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Remote sensing of sediment characteristics by optimized
echo-envelope matching®

Daniel D. Sternlicht” and Christian P. de Moustier®
Marine Physical Laboratory, Scripps Institution of Oceanography, University of California at San Diego,
La Jolla, California 92093-0205

(Received 1 November 1999; revised 13 June 2003; accepted 26 June 2003

A sediment geoacoustic parameter estimation technique is described which compares bottom
returns, measured by a calibrated monostatic sonar oriented within 15° of vertical and having a
10°-21° beamwidth, with an echo envelope model based on high-frequéi®eyl00 kHz
incoherent backscatter theory and sediment properties such as: mean grain size, strength, and
exponent of the power law characterizing the interface roughness energy density spectrum, and
volume scattering coefficient. An average echo envelope matching procedure iterates on the
reflection coefficient to match the peak echo amplitude and separate coarse from fine-grain
sediments, followed by a global optimization using a combination of simulated annealing and
downhill simplex searches over mean grain size, interface roughness spectral strength, and sediment
volume scattering coefficient. Error analyses using Monte Carlo simulations validate this
optimization procedure. Moderate frequendi@8 kHz) and orientations normal with the interface

are best suited for this application. Distinction between sands and fine-grain sediments is
demonstrated based on acoustic estimation of mean grain size alone. The creation of feature vectors
from estimates of mean grain size and interface roughness spectral strength shows promise for
intraclass separation of silt and clay. The correlation between estimated parameters is consistent
with what is observeéh situ. © 2003 Acoustical Society of Americ4DOI: 10.1121/1.1608019

PACS numbers: 43.30.Gv, 43.30.Hw, 43.30.Ft, 43.30MB] Pages: 2727-2743

I. INTRODUCTION over the tail section of the first return, and integrating over

Remote classification of ocean sediments is motivatedhe entire length of the multiple. Representation of these two
by mineral resources assessment, cable and pipeline roueeasures as feature vectors allows segregation of a variety of
planning, and mine warfare. In recent years a number opottom types. Building on this paradigm, multifeature clas-
high-frequency(>10 kH2) echo analysis techniques have Sification techniques based on higher moment statistics of the
been developed for characterizing the upper layer of seaflodecorded waveform are being investigatéd.
sediments. Results from Ref. 1 inspired interpretation of the bottom

Sediment classification techniques using single-beam s@cho’s tail as an indicator of bottom roughness, while the
nars are either phenomenological or physical. Phenomen&nergy content of the multiple is considered an indicator of
|Ogica| approaches identify nonparametric measured echwe reflection coefficient, or hardness of the substrate. Theo-
characteristics with core samples or bottom photographdétical explanations for the success of these systems and
Such systems typically require calibration of signal characmodeling of the bistatic geometry are being investigated.
teristics with ground truth at the beginning of each survey, In physics-based approaches, sediment characteristics
and operation must proceed at a fixed sensor altitude. Pa@€ estimated by comparing measurements to predictions
and Ceen investigated sediment characterization usingiade with physical models—thus minimizing presurvey
single-beam echoéswhere comparison of the expanded training requirements and removing limitations on sensor
echo(due to temporal spreadingith the transmit pulse was altitude that, typically, are found in phenomenological ap-
used to infer bottom roughness. Echo durations commensioaches. One example of physics-based acoustic sediment
rate with the duration of the transmit pulse were thought tocharacterization is_described in the works of Schock,
originate from smooth substrates, whereas longer, variablizeBlanc, and Mayef? wherein broadban2—10 kH2 echo
shaped echoes were attributed to coarse materials. Sedimeipplitudes are used to estimate coherent reflection coeffi-
classification techniques that empirically match echo characcients of sediment layers, and measured distortions of echo
teristics to ground truth have since been developed. One su&pectra yield information on sediment attenuation properties.
system exploits the bottom echo and the first surface mul-  The inspiration for our work comes from physics-based

tiple (bottom—surface—bottomby integrating the energy echo_envelope inversion techniques described by Berry,
Nesbitt!® Jackson and Nesbitt, and Lurton and
) ) ) ) Pouliquen'? Berry’s estimation of irradiated surface charac-
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Moustier [J. Acoust. Soc. Am105 1206 (1999] and Sternlicht and de  (€ISticS employs half-power lengths of measure and mod-
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P’Current address: Dynamics Technology Inc., 21311 Hawthorne Blvd.Jeast-squares search for matching acoustic backscatter enve-
Suite 300, Torrance, CA 90503. Electronic mail: dsternIicht@dynatec.corrl(OpeS with models based on reflection loss, sediment absorp-
9Current address: Center for Coastal and Ocean Mapping, University of. . ! )

New Hampshire, 24 Colovos Road, Durham, NH 03824. Electronic mail:tion coefficient, rms bottom slope, and a sediment volume

cpm@ccom.unh.edu scattering parameter. His work incorporated up to two sedi-
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coustic backscatter models for extracting bottom charactemodel with aligned and averaged data.
istics from single-beam echo-sounder data. Lurton and Poul- Normalized angular dependence curves of seafloor
iguen described a method for sea-bottom identification comacoustic backscatter, measured with the 16-beam SeaBeam
paring normalized cumulative functions of the echo envelopecho-sounder, fitted with computed curves parametrized by
derived from measurements and physical backscatter modelhe relief spectrum components,(v,) was presented by
Waveform normalization allows for the use of uncalibratedMichalopoulouet al'® Using a least-squares maximum like-
echo-sounders; however, ignoring echo strength limits exlihood estimator and chi-square acoustic backscatter inten-
ploitation of important information such as impedance con-sity statistics, the potential of matching acoustic backscatter
trast at the water—sediment interface. Furthermore, integranodels with statistically independent measurements was
tion of echo envelope time series into cumulative formdemonstrated. A drawback of this implementation is its reli-
disproportionately represents signal components occurringnce on exhaustive search procedures and its limitation to
earlier in time(closer to normal incidenge high-impedance contrast, impenetrable substrates with no de-
In this work, we match a physics-based echo intensitymonstrable volume component. Another approach is de-
envelope modéf to seafloor acoustic backscatter measurescribed in Matsumotet al,2° where global optimization by
ments, made over substrates ranging from clay to sand, cosimulated annealing and downhill simplex is used to estimate
lected with calibrated 33- and 93-kHz echo-sounders whosgelief spectrum parameters from the same kind of SeaBeam
3-dB beamwidth$10°-219 and elevation anglegnaximum  acoustic data.
response axis at 0°-15° incidefcare consistent with the The samples of the time series measured with a single
model’s underlying Kirchhoff scattering theory. This model echo-sounder are partially correlated, making the statistical
incorporates the system’s deployment geometry, beam pagpproach of Ref. 19 inappropriate. Instead, the model’s pres-
tern, and signal characteristics, the ocean volume spreadinfiire time series are matched to measured echo envelopes
and absorption losses, and solutions of the monochromatigalculated from stacked and averaged data with a two-stage,
wave equation using boundary conditions described by thgverage echo envelope matching procedure, which builds on
sediment geoacoustic characteristics. The time-dependent ifhe work of Matsumoteet al?° by expanding the optimiza-
tensity measured at the transducer fb(¢g is modeled as the  tjon to include relief spectrum parameters and physical quan-
sum of a sediment interface compongyt) and a sediment tjties related to grain size and sediment volume scattering.
volume component,(t) By incorporation of the measurement system’s transmit
HO=1(O)+1,(0), (1) and receive sensitivities, directional characteristics, and a fil-
where, following the theoretical work of Jacksenal,*the  tering operation for converting voltage waveforms measured
interface backscatter component is obtained from a solutioAt the transducer terminals to pressure waveforms incident at
of the Helmholtz diffraction integral using the Kirchhoff ap- the transducef, the shape and amplitude of the bottom's
proximation, and a composite roughness approach is used &gular response is exploited in a model-data matching
predict scattering from the sediment volume. scheme appropriate for simple, inexpensive, single-beam
Model parameters include the mean grain siké,J, echo sounders. This is distinguished from other physics-
defined avl ,= —log, Dy, whereDy is the sediment’s mean based approaches which compare normalized measurements
grain diametet>!® and its correlates, the sediment:waterOf uncalibrated returns to normalized model realizatitins,
density and sound-speed rati¢s,v), and the sediment's and from phenomenological seafloor characterization
compressional wave attenuation constantx, ( in technique%* using correlation analysis of measured echo
dB/m/kH2).Y” Fluctuations of these properties are incorpo-features(e.g., amplitude and energy in bottom echoes and
rated into a sediment scattering coefficient,(m™1), signi-  respective surface multiplesvith known ground truth.
fying the scattering cross section per unit volume, per unit ~ Our physics-based model—-data optimization procedure
solid angle. The interface is modeled by a power-law reliefgenerates feature vectors with elements consisting of quanti-
energy density spectrui(k) =w,k~?, wherek is the bot-  fiable geoacoustic parameter® {,,w,,0,). This informa-
tom relief's two-dimensional wave number vector with tion can be directly associated with bottom type; thus, the
magnitudek, w, is the spectral strengtfexpressed in units procedure is, in theory, independent of specific site charac-
cnt), andy is the spectral exponent. The roughness spectrurteristics or insonification geometrgguch as water depth or
is bandlimited to wave numbers spanning approximately atransducer orientationin addition, the sensitivity of this op-
order of magnitude above and below the acoustic wave nuntimization procedure to echo variability can be estimated

ber. from the covariance matrix of geoacoustic features, derived
The expectedn situ ranges of the model components from synthetic data sets generated with the data covariance
are: —1sMy<9, 2.4<y<3.9, 0.0sw,=<1.0, 0.8sv matrix for an ensemble of returns. Furthermore, correlation

<3.0, 1.0sp=<3.0, 0.0k=«kp=<1, 0.0s0,<1.0ap. ay between the geoacoustic parametgvhether due to natural

is the sediment compressional wave attenuation coefficient iphenomena or artifacts of the optimization procegiesn be
dB/m, calculated asv,=«,xf,,'® and f, is the acoustic ~characterized.

frequency in kHz. If the statistics describing the sediment =~ Computation of the average echo envelope from data,
characteristics are consistent over measurement scales coand of a signal to error ratio in the model—-data fit are de-
mensurate with the geographic range of collected bottonscribed in Sec. Il, with an example of the data covariance
echoes, the geoacoustic parameters described above mayratrix and its implications to the model—-data matching pro
estimated from optimized comparisons of the echo envelopeedure. The two-stage model—-data optimization procedure
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for estimating bottom characteristics is presented in Sec. Ill, 1 1 M1

with a method of evaluating the error propagation inherent taC;; “wiv=1 > (pImiT=paliD(PIM,jT1-paliD
the matching procedure, using parameter covariance matrices m=0 3
produced from Monte Carlo simulated data sets. The system )

and data used to validate the echo envelope model and p#here (G<i,j<N—1). Henceforth,C is referred to as the
rameter estimation technique are described in Sec. 1V, witldlata covariance matrix.

results presented in Sec. V, and analyses of the effects of To focus this description, we use the average echo for
echo variability on the optimization procedure given in Sec.100 consecutive returns measured from a vessel underway
VI. Section VII draws conclusions about the usefulness and@ver a silt substrate in San Diego Bay, plotted in Fig. 1. Prior
shortcomings of the approach, and its potential for seaflooio averaging, the echoes were aligned along their respective

classification. threshold indices as described in Ref. 13. The average echo
envelope is bracketed bg,[n]*=o,n], where variances
Il. AVERAGE ECHO ENVELOPE o2[n] correspond to the diagonal elements®fPlots of C

The measured bottom echo consists of a pulsed CW Sigand its corresponding correlation coefficient mafYix with
nal, modulated by the bottom backscattering process, whogdements:Y;=Cj;/a,[i]o,[j] (Fig. 2) show that the vari-
enve]ope detection and Samp"ng at penQ‘dy|e|d an rms ance is proportional to Signal Strength and that neighboring
pressure Sequencplln], expressed in units of pascha_ Samples are h|gh|y correlated. In later SeCtionS, SynthetiC data
Acoustic wavelengths at frequencies greater than 10 kHz argets generated wit@ will help assess the effects of signal
generally small compared to the relief of the water—sedimenyariability on the model-data matching procedure.
interface, and bottom echoes are incoherent, varying signifi- ~ The average echo is summarily matched by a temporal
cantly in amplitude and shape as the sonar translates longiodel estimate{,[n]) generated with specified mean alti-
tudinally above the interface. Because of this variability, echiude and sediment geoacoustic parameters
oes must be treated stochastically.

For comparison with the temporal model, an ensemble (@) (Pay’
of M contiguous returns is characterized by the average ech o g
sequence [{,[n], n=0,1,..N—1). To this end, a two- :
dimensional amplitude arrap[m,n] is defined for (G=n 100
=<N-—1) samples per ping and €om=<M — 1) pings, incor-
porating segments of the data presented in Sec. IV

mmmas
T

20

M-1
1
pa[n]=MmZ:0 pim,n], n=0,1,.N—-1. 2

30

Samples in the echo envelopes from the incoherent re-
turns are Rayleigh distributed, but their ensemble average*©
over many pings is approximately Gaussian. Hence, sample
of the average echo envelope are Gaussian distributed. Thso
NXN covariance matrixC of the average echo is estimated
by normalizing the data sample covariance by the number of
returns(M). Elements ofC are thus

10 20 30 40 50

9 T T T T T T T
8 (b)
: o] eeeiiecasssmsssszassasszsssasasa: a8
7L e
6 10
w5 EE :
&,,, : 20 : THT
ol FEEH
: 30
3 H
25 40
e I3
: 50
o5 10 20 30 40 50 60 s
sample # H
FIG. 1. Average echo envelope for silt substraitg= 33 kHz, maximum 0 10 20 30 40 50
response axis at 8° incidence. Solid lingign] [Eq. (2)], dashed lines are  FIG. 2. (a) Data covariance matri)eq. (3)], and(b) Correlation coefficient
paln]xoyn]. matrix, for average echo envelope of Fig. 1.
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Paln]= /PWVWTa[n], (4) tracting th_e b(_est-flt generic characteristics by iterating on the
mean grain size paramete(,). Here, the six geoacoustic

where I [n] represents the discrete implementation of theparameters W2,7,0,.p,v,kp) are related toM , through
echo envelope model, ang, andv,, correspond to seawater |inear regression formulas adapted from Refs. 17, 18 and
density and sound speed, respectively. summarized in Appendix A of Ref. 13. As was demonstrated
To measure the fit between the model and data, a merjh Ref. 21, the generic parameters produce rough model—
function compares the total energy in the average echajata fits for the San Diego Bay substrates investigated. It
paln], to a measure of energy representing the discrepancliows that the solution produced with the 1D search defines
between model and data. This signal to error r48¢E) is  a seed vectorNl 4,w,,0,) appropriate for a second-stage

expressed as multiparameter search in whicpis held to a constant. For
Z:Zznlpi[n] the second stage, multiparameter local optimization tech-
/E= s ~ > (5) niques yielded disappointing results marked by convergence
En:nl(pa[”]_ Paln]) to solutions which were unstable and overly sensitive to the

wheren; and n, are the initial and final indices for both choice of seed veptor. This Ied_to the dgvelopment of a
1 2 ) S model—data matching procedure incorporating the 1D search

Yvavej?rms. Ln t?'s sghlemt_ahadhlgh \_ﬁ:_ue of ﬁ/i agnn_‘:jes Qo establish the general sediment typand or finesand the

n%(:”n)ericrglag:valﬂatrig(r)]sewmgh a?éailndelser:r(ljztntoof psrgglle esnapectral exponerty), followed by a three-dimension&8D)

. : . P : global optimization using a combination of simulated anneal-
signal length, and is convenient for comparing results being and downhill simplex searchéSA/DS) over the rough-
tween data sets. ness spectral strengthvg), the sediment volume scattering
coefficient (), and the mean grain sizéV((,) associated

IIl. GEOACOUSTIC PARAMETER ESTIMATION with the correlated parameters. v, .

The estimation of bottom characteristics from the tem-1. Stage 1: 1D golden section search and parabolic
poral model depends on a model-data matching paradigrfiterpolation
(Fig. 3) that converges to a unique and correct set of bottom  For transducer orientations close to normal incidence,
parameters. The bottom characteristics which describe thge bottom reflection coefficient is the dominant factor deter-
data are determined by comparing the model to the averaggining the signal amplitude. It follows that the model vs data
bottom echo, with the goal of minimizing the error to signal search space generally has one extremum when described by
ratio (E/S), i.e., the inverse of Eq(S). However, estimation  the single parameteév , . This situation is illustrated by the
of geoacoustic parameters is complicated by the large nung/s vsM,, plot of Fig. 4a), where the “best” solution is
ber of good fits existing in the multidimensional searchfound by iteratively bracketing the minimum. For this pur-
space, where it is possible to find convincing model-data fithose, we employ a combination of tgelden sectiorsearch
which do not necessarily represent correct solutidsriv-  algorithm coupled with inverse parabolic interpolation, a
ing at sensible solutions requires parsing the problem intgrocedure formulated in Ref. 22. The geoacoustic parameter
manageable parts, establishing the degree of parameter c@utputs of stage 1 provide a starting point for the multipa-
relations, and constraining the search space. rameter global search technique of stage 2.

A. Two-stage parametric optimization
2. Stage 2: Global simulated annealing—downhill

With the goal of deriving unambiguous matches be-simp/ex optimization (SA /DS)

tween the temporal model and data, we initially experi-

techniques, we found nongreedy, nonexhaustive search pro-

cedures to be most appropriate for finding the best-fit geoa-

E/S . . . . .
coustic parameters. These techniques investigate regions of
the parameter space not typically visited by local search

Measured techniques, thus increasing the prospects that a true global
Average
Echo I
E/S
v
Geoacoustic Temporal
Parameter Model —1‘ high v
Selection Generator solution
/ Matching low
Geoacoustic (best)
Parameters best .
FIG. 3. Geoacoustic parameter optimization procedure: The comparatc -
feeds bacKE/S) to the parameter selection module to guide the selection of M¢ Oy w2
more promising parameter settings. The system outputs model paramete _ (a) (b)

corresponding to the optimal fit. Careful implementation of the parametelF|G. 4. Parameter space representations for optimization algoritaD

selection module determines the success and tractability of this matchingearch space, E/S W, ; (b) Reflectioracross the face of a three parameter
procedure. simplex.
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ated as illustrated in Fig.(8). The cost function E/S is mini-
1D LOCAL SEARCH mized by reflections, contractions, and expansions of the
M, Optimization simplex where, at high temperatures, nonoptimal solutions
v = 3.25 are occasionally accepted into the simplex at the expense of

better solutions. At the final temperature stage=0) the
simplex is assumed to be in the vicinity of the global mini-
mum, and the Nelder—Mead algorithm is applied in its origi-
nal form, only accepting better solutiofil®cal search To
maximize the algorithm’s effectiveness, the best solution
found since initiation of the search is preserved throughout
the annealing process.

B. Parameter estimation paradigm

The geoacoustic parameters contained in the temporal
model define a complicated search space with numerous lo-
cal minima. It is thus essential to constrain the solution space
usinga priori knowledge, and to employ practical heuristics
in order to reject implausible solutions. For extracting unique
3D SIMULATED ANNEALING and meaningful sediment parameters from the shape and am-

DOWNHILL SIMPLEX plitude of measured bottom echoes, we propose the param-
eter estimation paradigm illustrated by the flow chart of Fig.
(M¢ wy, O ) 5. This technique represents an automated version of the

P e T model—data matching guidelines proposed in Ref. 13, where
‘ the result of the initial 1D local seardtop module of the

flow char) provides thea priori information needed to con-
strain the second stage. T, result is fed to a decision
junction which determines the general bottom typands or
fineg and sets the roughness spectral expofgnin prepa-
ration for the multiparameter optimization. The 3D global
SA/DS procedure iterates over a limited rangeMf,, wo,
ando,, fine-tuning the impedance contrast, roughness spec-

FIG. 5. Flow chart for parameter estimation. tral strength, and volume estimates for the substrate. The
minimum will be found. Insimulated annealinghe system final result of this procedure provides the general substrate
is initialized to some high-energy state and then slowly-type (sand vs finels bottom characteristicsM ,,y,w;,0,),
brought to the zero state, where a final local search is peand, indirectly, the sediment geoacoustic parameters corre-
formed. lated to mean grain size.

A variety of annealing techniques exists, with common It should be noted that the search space for the second
reliance on randomly generated numbers for selection of newstage optimization is constrained by restricting the mean
parameter vectors. We initially tested the best-known vergrain size to M ,— 1)<M¢$(M +1), whereM, repre-
sion, described in Ref. 23. This method employs the Mesents the seed value from stage one. When contortion of the
tropolis algorithm?* for which randomly generated param- SA/DS simplex violates these bounds, a suitable penalty is
eter vectors, yielding a lower cost than the current vector, aradded to the E/S cost function to reject out-of-bound param-
automatically accepted, while those yielding a higher coseter vectors. Broad bounds are similarly applied to whe
are accepted by condition of the Boltzmann probability dis-search space to avoid values unsuitable for the numerical
tribution integrations carried out by the temporal model algorithm.

P(AE)=exp—AE/T), (6) The most important condition imposed on the volume

whereAE signifies a positive increase in energy at temperascatterlng coefficient is &,>0). However, unreasonably
large volume components occasionally produce simulated

tureT. If the search space is vast and/or if calculation of the h hibiting low E/S If th |
objective function is computationally intensive, convergence echoes exhibiting fow SCOres. e maximum volume
component is within 2 dB of the maximum interface compo-

for this method may be unacceptably slow.
Although the temporal model lacks analytic derivatives nent, an empirical penalty, proportional to the severity of this
’é/}olation, is added to the E/S cost function

it is continuous in the sense that a small change in paramet
value is accompanied by a proportional change in the cost IF 1,/1;>0.63

function. With this information, faster convergence to a glo- _ L

bal minimum may be achieved by employing the Nelder— THEN E/S=E/S-4x ﬁ_O'GS)]' ™
Mead downhill simplex search, modified by randomwnherel, andl; represent the maximum volume and interface
temperature-dependent uphill energy transitions as describegtensities, respectively. This is a reasonable restriction ex-
in Ref. 25. For a solution space comprised of three parameept for oblique incidence measurements over fine-grain sub
eters M, ,w,,0,), a simplex of four solution vectors is cre- strates, where it is possible for the volume component to

Sediment Type
Grain Size: (Mj)
Roughness: (v, w,)
Volume: (a,)

1+5+*
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FIG. 7. Monte Carlo simulations for silt substrate in Fig. 1: Model param-

3

2r e ] eters: f,=33 kHz, M ;,=4.68, y=3.3, w,=0.0009 c}, o,=0.086nT?,
3 1 0;=8°, b=1.28.

0

1 ) . . . knowledge of the “true” signal, the model output resulting
from the optimization procedure is distorted by noise char-

0151 ' ' o 7 acterized in the data’s covariance matf®). The optimiza-
v . . . .

o1t . tion procedure is applied to each waveform and, using the
0.05 | resultingK solution vectors I(JI.(/, W, 0,), an 'apprOX|mat|on

‘ . . . to the 3X3 parameter covariance matrix is computed and
00 50 100 150 200 250 evaluated.

model iteration number With bold | lett d to indicate

FIG. 6. Annealing process for the data shown in Figwi.in e, o, in : . old fower case Ietlers used (o indica vec-
m~L. The parameter values for the first iteration are the output of the 1D{OrS, @ simulated average echo envelopg (s calculated
optimization; the final values are the annealing outputs. Note the large vafrom: the model outpup,, a vector of standard normal ran-
riety of nonoptimal solutions investigated before low annealing temperaqom deviategx), and the upper triangular matr(®d) from

tures constrain the search space. In this particular example, the initial pa- S . AT
rameters are reasonably close to the final solution. aChOleSky factorization of the covariance mati=A"A
Ps=XA+ Da. ®)

dominate. In theory, the simulated annealing algorithm con- Figure 7 showK =20 Synthetic “average” echo enve-

verges asymptotically to an optimal solution if the temperaopes calculated using the best-fit model for the silt substrate
ture is |n|t|aIIy hlgh and allowed to decrease inverse |Ogarith'data shown in F|g 1. These simulations were created using
mically with the number of iteration®. However, the the average echo of Fig. 1 and the covariance matrix dis-
Computational requirements of the cost function in tnlSp|ayed in F|g 2. The amp”tude deviations and degrees of
model—data matching application require a more conservaorrelation between neighboring samples are realistic, as

tive number of model iterations. After experimenting with comparison with Fig. 1 confirms. The 2M(, ,wy,0,) solu-
the annealing control parameters, adequate solution accuragyns yield the following statistics:

and convergence speed were achieved by employing a hybrid Parameter Correl
linear-exponential cooling schedule with nine discrete temparameter Original ~ Mean Stdv Pair Coeff
perature levels. In this scheme, the initial temperaiyés

set to the average E/S for the four initial simplex verticesM¢ 4.68 4.67 0.10 Mg wy)  —0.47

where one of these vectofthe seellis derived from the first W2 (Cmi) 0.00091 0.00092 0.00022 M,,0,) —0.23
local-search stage, and the other three are slightly perturbed, (m™*) ~ 0.086  0.078 ~ 0.003  wW,0,) —0.14

replicas. Ten model iterations are initially investigated'@at \yhere “Original” refers to the original solution vector. In
and, for each temperature stage thereafter, the number @fis example the mean values of the Monte Carlo solutions
iterations increases by 25%, resulting in a total of approxi-gre similar to the original parameters, the standard deviations
mately 230 model iteratione.g., Fig. 6. are a small percentage of the mean val(wigh possible
exception ofw,), and absolute values of the correlation co-
efficients are less than 0.5.

In the following sections, plots o1, andw, are used

For a given bottom substrate, the average echo can varfpr distinguishing bottom types. Assuming that the solutions
from data ensemble to data ensemble. To characterize hoare jointly Gaussian distributed, the 90% error ellipsevef (
this variation affects the results of the model—-data matchings M) is calculated and plotted in Fig. 8. For this example,
procedureK synthetic average echo envelopes are generateitie observed echo variability may account for solution inter-
with random combinations of signal and noise. Lackingvals: 4.43<M ,<4.89 and 0.0004 w,=<0.0014.

C. Evaluation of error propagation by Monte Carlo
simulation
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IV. SHALLOW-WATER SURVEYS of the relatively smooth seascape observed, and the pasty,
Y_vaterlogged character of the physical samples. The bottom

video revealed a featureless, isotropic bottom, with little

oped t_o evaluate the accu_rgcy.of the temporal model and .'tﬁora or fauna except for what appeared to be small burrows
potential for bottom classification over a range of acoustlcIess than a centimeter in diameter

frequencies and transducer orientations. Circular piston ge- .
; . . L The uncomplicated appearance of these three substrates,
ometries were chosen for their symmetrical directivity pat- : . . )
the high spatial overlap between consecutive pings, and the

terns, with beamwidths of 21° at 33 kHz and 10° at 93 kHz, - ,
. . nerally level bathymetry, were conditions deemed suffi-
so that for each transducer orientation, an adequate range .
glent for testing the accuracy of the temporal model.

bottom incident angles could be insonified by a single shor
pulse of 0.45 msec at 33 kHz and 0.16 msec at 93 kHz. B. Data

For meanmgful comparison of model and data, the tem- The acoustic survey for each site was carried out at
poral model utilizes a digitized representation of the trans-

speeds of 1-2 kn, ping repetition rate of 5 Hz, and horizontal

mitted signal, and measured voltage waveforms are Condisplacements of about 0.1 m per ping. The transducer was

verted to ,the|r respgctlve pressure waveform%sib#smg thSlevated to a specified angle from nadir in the roll plane.
transducer’s mechanical-electrical transfer functiofi. Angles of pitch and roll were digitized for each ping repeti-
A. Survey site tion and used, along with knowledge of local bathymetry, to
In January and May of 1997, the dual-frequency echo_determine the angle of incidenc#+) of the transducer’s

) . . maximum response axis on the bottom. Sea conditions were
sounder was installed in the instrument well of the 40-ft

research vessel ECOS, operated by the Space and Na\%ﬁnerally mild, W|tt1 pitch and roll standard deviations typi-
cally less than 0.5°.

\r/;/?rr;aorgelsfr;[gn;ztgremnitﬁgTﬁgﬁ?{g&:ﬂﬂ?ﬁ tzgntfei r?ﬁ;)t_io Echoes from the San Diego Bay substrates measured at
P y g9 3 and 93 kHz are plotted in Figs. 9 and 10. A total of 12

for substrate identification, bottom echoes were recorde L . .
. . scenarios is analyzed, each characterized by a unique com-
from a range of sediment types with the 33- and 93-kHz "~ . 4 .
ination of acoustic frequency, sediment type, and transducer

transducers inclined 0° to 16° from nadir in the roll plane'orientation(A endix, Table V. It is tempting to interpret
Data were measured over three sites in San Diego Bay con- PP ' ' pting P

- . . the raster imagesFigs. 9, 10 as true geophysical cross
sisting, respectively, of sand, silt, and clay substrates. . . . !
I o sections of the bottom; however, penetration at these high
Bottom characterization was based ¢h) video cover-

age recorded during the surve§2) consulting a sediment acoustic frequencies is limited and the observed energy is

data base for the surrounding area; &aBdanalysis of par- %L:grfar;rémarlly to scattering from the water—sediment

ticle size distribution for sediment grabs taken during the The raster image of Fig.(6) shows a 30-m track seg-

SUrvey. S.ed'”?e”t sample; were separated |nt'o S12€ COMPRLant with a gradual downward slope of the bottom, modu-
nents using sieve separation and pipette settling procedur

S ) : .
outlined in Ref. 28. The particle size analyses of these site?at(ad by the vessef's heave—whose removal is essential

are catalogued in the Appendix, Table IV. At these sites, sand’ echo allgnm.ent and averaging. In contrast, the 40-
cmdepth fluctuations apparent in Fig.(&0represent actual

particles constituted the largest grain size percentage; hoV¥6pography. Therefore, these data sets require a level of scru-

ever, labels of sand, silt, and clay were dgtermmed usmg.thﬁny to identify artifacts that can unfairly bias the shapes and
calculatedM , values and observed physical characteristics

of the samples. amplitudes of the backscattered echoes. Objects protrud_ing
The sand site consisted of a 50-m N—S trackline running}crom or suspended over the bottom may cause scattering
along the jetty at the mouth of San Diego Bay, in water ,gx10
depths of 13—-15 m, with mean grain size distributidnhg
=2, or medium-finesand according to the labeling scheme |
set forth in Ref. 17. The video images revealed an isotropic e .- -
bottom characterized by hillocks with crest—trough heights - o .
of 40 cm or more over wavelengths of about 8 m, a light 12 / S 1
sprinkling of shell hash, and an occasional starfish or blade i ' N
of kelp. K N
The silt site consisted of a 150-m N-S trackline of the N . ae . N
San Diego Bay trough—the deepest part of the bay with s . _— ] \
water depths of 15-20 m—whose substrate ranged betwee °°[ N . : Y
clayey sandand sandy mud’ The video images revealed . o . !
long stretches of homogeneous substrate, occasional patche¢ osf NN e
of kelp, and sole blades of sea grass. -~ .
The clay site consisted of a 50-m E-W trackline running . : . . . Do
just north of San Diego Bay’s North Island, water depths of 44 445 45 45 46 465 47 475 48 485 49

. . . C o
11-13 m, with mean grain size dIStrlbUtIOM¢_7'O’ or FIG. 8. Scatter plot\W, vs M) and 90% error ellipse for Monte Carlo

7 . . . . ra . .
sandy Cla)f‘l Th.e grain-size analysis 'd?nt|f_'es this sedimentgjmylations.-) Monte Carlo solutionstA) mean of Monte Carlo solutions;
as borderline silt—clay, but we categorize it as clay becauser+) original solution.

The sonar system described in Refs. 21, 27 was deve

)

w, {cm
-
T
-
'
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anomalies and/or reduced signal levels. The early returnage echo envelop@verage pressure vs tifn@r comparison

evident in pings 230-280 of Fig(® are most likely caused with the temporal model.

by a school of fish swimming near the bottom. Similarly, the

scattered energy preceding the bottom profile in pings 430y, OPTIMUM EITS OF MODEL WITH DATA

460 of Fig. 1Qe) is a strong indication of flora anchored to o ) )

the sediment. Bubbles on the face of the transducer can cause 1€ two-stage parameter estimation technique described

temporary dropout of signal amplitude, as evident in plng§n Sec. lll was applied to average echo envelopes from the

80-100 of Fig. 1(b). Data segments clearly exhibiting the 12 scenarios presented in Sec. IVB. A group delay echo

artifacts described above are rejected. alignment technique was applied to 93-kHz oblique inci-
Segments of these data sets are combined into an avedence measurements made over sand and silt, and minimum
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93 kHz
NORMAL INCIDENCE OBLIQUE INCIDENCE
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",4/ FIG. 10. Waterfall and raster plots for
300 consecutive pings of 93-kHz data.
Left: normal incidence, Right: oblique
incidence.y=time in ms since trans-
mit, x=ping number.
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—
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~
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threshold alignment was used for all other scenarios. Details For each scenario, approximately ten model-data
of the echo alignment techniques are given in Ref. 13. matches were determined with 50% or less overlap between
The volume scatter penalf§£q. (7)] is applied in all the  data segments. A summary of model-data matches is pre-
scenarios, except for 93-kHz oblique incidence measuresented in Table I. First- and second-order statistics of the
ments on clay and silt. For the latter, large volume contributesults are listed in the Appendix, Tables VI and VII.
tions are expected to dominate the signal amplitude when To determine the best prospects for sediment classifica-
transducer elevation angles are large relative to the beantion, we evaluated parameter estimates for the four measure-
width, and in conditions of increased bottom penetration—ment combinationgtwo acoustic frequencies, two transducer
such as water-saturated sediment and/or low acoustic frerientationg and concluded that scatter plots wf vs M 4
guencies. effectively delineate the bottom substrat€gys. 11, 12.
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TABLE |. Sediment classification summary. Mean values are rounded off to the nearest one-tenth value.
Geoacoustic parameterp, ¢, «,) are calculated fronM , with relationships described in Ref. 13.

Transducer (dB/m/kH2)
Site  Freq(kHz) orientation M, vy w,(cm?) v p Kp o, (MY
Sand 33 Normal 3.9 3.00 00050 1041 1.232 0.680 0.20
Obligue 32 3.00 0.0058 1072 1.313 0.591 0.04
93 Normal 25 3.00 00039 1109 1.458 0.516 0.95
Obligue 25 3.00 0.0024 1110 1.464 0.516 0.10
Silt 33 Normal 50 3.30 00008 1.001 1.170 0.473 0.07
Oblique 47 330 0.0012 1012 1.186 0.653 0.09
93 Normal 52 330 0.0007 0993 1.156 0.363 0.26
Obligue 5.3 3.30 0.0022 0.989 1.150 0.308 0.31
Clay 33 Normal 53 3.30 00005 0990 1.151 0.329 0.05
Obligue 53 3.30 0.0006 0.989 1.149 0.316 0.05
93 Normal 52 3.30 0.0004 0992 1.154 0.350 0.10
Obligue 52 3.30 0.0005 0.993 1.157 0.365 0.17
A. Mean grain size (M) vs relief spectrum strength inference supported by sediment density measurements de-
(w3) scribed in Refs. 29, 30. As the estimated () parameter is

On the whole, estimated values of mean grain sig) especiqlly 'sensitiv.e to.changes in measured echo a}mplitude,
agree with ground-truth measurements presented in Appe@!Tors In field calibration may also contribute to disagree-
dix Table IV, and model—data matches for silt exhibit theMents between model-data matches and ground truth.
most consistency across acoustic frequency and transducer Mean grain sizeM ) estimates for the clay site-5.3)
orientation. The 33-kHzNl ;) estimates for sand are high, &€ lower than the ground-truth values6.5) because the
approaching the range characteristic of silts. This may be dugdlume signal component is overestimated, due to the sharp
to local deviation of impedance contrast from the genericdecrease of the sediment acoustic attenuation consigjt (

values employed by the model—data matching technique—agPrrelated with high values o, .*" For these fine-grain
sediments, accurat®l , matching is limited, and applying

. . . locally determined g, v, ;) trends would probably produce
1, =33 Kz, Normal Incidence more realistic model—-data matches.

Mean grain size Nl ;) estimates for sand exhibit greater
variability than for fines, with measures of standard deviation
ranging from 0.14 to 0.44, and 90%-confidence regions span-
ning as many as three gradations. In gendvh), estimates
for silt and clay exhibit more modest ranges, with standard
deviations spanning 0.08 to 0.38.

As seen in Table VI and Figs. 11, 12, estimates of rough-
ness spectral strengtiwg) are greater than 0.001 for the
sand site, less than 0.001 for the clay site, and about 0.001

(2)

Spectral Strength (cm‘)
)
T

2 28 3 35 4 45 5 55 6 for the silt site. This trend follows the logic that the relief
Mean Grain Size (PH) energy density spectra of coarse-grain sediments have more
energy than those of fine-grain sediments. Variation in the
() estimate ofw, appears greater in fines than in sands. As a

10 . L L .

10 ' o ' ‘ ‘fmw'owquam;m percentage of the mean value, standard deviations for
* fine-grain sediment$24%—-56% are typically larger than
° those for sand19%—38%.

Note from Table VIl and Figs. 11, 12 that anticorrelation
of M, and w, is also a general bias of the model-data
] matching procedure. This is especially true of sand measure-
ments, where M ,,w,) correlation coefficients range from
—0.58 to —0.96, causing the pronounced slope in the sand
confidence regions.

In the literature there is agreement that bottom scattering
- . measurements can be matched to general bottom classes
2 25 3 35 4 45 5 55 6 . 1 -
Mean Grain Size (PHI) (fines, sand, gravel, rogR! however, correlation of scatter-
FIG. 11. Scatter plot of model—-data matches at 33 kHz: Site locati@ns: mg _Sthﬂgth to graln siz€ dlsmbuuon |s_t_ho_ught tq b? Weak
Sand; (+) silt: (+) clay; (¢) mean value and center of 90% confidence Within each sediment class. The variability in the individual
region (solid line). Transducer orientatior{a) Normal; (b) Oblique. echo amplitudes that we measured confirms this. If, as indi-

Spectral Strength (cm*)
sb

—4 1 1

10

2736 J. Acoust. Soc. Am., Vol. 114, No. 5, November 2003 D. D. Sternlicht and C. P. de Moustier: Remote sensing of sediment



102 . . . @ . . ‘ value are not uncommon. This variation may be due to real
1, = 93 Kz, Normel Incdence changes in the statistics governing neighboring patches of
seafloor. The roughr, frequency dependencies inferred from
%35 our acoustic backscatter measurements at normal and oblique
incidences over sediments in San Diego Bayfarefor sand
and silt, andf'? for clay. These values are slightly higher
than, but not inconsistent with tHé&7 trend inferred from the
backscatter measurements analyzed in Refs. 14, 32. Note that
an f* dependence would indicate Rayleigh scattering from
inhomogeneities much smaller than an acoustic wavelength,
whereas frequency independencergfwould imply geomet-
B Y s 55 . a5 s os p ric scattering from inhomogeneities significantly larger than
Mean Grain Size (PHI) the acoustic wavelength, as might be the case for our mea-
surements over clay. Our inferred frequency dependencies
indicate that the volume scatterers in the San Diego Bay
10 - ' - - T - y sediments have a range of sizes both smaller and larger than
fa= 96 ¥z, Oblaue Incidence the acoustic wavelength.

At a given frequency and transducer orientation, esti-
mates of o, are reasonably consistent for the fine-grain
sediments. However, for sand, normal incidence values can
exceed oblique incidence values by 10 dB. This may indicate
a shortcoming in the model assumption thgt is uniform
near the sediment—water interface. df, increases with
depth, estimated values at normal incidence will appear
larger than those for oblique incidence. This is due to acous-
tic penetration at normal incidence to depths wheteis
55 6 larger—an interpretation consistent with the observations of

Refs. 30, 33.

Spectral Strength (cm*)
>
.

Spectral Strength (cm*)
8&

o

35 4 4.5
Mean Grain Size (PHI)

FIG. 12. Scatter plot of model—data matches at 93 kHz: Site locatians:
Sand; (+) silt; (*) clay; (¢) mean value and center of 90% confidence

region(solid line). Transducer orientatioia) Normal; (b) Oblique. VI. EFEECTS OF ECHO VARIABILITY

cated in this analysis, interface roughness characteristics and Changes in bottom characteristics as well as echo vari-
grain size distributions were Comp|ementary, evaluation oﬁbl“ty due to random constructive/destructive interferences

echo shape may allow a degreeinifraclassseparation. and scattering centers contribute to the observed spread in
parameter estimatg$igs. 11, 12. The length scale of the

survey and the averaging of 100 pin¢gsorresponding to

roughly the along-track extent of the beam’ss-dB foot-
Estimates of the volume scattering coefficient, are  print) removes some of the “natural” variability in the indi-

perhaps the most difficult to interpret and, as seen in Tablgidual ping echoes. To investigate the effectsresidual

VI, standard deviations on the order of 3 dB from the mearecho variability on the outputs of the model—data matching

B. Sediment volume scattering coefficient (o)

TABLE Il. Monte Carlo statistics.

Original Mean Stdv Original Mean Stdv
Transducer  Original Mean Stdv W, W, W, o, o, o,
Site Freq(kHz) orientation M, M, My (cm®) (cm) (cmf) (m™ (m™Y m™Y Fig.
Sand 33 Normal 3.72 3.57 0.38 0.005 75 0.006 40 0.001 71 0.201 0.199 0.017(a) 13
Oblique 3.17 3.21 0.08 0.005 49 0.005 36 0.000 61 0.035 0.037 0.004 (b) 13
93 Normal 2.60 251 0.28 0.003 49 0.003 69 0.000 62 0.558 0.572 0.150 (a) 14
Oblique 2.30 2.36 0.12 0.002 46 0.002 36 0.000 19 0.010 0.045 0.061 (b) 14
Silt 33 Normal 4.99 4.99 0.05 0.000 80 0.000 80 0.000 22 0.065 0.069 0.006 (c) 13
Oblique 4.68 4.67 0.10 0.000 91 0.000 92 0.000 22 0.086 0.078 0.003 (d) 13
93 Normal 5.12 5.11 0.08 0.000 74 0.000 76 0.000 12 0.288 0.305 0.028 (c) 14
Oblique 5.23 5.16 0.07 0.001 16 0.000 89 0.000 34 0.226 0.273 0.013 (d) 14
Clay 33 Normal 5.27 5.27 0.04 0.000 48 0.000 55 0.000 18 0.059 0.067 0.005 (e) 13
Oblique 5.24 5.24 0.05 0.000 66 0.000 78 0.000 36 0.047 0.045 0.003 (f) 13
93 Normal 5.18 5.20 0.04 0.000 34 0.000 33 0.000 05 0.122 0.122 0.014 (e) 14
Oblique 5.19 5.20 0.04 0.000 54 0.000 53 0.000 12 0.181 0.190 0.012 (f) 14
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TABLE Ill. Monte Carlo: Parameter correlation.

procedure, M ,,w,,c,) solutions close to the mean value

for each(substrate, frequency, orientatioccombination were
chosen. Then, for each original solution, 20 synthetic aver-
age echo envelopes and matched parameter solutions were

For each measurement scenario, an original solution and
the mean and standard deviation of the corresponding Monte

Carlo solution are summarized in Table Il. Correlation be-

tween parameter pairs are summarized in Table Illl. The
Monte Carlo solutions fow, vs M, are shown in Figs. 13
and 14 for 33 and 93 kHz, respectively. The distributions of

Monte Carlo solutions are adequately represented by the

confidence regions—with the exception of Fig.(l)3(sand,
33 kHz, oblique which demonstrates one-sideg cluster-
ing about 0.0055. The mean values of the Monte Carlo solu-
tions are in general agreement with the original solutions,

FIG. 13. Scatter plot of Monte Carlo
solutions at 33 kHz: Panel descriptions
in Table Il. (-) Monte Carlo solutions;
(A) mean value and center of 90%
confidence region{O) original sand
solution; (+) original silt solution;(*)
original clay solution.

Transducer
Site Freq.(kHz) orientation My4,w;)  (My,0,)  (W;,0,)
Sand 33 Normal -0.94 +0.10 -0.19 . .
Oblique -0.64 +0.55 ~0.45 generated as described in Sec. Il C.
93 Normal -0.87 —-0.32 +0.64
Oblique -0.85 +0.90 —-0.88
Silt 33 Normal -0.30 -0.31 +0.02
Oblique —0.47 —0.44 +0.32
93 Normal —0.86 —0.28 +0.12
Oblique +0.42 -0.23 -0.14
Clay 33 Normal +0.05 -0.75 +0.04
Oblique +0.44 +0.07 —-0.05
93 Normal —0.62 —0.66 +0.57
Oblique +0.26 -0.24 -0.29
with the exception of Fig. 1) (silt, 93 kHz, oblique.
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In Figs. 15 and 16, 90%-confidence regions for thesand (8%—27%. Standard deviations fos, are typically
Monte Carlo solutions are juxtaposed with those for theless than 10% of the mean value, with exceptions for sand at
model-data solutions reported in Sec.(henceforth called 33 kHz.
the “real” solutions at 33 and 93 kHz, respectively. In gen- Also, a significant anticorrelation betwedh, and w,
eral, the confidence regions of the Monte Carlo solutions falfor sand substrates is seen in the real solutions and in the
within those of the real solutions. However, the plots suggesionte Carlo solutions, with correlation coefficients ranging
that for normal incidence over sand at 33 kHz, variations infrom —0.64 to —0.94. In the temporal model of acoustic
M, andw, are larger than suggested by the limited numberbackscatter, increasing either parameter decreases signal
of field measurements. The same can be said,ofstimates peak amplitude, and vice versa. In nature, these quantities are
for oblique incidence over clay at 33 kHz. This implies thatexpected to be negatively correlated—i.e., coarser sediments
analysis of larger data sets could yield greater solution varitlower M ;) exhibit more energy in the relief energy density
ability than what is currently observed. spectrum(larger w,). When the “true” signal is contami-

As observed for the real solutions, the Monte Carlo eshated by “noise” the parameters also tend to adjust in oppo-
timates of M, for sand exhibit greater variability than for site directions.
fines—with measures of standard deviation ranging from  There also appears to be modest anticorrelation between
0.08 to 0.38 and 0.04 to 0.10, respectively. As a percentagk! , and o, in solutions for fine-grain sediments. In these
of the mean valuew, standard deviations for fine-grain substrates, scattering from the sediment volume typically
simulations(15%—46% are typically larger than those for plays a larger role. An increase in either parameter raises the
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0 @ sured envelope. Comparisons between full MLE optimiza-
Tl o= = 85 kHz, Normal Inoidence tion and peak amplitudénonweightegl matching will be
evaluated in future evolutions of this echo envelope sediment

characterization algorithm.

VIl. SUMMARY

The method for estimating sediment geoacoustic param-
eters presented here compares bottom returns measured by a
calibrated, moderate beamwidti0°-219, vertically ori-
ented (0°-159 monostatic sonar, with an echo envelope
model based on high-frequen¢g0-100 kHz incoherent
6 backscatter theory and sediment properties such as mean

grain size M), interface roughnessa;,y), and sediment
volume scattering statisticsr(). A two-stage average echo
) envelope matching procedure was described where: first, the
PR 1, = 33 iz, Oblique Incidence sediment typgsand or finesis established by iterating on
S the reflection coefficient to match the peak echo amplitude,
and to establish a general fit with generic values of the re-
maining geoacoustic parameters; then, a three-parameter glo-
bal optimization is performed using a combination of simu-
lated annealing and downhill simplex searches over the
allowable range of interface roughness spectral strength,
sediment volume scattering coefficient, and a constrained
range of reflection and bottom absorption coefficients corre-
lated to mean grain size. In San Diego Bay, bottom echoes
b Y s a5 7 5 were collected at 33 and 93 kHz over substrates ranging from
Mean Grain Size (PHI) sand to clay. Application of the sediment characterization
FIG. 15. Confidence regions for Monte Carlo and real soluti®&$skHz). method tO_ these d&}ta yielded SOluuan for _gram size and
Real solutions: Solid lines 90%-confidence regiofis) mean val- ~ geoacoustic properties that are consistent with ground-truth
ues. Monte Carlo solutions: Dashed lines— — 90%-confidence regions; measurements.
(A_) mean vaIues(Q) original sand s_olution(-r) original silt solytion;(*) The ground-truth measurements, Consisting of bottom
original clay solution. Transducer orientatig@ Normal; (b) Oblique. . . . .
video, grain size analyses, environmental databases, and as-
sociated ranges of geoacoustic parameters, lack direct assess-
calculated energy in the signal tail, and apparently the twanents of the modeled geoacoustic properties. This, and the
parameters compete to fit this section of the signal. Too littlesmall number of sites and regions evaluated, limits definitive
is known aboutn situ sediment volume scattering character- assessment of the accuracy and robustness of the described
istics to warrant a physical interpretation. inversion technique. Controlled, calibrated surveys over sites

In theory, values of the data covariance materd thus  characterized for the complete range of geoacoustic param-
the solution variangecan be decreased by averaging a largerters must eventually be employed to further evaluate and
number of echoes. However, in our data sets, processing eimprove the efficacy of the echo envelope sediment charac-
sembles much greater than 100 pings excessively filters therization technique.
shape characteristics of the average envelope that are essen- For the experiments described in this paper, analyses of
tial to the matching procedure. Furthermore, with large enthe estimated geoacoustic parameters for different combina-
sembles the requirement of bottom homogeneity is morgions of sediment type, frequency, and transducer orientation
likely to be violated—especially at high survey speeds. suggest that moderate frequendi@8 kHz) and normal inci-

In theory also, the data covariance matrix has potentiatlence are more suitable for this method of sediment charac-
application in model—data fitting. The nonweighted least-terization. This may, in part, be due to limitations at high
squares merit function of E@5) was chosen over a variance- acoustic frequencie&.g., 93 kHz of the backscatter mod-
weighted approach in order to favor peak amplitude model-el's underlying Kirchhoff theory, and partly due to the simple
data matching—emphasizing extraction of mean grain sizéemporal structure of the returns at lower acoustic frequen-
correlated parameters, such as impedance contrast. Futwies (33 kHz—simplifying calculation of the average echo
work with this technique will include testing of the full envelope. Furthermore, approximate alignment of the trans-
maximum likelihood estimatio@MLE) paradigm; i.e., cova- ducer’s maximum response axis at normal incidence insures
riance matrix weighting of the model-data disparity. Vari- that the maximum interface component of the backscattered
ance weighting of each model—data sample disparity shouldignal will exceed the maximum volume contribution—a
improve model—data fitting at the leading and trailing signalcondition necessary for reducing ambiguity in the model—
edges—at the expense of precise peak amplitude matchingata matching procedure.

The effect, however, of the data’s covariances should coerce The ability to distinguish sands from fine-grain sedi-
the optimized model to assume the true “shape” of the meaments was demonstrated based on acoustic estimation of
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FIG. 16. Confidence regions for Monte Carlo and real soluti®sskHz).
90%-confidence regiof®; mean val-
ues. Monte Carlo solutions: Dashed lines— — 90%-confidence regions;
(A) mean values(O) original sand solution{+) original silt solution;(*)

Real solutions: Solid lines

original clay solution. Transducer orientatiq@ Normal; (b) Oblique.

guencies (>100 kH2. Furthermore, local deviations of
sediment:water impedance rafipr) and sediment acoustic
attenuation constant«) from generic valuesmean values
correlated withM ,) will result in estimates oM 4, w,, and
o, that are distorted from their true values.

Monte Carlo simulations based on a geoacoustic param-
eter solution set and the data’s covariance matrix were de-
scribed. In the mean, the Monte Carlo solutions agree with
the original solution; however, for a given substrate, there is
as much variability in the Monte Carlo solutions as there are
in an ensemble of real solutions. Therefore, echo variability
must be considered during parameter optimization by provid-
ing confidence limits on the results.

According to the observed spread of geoacoustic
matches from measured signals and synthetic data, rough-
ness spectral strength estimates) for sand substrates are
relatively immune to raw echo variability, whereas mean
grain size estimatesM ;) are moderately affected. The op-
posite is observed for fine-grain substrates; estimates are
relatively immune to raw echo variability, whereas esti-
mates are significantly affected. A more thorough investiga-
tion of echo envelope averaging procedures and maximum
likelihood model—data matching techniques may result in
methods to reduce theM(, ,w,) confidence regions.

Finally, the classification procedure introduces a degree
of anticorrelation betweeM , andw,, which is especially
large for sand substrates. This trend is consistent with what is
expected in nature, where the relief energy density spectra of
coarser sedimentdower M ;) exhibit more energyhigher
W,) than those of fine-grain substrates.
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APPENDIX: SUPPORTING TABLES

TABLE IV. Survey site ground truth. Substrate percentages may not add exactly to 100 due to round-off and a

small gravel constituency.

Latitude Longitude
Sample  deg min deg min Mean grain  Mean grain
Site index North West size (PHI) size (um) Sand Clay
Sand 1 32 40.760 117 13.653 1.9 268 93 2 4
2 32 40.650 117 13.585 2.2 218 93 2 4
3 32 40.647 117 13.626 1.7 308 90 3 4
Silt 1 32 42.265 117 13.927 4.1 58 76 14 10
2 32 41.887 117 14.153 5.9 17 49 30 21
Clay 1 3242997 117 11.728 6.5 11 39 33 27
2 32 42.995 117 11.767 6.8 9 36 34 29
3 32 42.997 117 11.814 6.6 10 38 33 29
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TABLE V. Survey measurement characteristics. Normal incidence measurements refer to those for which the
central axis of the transducer’s radiation pattern is aligned with the bottom nd¢mesn 6;~0). Oblique
incidence measurements exhibit elevation angles roughly correspondiihggt@ (8°~12° and 6°-9°, respec-

tively, at 33 and 93 kHg Columns 3—6 represent mean or approximate values.

Transducer Along-track Along-track Transmission
elevation Transducer  3-dB 6-dB source level
Transducer angle altitude footprint footprint  dBre: 1 uPa Figure
Site  Freq(kHz) orientation 6y (deg) alt (m) D3 (m) D¢ (M) @1m label
Sand 33 Normal 2.0 13.5 5.0 7.0 197.8 (a9
Oblique 12.0 135 5.0 7.0 197.8 (G
93 Normal 2.0 13.5 2.4 3.1 191.4 ED
Oblique 6.5 14 25 3.2 191.4 (0}
Silt 33 Normal 2.0 16 5.9 8.3 192.4 (@
Oblique 8.0 16.5 6.1 8.5 192.4 (®
93 Normal 2.0 19 3.3 4.3 192.3 )
Oblique 8.5 19 3.3 4.3 192.3 )]
Clay 33 Normal 0 12 45 6.2 197.8 (@
Oblique 12.0 11 4.1 5.7 197.8 (f9
93 Normal 1.0 12.5 2.2 2.8 191.4 (=)
Oblique 7.0 13 2.3 3.0 1914 (i10]
TABLE VI. Sediment classification statistics.
Transducer Mean  Stdv Meanw, Stdvw, Meano, Stdvo,
Site  FreqkHz) orientation M, M, y (cm®) (et m™ (m™Y
Sand 33 Normal 388 028 3.00 0.00496 0.00113 0.202 0.022
Oblique 3.16 0.14 3.00 0.00577 0.00109 0.041 0.020
93 Normal 2.48 0.44 3.00 0.00391 0.001 10 0.945 0.343
Oblique 245 0.27 3.00 0.00236 0.00090 0.104 0.112
Silt 33 Normal 496 0.09 330 0.00076 0.00020 0.071 0.010
Oblique 4.65 0.22 3.30 0.001 15 0.000 32 0.091 0.016
93 Normal 518 0.09 3.30 0.00072 0.00019 0.261 0.070
Oblique 532 038 330 0.00223 0.00124 0.314 0.227
Clay 33 Normal 5.26 0.08 3.30 0.000 48 0.000 21 0.048 0.022
Oblique 530 020 3.30 0.00061 0.00024 0.047 0.015
93 Normal 521 015 330 0.00041 0.00011 0.102 0.040
Oblique 5.18 0.24 3.30 0.000 55 0.000 13 0.170 0.053
IN. G. Pace and R. V. Ceen, “Seabed classification using the backscattering
of normally incident broadband acoustic pulses,” Hydrographi@€].
TABLE VII. Sediment classification: Parameter correlation. 9-16(1982.
2R. Chivers, N. Emerson, and D. R. Burns, “New acoustic processing for
Transducer underway surveying,” Hydrographic %6, 9—17(1990.
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Notes, November 2002.
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