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Abstract

While conducting hydrographic survey operations in the Florida Keys, NOAA Ship Thomas
Jefferson served as a test platform for the initial operational implementation of an L-3 Klein
HydroChart 5000 Swath Bathymetry Sonar System!, a hull-mounted phase measuring
bathymetric sonar (PMBS). During the project it became apparent that the traditional patch test
typically utilized for multibeam echosounder (MBES) systems was poorly suited to the
HydroChart — and perhaps other PMBS systems as well. These systems have several inherent
characteristics that make it difficult to isolate and subsequently solve for biases under the
traditional patch test paradigm: presence of a nadir gap, wide swaths (typically greater than 6
times water depth), and relatively poor object-detection capability in the outer swath. After
“rethinking” the patch test to account for these characteristics, the authors propose a new patch
test paradigm that is better suited to the HydroChart and other PMBS systems.

1.0 Introduction

A large portion of NOAA'’s nautical charting hydrographic survey effort is focused on acquiring
bathymetric data in waters shoaler than 20 meters. Data acquisition by single-head MBES
systems, which presently constitute much of NOAA’s hydrographic systems inventory, is
relatively inefficient and sometimes hazardous under these conditions, particularly when
surveying near the shoreline or within close range of dangers to navigation. Single-head MBES
swath widths are typically constrained to 3 or 4 times water depth in order to achieve stringent
nautical charting hydrographic data requirements, making it relatively difficult to (1) efficiently
obtain full bottom coverage and (2) maintain a safe distance from both visible and submerged
hazards to navigation. Acquisition of airborne lidar bathymetry in many of these areas is often
precluded by water clarity and data resolution requirements.

! Mention of a commercial company or product does not constitute an endorsement by NOAA, National Ocean
Service, or Office of Coast Survey. Use of information from this publication concerning proprietary products or the
testing of such products for publicity or advertising purposes is prohibited.
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Figure 1. Timeline of NOAA’s test and evaluation of phase measuring bathymetric sonars.

Since 2004, NOAA'’s Office of Coast Survey has undertaken an effort to test and evaluate PMBS
technology as a tool to improve the efficiency and safety of hydrographic survey operations in
shallow water environments while meeting NOAA’s nautical charting hydrographic data
requirements (Figure 1). Recent studies undertaken as part of this effort (Gostnell and Yoos,
2007; Brodet et al., 2010) have demonstrated that PMBS technology holds promise as a cost-
effective method to acquire high-resolution, wide-swath (up to approximately 10 times water
depth for hull-mounted systems) bathymetry with co-located imagery, effectively doubling the
areal coverage per time of that achievable with single-head MBES systems in waters shoaler than
10 to 15 meters while simultaneously improving the overall safety of operations.

As part of ongoing test and evaluation efforts, the Office of Coast Survey recently procured an
L-3 Klein HydroChart 5000 Swath Bathymetry Sonar System (Brodet et al., 2010) with intent to
conduct an operational test and evaluation on NOAA Ship Thomas Jefferson Survey Launch
3102 during an Integrated Ocean and Coastal Mapping (IOCM) project in the Florida Keys
National Marine Sanctuary (Figure 2). During data acquisition in the Florida Keys it became
apparent that the traditional patch test typically utilized for MBES systems was poorly suited to
the HydroChart — and perhaps to other PMBS systems by extension. PMBS systems have
several inherent characteristics that impede the direct application of traditional MBES patch test
methodology, including: presence of a nadir gap, wide swaths, and limited object-detection
capability (particularly in the relatively noisy outer swath). The impact of these characteristics
upon application of the traditional patch test methodology is discussed further in the next section.
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Figure 2. L-3 Klein HydroChart 5000 bathymetry from Integrated Ocean and Coastal Mapping (IOCM)
project in Key West, FL, August 2010. HydroChart bathymetry was acquired for operational test and
evaluation purposes only. Inset: NOAA Ship Thomas Jefferson Launch 3102.

This concept paper describes the limitations of applying the existing patch test methodology to
PMBS systems and presents the authors’ best effort to define a new set of patch test procedures
that is better-suited to PMBS systems. The new patch test paradigm calls for re-organizing the
order in which the biases are solved for, as well as rethinking the methodology utilized to solve
for individual biases; in particular, the use of imagery is recommended to solve for navigation
timing and yaw biases. A sample patch test dataset, utilizing the new methodology, was
acquired with a Teledyne Benthos C3D installation on NOAA R/V Lookdown in Annapolis, MD
in March of 2011. This paper describes the survey plan utilized to acquire the sample patch test
dataset as well as some preliminary results. The preliminary results indicate that the use of
imagery to derive patch test correctors for PMBS systems is promising; however, the derivation
of highly precise correctors is difficult using the tools currently available. The authors
subsequently propose the development of a new tool for deriving patch test correctors from
PMBS imagery.

2.0 Limitations of the Existing Methodology

The original methodology for determining the angular misalignment of the sonar and vessel
reference frames for MBES systems was developed by NOAA’s National Ocean Service as part
of an effort to map the US Exclusive Economic Zone (EEZ) in the late 1980s (Wheaton, 1988;
Herlihy et al., 1989). This approach was subsequently adapted for high-resolution, shallow-
water multibeam systems (Godin, 1998), yielding the traditional MBES patch test that is well-
established today. Godin’s approach further utilizes a post-processing system that allows for the
visualization of swaths in plan view and cross-section, as well as for the digital manipulation of
sounding data, allowing for the easier determination of patch test correctors.
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The approach previously taken by the Office of Coast Survey to derive patch test correctors for
PMBS systems has been to utilize the traditional patch test methodology virtually “as-is”. This
approach (Figure 3) utilizes the same order of solving for biases (timing-pitch-yaw-roll), but
allows for off-nadir data to solve for navigation timing and pitch. There are several limitations
to utilizing this approach:

Cross-Talk: Use of off-nadir data to solve for pitch introduces “cross-talk™ with roll and
yaw, particularly when solving on a bounded slope (Wheaton, 1988). It is therefore
impossible to solve for pitch before roll and yaw are resolved, forcing an iterative
solution between the three biases to close in on the “correct” values. The effect of cross-
talk was particularly pronounced in the HydroChart installation on NOAA Ship Thomas
Jefferson Launch 3102, for which the nadir gap was increased to 20° from vertical on
each side to mitigate the effect of acoustic return from the keel (Figure 4).

Poor object detection capability: The traditional patch test methodology utilizes a
“submerged and conspicuous bathymetric feature” (Godin, 1998) to solve for a
navigation timing latency as well as pitch and yaw biases. Traditionally, PMBS systems
have proven useful for acquiring generalized bathymetry, but have performed poorly
relative to MBES systems with regard to object-detection capability using bathymetry
(Gostnell and Yoos, 2007; Brodet et al., 2010), thus limiting the usefulness of solving for
timing, pitch and yaw biases utilizing PMBS sounding data acquired over a discrete
object (Figure 5).

Yaw Sensitivity: For PMBS systems, which are capable of achieving swaths of nearly 10
times water depth as opposed to the 3 to 5 times water depth achievable by most single-
head MBES systems, yaw is closing the gap with roll as the most “sensitive” bias in the
patch test (Figure 4). At the same time, deriving a precise yaw bias value for PMBS
systems is made more difficult for both reasons noted above (cross-talk and limited
object-detection capability).

Figure 3. HydroChart patch test from Key West, FL. From left: timing and pitch tests (bounded
slope); yaw test (discrete object); roll test (flat seafloor). These calibration lines comprise a
dual-transducer patch test modified from the MBES methodology.
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Figure 4. 2D view of HydroChart swath from Solomons, MD survey in April 2010. Water depth
is approximately 9.5 m. Note wide swath (approximately 10 times water depth) and pronounced
nadir gap, as well as increasing standard deviation of soundings in outer swath. Total
magnitude of outer swath “fluff”” is 1.2 m in this image. The HydroChart nadir gap is typically
15° from vertical on each side, but was increased to 20° for the installation on Launch 3102 to
mitigate the effect of acoustic return from the keel.

Figure 5. View of debris pile from Key West, FL survey in August 2010 in HydroChart imagery
(left image), HydroChart bathymetry (center image) and Reson 7125 bathymetry (right image);
grid resolution of HydroChart and Reson 7125 bathymetry is 0.5 m. Debris rise approximately
50 to 60 cm above the seabed. These features are poorly resolved in the HydroChart
bathymetry, but appear sharp in the imagery.
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3.0 A New Patch Test for PMBS Systems

In view of the above limitations of applying the existing patch test methodology, the authors
have endeavored to determine a new set of patch test procedures that is better-suited to PMBS
systems. This new paradigm calls for reorganizing the order in which the biases are solved, as
well as rethinking how some individual biases are solved.

3.1 Order of Solving Biases
To mitigate the problem of cross-talk, the recommended order of solving for biases is as follows:

1) Navigation timing latency
2) Roll offset
3) Yaw offset
4) Pitch offset

After resolution of the navigation time latency, the roll offset should be resolved next as it does
not require the previous determination of yaw and pitch offsets. The yaw offset should be
resolved next, followed by the pitch offset. Though pitch can contribute to cross-talk in the
derivation of the yaw offset, this effect can be mitigated by using the PMBS imagery, rather than
bathymetry, to solve for yaw, as described below.

3.2 Methodology for Solving Biases

This patch test methodology assumes a dual-transducer configuration, which is the case for
PMBS systems that have separate port and starboard transducers for which pitch, yaw and roll
errors need to be resolved separately.

3.2.1 Navigation Timing Latency

To assess a navigation timing latency, coincident lines are run at different speeds (slow and fast)
perpendicular to a discrete linear feature, such as a pipeline, on a flat shallow bottom (Figure 6).
If no linear feature is present in the survey vicinity, one can create a linear feature by dragging a
mushroom anchor behind the vessel on a soft bottom, or by dropping acoustic targets at regular
intervals for a “connect the dots” linear feature on a hard bottom (the acoustic targets should
have surface floats to facilitate retrieval). If it is not possible to find or create a linear feature, an
alternative is to run lines over a discrete object in the inner swath. Particularly for the alternative
scenario, care must be taken to ensure that the vessel follows, as nearly as possible, the same
trackline on each pass in order to mitigate the influence of cross-talk with roll and yaw. Due to
the potential for additional motion-induced cross-talk (if a navigation timing latency exists, it is
often coupled to an attitude timing latency), navigation timing latency calibration lines should be
acquired during flat calm conditions.

The navigation timing delay can be assessed in post-processing using sounding data in a semi-
automated patch test calibration (e.g., Caris HIPS calibration tool), though this approach is
subject to the limitations discussed in the previous section. An alternative approach which may
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mitigate these effects is to solve for the navigation timing delay using a manual imagery
calibration. A manual imagery calibration can be performed by either: 1) re-generating mosaics
upon effecting a change to patch test corrector values to visually assess the alignment of the
target seafloor geometry, or 2) assigning contacts to the target seafloor geometry in each line of a
calibration line pair, then re-computing contact position upon effecting a change to the patch test
corrector values to visually assess the alignment of the contacts.

The use of imagery to assess a navigation timing delay mitigates the problem of cross-talk with
roll, which may cause an apparent vertical displacement of sounding data in the bathymetry
patch test. Imagery also tends to be much “sharper” than the bathymetry for PMBS systems,
allowing for better definition of the edges of discrete objects used to assess the navigation timing
delay (Figure 5). However, a major limitation of using imagery is the difficulty of deriving
correctors unless the timing latency is large enough to induce a noticeable shift in the mosaics;
mosaics cannot be used to correct relatively small timing latencies where the grid resolution is
coarser than the position displacement induced by the latency. The use of the second method —
that of aligning contacts digitized from the high-resolution imagery display (e.g., Caris Side Scan
Editor display) — may allow for the determination of a more precise timing latency.

The benefit of using a discrete linear feature to solve a navigation time delay, coupled with use
of an imagery patch test, is that it allows the human eye to visually “connect” the linear feature
to give an intersection point at nadir. This nadir point cannot be imaged by PMBS systems, but
is required to minimize cross-talk with pitch and yaw. A more robust solution to obtain this
intersection point would be to develop a tool that fits a regression line to the image target,
yielding the exact trackline intersection point at nadir. This intersection point is computed for
both runs of the line. The navigation latency can then be modified until the nadir intersection
points are exactly the same for both runs. Because this tool would yield a mathematical solution
rather than a purely visual one, it could also be capable of producing a more “precise” timing
latency.
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Figure 6. Proposed calibration line geometry for PMBS navigation timing test. Coincident lines
are run at slow and fast speeds. Left: Test over a discrete linear feature (submerged sewer
pipeline). This is the recommended geometry for solving a navigation timing latency for PMBS
systems. Right: Test over a discrete object (wreck). Images are from a line plan for an example
patch test survey on NOAA R/V Lookdown in Annapolis, MD.
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3.2.2 Roll Bias

The procedure for solving a roll bias for a PMBS system is approximately the same as that for a
dual-head MBES system. To solve for a roll bias, a set of reciprocal offset lines are run in both
directions, at the same speed, over a flat seafloor (Figure 7). Line spacing should be equal to
one-half of the total swath width, yielding 100% overlap. The four runs of the two lines provide
the ability to independently solve for port and starboard side biases. Though roll lines are
typically run in relatively deep water (Godin, 1998), one should be careful not to exceed the
maximum depth rating of the PMBS system.

The roll bias is subsequently assessed in post-processing using the PMBS sounding data in a
semi-automated patch test calibration, such as the HIPS Calibration Tool.

(&), 2
A3 | / 59
. G "g5" A ~ ~
J fFszss.{% ~ 57
N A 56 T
T 85," l" /
;™ £ l" h8 ¢
\-f"\- | E
/33/ / T~ ¥ I
G 93"/, U
/ FIG 45 -3 56~ 534""6' A
' GONG R"94™ - VY
- - FIR 45 — ¥
[/ 80 “Dligei VA=

Figure 7. Proposed calibration line geometry for PMBS roll test. Reciprocal lines are offset by
approximately one-half the total swath width, yielding 100% overlap (line spacing is
exaggerated in this image). The water depth should not exceed the maximum depth rating of the
PMBS system; here a depth of 17m is used. Image is from a line plan for an example patch test
survey on NOAA R/V Lookdown in Annapolis, MD.

3.2.3 Yaw Bias

To solve for a yaw bias, a set of reciprocal offset lines are run, at the same speed, perpendicular
to a discrete linear feature, such as a pipeline, on a flat shallow bottom (Figure 8). If one cannot
find or create a discrete linear feature in the survey vicinity, an alternative is to run lines over a
discrete object in the outer swath. Line spacing should be such that the adjacent lines overlap
slightly (~15%) while covering the feature; where possible, the feature should be wide enough to
ensure adequate sampling (Godin, 1998). As with the roll offset, the lines are run in both
directions to allow for separate estimation of the port and starboard transducer yaw offsets.

The yaw bias can be assessed in post-processing using sounding data in a semi-automated patch
test routine, or using a manual imagery calibration as described in Section 3.2.1. The use of
imagery to assess a yaw bias will mitigate the influence of an unresolved pitch bias, which may
cause an apparent vertical displacement of soundings from consecutive lines. The imagery is
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also considerably sharper than the bathymetry for PMBS systems, particularly so in the outer
swath, allowing for better definition of discrete objects for assessment of the yaw bias.
However, as with the assessment of navigation timing delay, a major limitation of the imagery
patch test is the difficulty of deriving correctors unless the yaw bias is large enough to induce a
noticeable shift in the mosaics.

The ideal seafloor geometry (that of a discrete linear feature in shallow water) makes the best use
of the imagery patch test, as an unresolved yaw bias alters the azimuth of the linear feature,
leading to a discontinuity in the overlap region between calibration lines. To solve for the yaw
bias, one simply brings the calibration line pair back into alignment. While an unresolved pitch
offset would also contribute to along-track displacement of the linear feature, this displacement
should be minimal compared with the displacement due to a yaw bias. This is because pitch is
typically the least sensitive of the biases in shallow water; for example, a pitch bias of 1° will
yield a horizontal displacement of 25 cm at nadir for a nominal water depth of 20 m.
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Figure 8. Proposed calibration line geometry for PMBS yaw test. Reciprocal lines are offset to
allow for 15% overlap between adjacent swaths (line spacing is exaggerated in these images).
Images are from a line plan for an example patch test survey on NOAA R/V Lookdown in
Annapolis, MD.

3.2.4 Pitch Bias

The procedure for solving a pitch bias for a PMBS system is approximately the same as that for a
dual-head MBES system. To solve for a pitch bias, a set of reciprocal offset lines are run, at the
same speed, perpendicular to a bounded slope (Figure 9). Line spacing should be equal to one-
half of the total swath width, yielding 100% overlap.

The pitch bias is subsequently assessed in post-processing using the PMBS sounding data in a
semi-automated patch test calibration, such as the HIPS Calibration Tool. Because the pitch bias
is determined by examining off-nadir sounding data, which is susceptible to cross-talk with yaw,
it is important to determine a precise yaw bias before attempting to solve for pitch. Failure to do
so will require an iterative sequence of solving for yaw and pitch to close in on the “correct”
values.
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Figure 9. Proposed calibration line geometry for PMBS pitch test. Reciprocal lines are offset
by approximately one-half the total swath width, yielding 100% overlap (line spacing is
exaggerated in this image). Image is from a line plan for an example patch test survey on NOAA
R/V Lookdown in Annapolis, MD.

4.0 An Example PMBS Patch Test

An example PMBS patch test utilizing the proposed methodology was conducted with a
Teledyne Benthos C3D installation on NOAA R/V Lookdown in Annapolis, MD on March 8",
2011 (Figure 10). During survey operations sound speed casts were acquired approximately
every 2 hours using a Sea-Bird SBE 19Plus CTD. Vessel motion correctors and position were
provided by an Applanix POS MV WaveMaster; attitude and kinematic data were logged for the
duration of the survey in the POS MV controller software.

C3D bathymetry and imagery were fully processed using the Caris HIPS and SIPS software
package. All sound speed correctors, water level correctors, and positioning and kinematic
correctors were applied to the C3D data in post-processing. Sounding data were reduced to the
ellipsoid using the HIPS Compute GPS Tide function, eliminating the need for zoned tides. The
ellipsoid heights applied in post-processing are referenced to the GRS 80 ellipsoid (meters) and
were computed using a POSPac SingleBase high-accuracy differential GNSS routine with
inertially-aided kinematic ambiguity resolution (Applanix, 2010).

In post-processing, patch test correctors for the C3D installation on R/V Lookdown were
determined for the starboard transducer only due to a pronounced artifact of unknown origin in
the port transducer data.
4.1 Preliminary Results
Patch test correctors for the C3D installation on NOAA R/V Lookdown were derived using the

new PMBS patch test methodology outlined in Section 3.0. This section describes the
preliminary results of utilizing the new methodology.
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Figure 10. Teledyne Benthos C3D installation on NOAA R/V Lookdown.

4.1.1 Navigation Timing

Calibration lines to assess navigation timing latency were acquired over a submerged sewer
pipeline located at a water depth of approximately 7 meters MLLW (Figure 6). Navigation
timing latency was derived using two different methods of manual imagery calibration. The first
method comprised generating a mosaic of the calibration line pair, which was subsequently re-
generated upon effecting a change to the navigation latency value in the Caris HVF file. The
second method comprised digitizing contacts from the leading edge of the pipeline in the
imagery of each line from the calibration pair, then re-computing contact position upon effecting
a change to the navigation latency value in the Caris HVF file. Whereas mosaics for the
navigation timing test were generated at a resolution of 50 cm, the contacts were digitized from
the imagery in the Caris Side Scan Editor display, which was of a higher resolution.

The first method, which directly utilizes the mosaic to visually assess alignment of the pipeline,
was not useful for solving the navigation time latency. While inducing a navigation timing
latency in the Caris HVF file clearly induced an offset in the pipeline position between the
individual line mosaics (GeoBars), it was not possible to visualize this offset in the combined
mosaic, in which the imagery from one line always overlapped the other (Figure 11). It was
impossible to determine the navigation timing latency without being able to simultaneously view
the pipeline position from each line of the calibration pair.

The second method, which utilizes digitized contact positions to visually assess alignment of the
pipeline, proved to be a much more precise method for solving the navigation timing latency.
Contacts were digitized from the leading edge of the pipeline for each line of the calibration pair,
and the navigation latency in the Caris HVF was subsequently tweaked until the two contacts
came into alignment. An induced navigation timing latency of 1 second induced a noticeable
discrepancy in the recomputed contact positions (Figure 12), indicating that this methodology is
capable of resolving sub-second navigation timing latencies. The navigation latency for the C3D
installation on R/V Lookdown was found to be approximately zero.

11
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Figure 11. A manual calibration method for assessing navigation timing latency from PMBS
imagery. Left: Line mosaic (GeoBar) of calibration line ‘A’ with induced timing latency of 10
seconds. Middle: Line mosaic of calibration line ‘B’ with induced timing latency of 10 seconds.
Note that the pipeline position has shifted relative to calibration line ‘A’. Right: Combined
mosaic of calibration lines ‘A’ and ‘B’ shows pipeline location from calibration line ‘B” only.
Because both pipeline positions cannot be visualized simultaneously, it is impossible to assess
navigation timing latency using this method. Imagery resolution in each image is 50 cm.

Figure 12. A manual calibration method for assessing navigation timing latency from contacts
digitized from PMBS imagery. Left: Contacts digitized from calibration lines ‘A’ and ‘B’ with
navigation time latency of zero; the contacts are in alignment, indicating the latency is
approximately nil. Right: Contacts digitized from calibration lines ‘A’ and ‘B’ with an induced
navigation time latency of 1 second. Imagery resolution in each image is 50 cm.
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4.1.2 Roll Bias

Calibration test lines to assess port and starboard roll biases were acquired over a flat seafloor
area at a water depth of approximately 15 meters MLLW. The starboard roll bias was assessed
in post-processing by examining C3D sounding data with the Caris HIPS Calibration Tool,
exactly as it would be for a dual-transducer MBES system. As anticipated, this process was
relatively straightforward. The starboard roll bias for the C3D installation on R/V Lookdown
was found to be approximately 1.80 degrees.

Roll calibration of PMBS systems is made somewhat more difficult by the necessity of aligning
the “fluffy” outer swath of one line with the much neater inner swath of its counterpart in the
calibration line pair (Figure 13). The process can be made even more difficult by the presence of
a refraction artifact, which is often more pronounced in wide-swath PMBS data, in one or both
lines in the calibration line pair. The C3D patch test data appeared to have a slight refraction
artifact, which may or may not have appreciably impacted the determination of a starboard roll
bias.
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Figure 13. Assessment of roll bias using the Caris HIPS Calibration Tool. Note the difficulty of
aligning the “fluffy” outer swath of one line with the much neater inner swath of its counterpart
in the calibration line pair (center window). Note the presence of a slight refraction artifact,
most visible in the outer swath “fluff”.

4.1.3 Yaw Bias
Calibration test lines to assess the port and starboard yaw biases were acquired over a submerged

sewer pipeline located at a water depth of approximately 7 meters MLLW (Figure 6). This was
the same feature utilized to assess the navigation timing latency.
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The starboard yaw bias was assessed in post-processing using the two different methods of
manual imagery calibration utilized for the navigation timing latency test. The first method,
which directly utilizes the mosaic to visually assess alignment of the pipeline, was somewhat
useful for solving the yaw bias. A large yaw bias entered in the Caris HVF clearly induced an
offset in the pipeline position between the individual line mosaics; this offset was still visible in
the combined mosaic, as the imagery from one line only partially overlapped the other (Figure
14). However, it was relatively difficult to use this method to determine a precise yaw bias, as
the sensitivity of this test obviously depends on the resolution of the imagery. The resolution of
imagery used for the C3D yaw bias test was 1 m, which is the same magnitude of the along-track
discrepancy induced by a yaw bias of approximately 1.1° at a range scale of 50 m (this was the
range scale utilized during the C3D patch test). Using this first method the yaw bias for the C3D
installation on R/V Lookdown was found to be approximately zero, give or take ~1° due to the
limitations of the imagery resolution.

Figure 14. A manual calibration method for assessing yaw bias from PMBS imagery. Left:
Combined mosaic of calibration lines ‘A’ and ‘B’ with yaw bias of zero. Right: Combined
mosaic of calibration lines ‘A’ and ‘B’ with an induced yaw bias of 10 degrees; note
displacement of pipeline. Imagery resolution in each image is 1 m. Note: Data quality of
imagery from the port swath (i.e., non-overlapped region) is poor due to an artifact, of unknown
origin, inherent to the C3D installation used for the survey.

The second method, which utilizes digitized contact positions to visually assess alignment of the
pipeline, was not used, as it was very quickly demonstrated that contacts cannot be utilized to
assess yaw bias. Though the navigation timing latency is “applied” to the contact position
through the process of re-computing towfish navigation and re-computing contact positions, the
other patch test correctors in the Caris HVF file (i.e., roll, pitch and heading biases) are not
likewise applied to determine the contact position (Figure 15). Lacking the ability to effect a
change in positioning of digitized contacts by altering patch test values in the Caris HVF, one
cannot use contacts to solve for the yaw bias.
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Figure 15. A manual calibration method for assessing yaw bias from PMBS imagery. Contacts
digitized from yaw calibration lines ‘A’ and ‘B’. Changing the yaw bias value in the Caris HVF
file does not effect a change in re-computed contact positions; hence this method cannot be used
to solve for yaw bias.

4.1.4 Pitch Bias

Calibration test lines to assess port and starboard pitch biases were acquired over a bounded
slope with a nominal water depth of approximately 5 meters MLLW. The starboard pitch bias
was assessed in post-processing by examining C3D sounding data with the Caris HIPS
Calibration Tool, exactly as it would be for a dual-transducer MBES system (Figure 16). As
anticipated, this process was relatively straightforward. The starboard pitch bias for the C3D
installation on R/V Lookdown was found to be approximately 1.50 degrees.

5.0 Discussion and Conclusions

Preliminary results from the recent C3D survey on R/V Lookdown indicate that the new
methodology for deriving patch test correctors for PMBS systems, comprised of a new order of
solving for biases as well as new tools and seafloor geometries to solve for the navigation timing
latency and yaw bias, is capable of overcoming many of the limitations inherent to the traditional
patch test methodology, including the potential for cross-talk between pitch, roll and yaw biases.
In particular, the use of imagery to solve for the navigation timing latency and yaw bias is a
significant improvement upon the existing methodology when used in concert with calibration
lines acquired over a discrete linear feature. For solving a navigation timing latency, this
procedure allows the human eye to visually “connect” the feature across the nadir gap to derive
an intersection point for assessing navigation timing latency without cross-talk from roll and
yaw. For solving a yaw bias, this procedure allows one to “connect” the feature between
adjacent lines for solving the yaw bias without cross-talk from pitch.
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Figure 16. Assessment of pitch bias using the Caris HIPS Calibration Tool.

Whereas implementation of the new methodology demonstrates the utility of using high-
resolution PMBS imagery to solve for the navigation timing and yaw biases, the “tools” explored
in this paper — those of a manual imagery calibration using either mosaics or vector data such as
digitized contacts — cannot derive correctors with the precision inherent to the traditional patch
test methodology. The first method, which utilizes mosaics to visually assess alignment of a
discrete object in response to manual “tweaking” of applied patch test values, is not altogether
useful as the precision of the derived bias is limited by the mosaic resolution. Whereas the
second method, which examines discrepancies in contact positions in response to tweaking of
applied patch test values, is capable of deriving a more precise bias (i.e., to sub-second resolution
for the navigation latency), this method can only be used to assess a navigation timing latency
since pitch, roll and yaw biases are not “applied” to digitized contacts.

Since the determination of highly precise patch test correctors is inhibited by the tools currently
available for conducting an imagery-based calibration, the authors propose development of a
new tool for the dynamic calibration of imagery and vector data based on parameters including
(but perhaps not limited to) navigation timing latency and roll, pitch and yaw biases. Such a tool
would allow for the simultaneous display of imagery and vector data, and both would be
dynamically updated in response to tweaking the corrector parameters, similar to the dynamic
update of sounding data in the Caris HIPS Calibration Tool. A tool similar to the one proposed
was formerly implemented in Caris SIPS Unix (Universal Systems Ltd., 1998), and allowed for
dynamic calibration of imagery based on parameters including navigation time latency, gyro
time latency, gyro error, and fore/aft offset of the navigation antenna with respect to the vessel’s
reference point (Figure 17).
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Figure 17. Caris SIPS Unix Calibration Tool.

A potential solution for deriving even more precise navigation timing latency and yaw bias
correctors for PMBS systems would be to develop a tool that examines the raw intensity time-
series for each line in the calibration line pair. Such a tool would derive an along-track time-
series of intensity values of the first bottom return for each line of the calibration pair; these
time-series could then be shifted along the time axis until the intensity peak (corresponding to
the object at nadir) comes into alignment. The precision of a navigation timing latency derived
using this method would presumably be limited only by the sampling rate. This would be a vast
improvement upon the current methodology, in which the precision of the navigation timing
latency is limited by the mosaic resolution and/or resolution of the side scan display, which is
used to digitize contacts.

6.0 Future Work

As stated in the conclusions, there is a strong need to develop a new tool that allows for the
dynamic calibration of imagery and vector data based on parameters including the navigation
timing latency and roll, pitch and yaw biases. The tools currently available for an imagery patch
test only allow for manual calibration using mosaics and digitized contacts, and are inadequate
for determining precise navigation timing latency and yaw bias correctors. The determination of
precise yaw bias correctors is particularly important for PMBS systems, which are capable of
achieving swaths of nearly 10 times water depth, approximately twice the swath width
achievable by most single-head MBES systems.

Future work will be necessary to determine the validity and effectiveness of the new patch test
methodology for PMBS systems. A potential method of determining the effectiveness of the
new methodology is comparison of the standard deviation of surfaces computed using correctors
derived using the original (adaptation of the traditional patch test procedure) and new
methodologies. Another consideration in assessing the effectiveness of the new patch test is
usability; potential usability metrics include overall time required to derive patch test correctors,
as well as variability in derived corrector values (navigation timing latency and roll, pitch, and
yaw bias) produced by redundant patch test processors.
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