accurate!

4.3 Stability Estimation

Each sounding in the archive set contains some hori-
zontal error which depends on the age of the survey,
the positioning method in use and, potentially, envi-
ronmental effects. Since the horizontal positioning er-
ror is relatively small with respect to the achievable
resolution with the archive dataset, the primary signif-
icance of the horizontal error will be in variation of the
reconstructed bathymetry due to slopes in the surface.
We estimate this effect using a Monte Carlo approach
[9, 11] where we follow the methodology of Jakobs-
son et al.[13] and generate multiple pseudo-datasets
from the archive set, perturbing each one according to
a model of the horizontal error probable for the sur-
vey. We repeat the estimation of the surface via QLI
and Kriging using the variogram estimated in the base
case with unperturbed data, and compute sample es-
timates of standard deviation over the realisations of
the surfaces in order to estimate the expected effect
of random horizontal variation on the output surface.
We assume that the errors in positioning are stationary
over the survey area, although this might not be the
case in practice. The VBES archive soundings were po-
sitioned using range-range medium frequency devices
which gradually degrade with distance from the shore
stations [26]; if a model of positioning uncertainty were
available, it could be readily incorporated. We also
assume that positioning errors are uncorrelated and
equal variance in the horizontal dimensions. The er-
rors are almost surely correlated and related to the
lines of position between the platform and the survey
shore stations. However, this detailed information is
not generally available, and we are forced to neglect
the term for computational feasibility.

We ran 100 iterations of the Monte Carlo estimator
with the horizontal error set to 50 m (95% CI), corre-
sponding to 1970’s electronic range-range medium fre-
quency positioning systems. We find that the standard
deviation estimate over all realisations is generally on
the order of < 0.5 m mostly probably (Figure 12), al-

(a) Depth estimate (m)

(b) Uncertainty estimate (m, 95% CI)

Figure 10: Kriging surface for residuals, and predicted
uncertainty (95% CI). Vertical exaggeration is 250×.
The uncertainty mainly follows the density of the sur-
vey data, and clearly highlights where there is a rela-
tively sparse area and hence the potential for problems.
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(a) Closeup of uncertainty (m, 95% CI)

(b) Uncertainty without γH(h) (m, 95% CI)

Figure 11: Close-up of Kriging uncertainty predictions
with and without ‘hydrographic comfort’ variogram
γH(h). Vertical exaggeration is 250×; colour-code cor-
responds to 95% CI in meters.
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Figure 12: Distribution of confidence intervals for
Monte Carlo stability estimate. Most of the area has
a confidence interval of < 0.5 m, although significantly
higher levels of instability are observed, correlated to
slopes in the dataset.

though the tails of the distribution are significant and
spatially localised on significant slopes, Figure 13, and
can reach up to ∼ 3 m on the most significant slope in
the northwest of the region. Standard error estimates
for the Monte Carlo standard deviation estimator in-
dicate that the standard deviations are significant in
over 96% of the area (i.e., are more than three standard
errors from zero), indicating that the estimates are rel-
atively stable, although more replicas would continue
to improve the estimates. This is simply a matter of
the time that can be expended on the process.

4.4 Overall Estimate

Assembly of the final estimate surface is a matter of
adding together the components from the measure-
ment error, QLI trend, Kriging analysis, and stabil-
ity analysis. The variances from each component are
added, and the output scaled to appropriate units.
Figure 14 shows the final depth estimate with colour-
coded uncertainty co-registered. The uncertainty pat-
tern reflects primarily the uncertainty associated with
the Kriging analysis, although the stability effects are
evident on the slope in the northwest corner. This
is particularly evident in Figure 15, which shows the
uncertainty at the 95% CI. A more intriguing compar-
ison is to scale the predicted uncertainty by the lim-
its implied by the IHO S.44 standard for geophysical
models [12]. Figure 16 shows this, and it is evident
that the uncertainties being predicted are often higher
than the suggested limits for IHO Order 1 survey, al-
though those at Order 2 (Figure 17) are almost always
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Figure 13: Surface constructed from the Monte Carlo
stability estimate confidence intervals (colour-coding
represents 95% CI in meters). Vertical exaggeration
is 250×. The most significant uncertainties are asso-
ciated with slopes as expected, and can be significant
(∼ 3 m).

below the limit (except in the significant slope in the
northwest corner of the survey area), which is more in
keeping with the survey scales (1:40,000 to 1:80,000)
and the location of the survey area at the edge of the
continental shelf.

5 Discussion

These results require careful interpretation: Figure 16
does not say that the soundings themselves do not
meet the accuracy requirements, nor does it say that
the survey did not adequately determine the depths
in the area at the scale required. What it does say is
that a model built from these data does not constrain
particularly well the depths where soundings were not
taken, primarily due to the sparseness of the sound-
ings and their ability to represent well the bathymetry
at smaller scales. It is, however, the best information
that we typically have, and this must be factored into
decisions on use of the data and representation of this
information for the end-user.

It is evident from the survey scales and survey speci-
fications that these surveys were intended as “offshore”
and hence should more properly be judged as modern
Order 2 surveys. In this light, almost all of the area
is covered adequately with the exception of the slopes.
This is a general problem with all pre-GPS survey (and
indeed with DGPS surveys where the slopes are signif-

Figure 14: Final surface with uncertainty colour-coded
at 95% CI (m). Vertical exaggeration is 100×.

Figure 15: Uncertainty surface at 95% CI (m). Verti-
cal exaggeration is 250×. The most significant trend is
Kriging uncertainty, although stability of reconstruc-
tion is evident in the northwest corner of the region
which has significant slope.
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Figure 16: Uncertainty surface, scaled to a fraction of
the IHO S.44 limits for Order 1 derived geostatistical
surfaces (everything above 1.0 is white). The predicted
uncertainties are higher in much of the area than the
suggested limits, primarily due to data sparseness.

Figure 17: Uncertainty surface, scaled to a fraction of
the IHO S.44 limits for Order 2 derived geostatistical
surfaces. Prediction errors are generally within the
limits specified (i.e., < 1 in the figure), except on the
slope in the northwest corner.

icant), and cannot be avoided. Any horizontal error
component will translate into vertical error when ap-
plied on a slope.

There are a number of limitations with the cur-
rent methodology. We assume that the variogram can
be modeled isotropically and although this is proba-
bly reasonable in many cases, it remains to be seen
whether this is always the case. Indeed, there is evi-
dence in the reconstructed surface of artifacts induced
by closer spacing of along-track soundings than sound-
ings from adjacent tracks, leading to saddles between
data points where the survey lines run obliquely across
ridges in the northeast and southwest portions of the
study area. It is probable that a decomposition along
and across strike would be beneficial in explaining the
variability and reducing the uncertainty, but this poses
problems of assessment of geological variability since
this effect will not be stationary and may even appear
and disappear in some regimes.

The problem of ‘patchiness’ occurs also in the esti-
mation of the trend surface, where we have assumed
that there should be one limiting wavelength in all
of the study area. Since this is related primarily to
the data sampling density, it would be better if the
smoothing wavelength were adaptively set depending
on data density and local roughness. This poses no
significant theoretical difficulty in the method, and it
may be possible to drive the adaption by an estimate
of consistency of the variogram.

We have purposely neglected temporal increase of
uncertainty (i.e., how much our knowledge of the depth
degrades over time). Comparison of the VBES and
MBES data show it to be most likely a small effect
in this case, although in some situations (e.g., river
deltas or tidally driven sand-ripple fields), it may be
more significant.

Finally, the choice of the ‘hydrographic comfort’
variogram is essentially arbitrary, and would also be
better adapted based on an estimate of the likelihood
of erratics, objects and other unknowns. This might
depend on the local roughness but will depend primar-
ily on the geological context of the area, something
which is notoriously difficult to quantify with any cer-
tainty. Other factors will include the age of the survey,
location (e.g., harbour approaches, offshore reconnais-
sance survey), and hydrographic intent for the com-
posite grid model. Uncertainty may also be capped
above by other factors, such as knowledge of a sidescan
survey conducted with the archive dataset (generally
limiting this situation to modern VBES surveys). The
argument [23] is that a co-registered sidescan would in-
dicate objects of more than, say, ∼ 1 m relief above the
surface. Therefore, if no objects are detected (and if
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they were, they would be represented by a least-depth
sounding in the archive dataset), then the uncertainty
for ‘unobserved variability’ should be limited to a max-
imum of 1 m (at 95% CI for safety). It is important
to note, however, this this only limits the unobserved
variability factor, and not, e.g., measurement error,
stability or trend surface interpolation.

We have neglected here the effects of aliasing error,
that ‘noise’ injected into the dataset and our estimates
by spatial under-sampling of the surface. Plant et al.
[21] consider this in the context of a spectral repre-
sentation of the interpolation operator [22], and show
that it may be possible to estimate the aliasing uncer-
tainty through an ‘Empirical Transfer Function’ given
the interpolation coefficients for a point and some esti-
mate of the measurement noise and pre-sampling sur-
face spectral density. In the same way that we use the
extant MBES data to calibrate the measurement error
in the archive dataset, it may be possible to calibrate
the aliasing error from the higher resolution surface.
However, this error will depend strongly on local sur-
face roughness and structure, which are obviously non-
stationary, and hence the assumption that we can cal-
ibrate once and move the calibration anywhere is less
tenable than it is with the measurement error model.
The problem again is one of geological context, which
cannot be avoided. The magnitude of aliasing error in
these datasets is currently unknown, but is a topic of
continuing research.

We have dismissed leadline archive data from this
study due to the observed bias. However, if this is the
only survey data available, this may not be a permis-
sible solution. It is in theory possible to estimate the
measurement error directly, given the bias, and pro-
ceed. However, the implication of the bias is that the
uncertainty of the surface should, on average, be lower
than otherwise computed—the depths are intention-
ally and provably shoaler than the known true depths
in the area, therefore the shoal-side uncertainty im-
plied for the hydrographic user is lower. How much less
is, however, a more complex problem for more study;
some dependence on geological context is expected.

There is nothing intrinsic to the model that would
limit it to archive datasets of this type, and it could
equally well be applied to modern VBES data. In this
case, the advantage of having better knowledge of mea-
surement error, variability along-track and any con-
temporary MBES data would make a number of steps
of the process significantly simpler. Use of contem-
porary MBES data may also allow assessment of the
aliasing error induced by VBES line spacing, an effect
which we have otherwise neglected in this treatment.
This method would then provide compatible products

from VBES and other sparse data for combination with
high-density MBES surveys.

6 Conclusions

The majority of the area covered by hydrographic sur-
veys in the US is only covered by archive datasets of
VBES or leadline data. To bring this data to a state
where it can be readily combined with modern data
and modern methods, it needs to be made into a sur-
face, and we need to know the uncertainty of the pre-
dictions that are made where soundings do not exist.
We assume in this process that we are restricted to
the soundings from the survey archives, with at best
survey reports to document equipment used and sur-
vey procedures applied for horizontal and vertical con-
trol. We allow, however, that we will have—in lim-
ited quantities—co-registered modern high-resolution
MBES data. We use this to construct estimates of
measurement errors for the archive dataset, and to test
for biases and other archive quality issues.

We have shown through the use of an example
dataset in a relatively benign hydrographic environ-
ment that archive datasets may be significantly biased
by their method of curation from source to current
databases. Particularly, the leadline data from 1936-
38 found in the study area showed a significant shoal
bias of approximately 1.48 m with respect to the MBES
surface. This cannot be readily explained by any rea-
sonable physical means; we believe the cause to be
hydrographic rounding practices and reduction of the
soundings into integer fathom units. This makes the
data unusable for further comparisons.

We have outlined a methodology that uses MBES
data in the same area as the archive data to calibrate a
measurement error model for the archive VBES data.
A Quadratic Loess interpolator was used to implement
scale-controlled interpolation for a trend model of the
data, and the residuals after this trend was removed
were modeled by Ordinary Kriging. We show that hy-
drographic uncertainty can be added at the Kriging
stage as a separate variogram scaled to account for the
hydrographer’s level of comfort on the nature of the
survey area. Stability of reconstruction was assessed
by Monte Carlo methods. The composite output sur-
face from all of these sources contains co-registered es-
timates of depth and associated uncertainty.

Through the example archive dataset, we have il-
lustrated the method, and have shown that the pre-
dicted depth uncertainty for the model is higher than
might be preferred, being influenced primarily by the
uncertainty due to sparse soundings and variability
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expressed through the Kriging analysis. Comparison
with relevant IHO standard show that some of the area
exceed the limits for geostatistical models at Order 1,
but most meets Order 2 specifications.
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