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Application of a maximum likelihood processor to acoustic 
backscatter for the estimation of seafloor roughness parameters 
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Christian de Moustier a) 
Marine Physical Laboratory, Scripps Institution of Oceanography, University of California, San Diego, 
La Jolla, California 92093-0205 

(Received 30 April 1993; accepted for publication 4 January 1994) 

Maximum likelihood (ML) estimation is used to extract seafloor roughness parameters from 
records of acoustic backscatter. The method relies on the Helmholtz-Kirchhoff approximation 
under the assumption of a power-law roughness spectrum and on the statistical modeling of 
bottom reverberation. The result is a globally optimum, highly automated technique that is a 
useful tool in the context of seafloor classification via remote acoustic sensing. The general 
geometry of the Sea Beam bathymetric system is incorporated into the design of the ML 
processor in order to make it applicable to real acoustic data collected by this system. The 
processor is initially tested on simulated backscatter data and is shown to be very effective in 
estimating the seafloor parameters of interest. The simulated data are also used to study the 
effect of data averaging and normalization in the absence of system calibration information. The 
same estimation procedure is applied to real data collected over two central North Pacific 
seamounts, Horizon Guyot and Magellan Rise. The Horizon Guyot results are very close to 
estimates obtained through a curve-fitting procedure presented by de Moustier and Alexandrou 
[J. Acoust. Soc. Am. 90, 522-531 (1991)]. In the case of Magellan Rise, discrepancies are 
observed between the results of ML estimation and curve fitting. 

PACS numbers: 43.30.Gv, 43.30.Hw, 43.30.Pc 

INTRODUCTION 

The objective of this paper is to derive a methodology 
for estimating seafloor roughness spectrum parameters 
based on the angular dependence function of acoustic 
backscatter. This is an important step toward the long- 
range goal of automated seafloor classification using re- 
mote acoustic sensing. Heretofore, this problem has re- 
ceived relatively little attention in the literature. A first 
attempt, by de Moustier and Alexandrou, 1 was based on 
fitting intensity curves estimated from real data to theoret- 
ical scattering strength curves obtained from the 
Helmholtz-Kirchhoff formulation as developed by Jackson 
et al. 2 This approach relied on a qualitative "goodness-of- 
fit" criterion and could not be easily automated. Here, we 
introduce a quantitative, globally optimum, and highly au- 
tomated technique for performing the same task. Another 
quantitative approach to the problem of seafloor parameter 
estimation is by Matsumoto et al. 3 

The selection of an appropriate criterion is an issue of 
primary importance in any estimation problem. A simple 
and popular choice is the minimum mean-squared error 
(MMSE) criterion, which yields estimates that minimize 
the distance (i.e., squared error) between measurements 
and theoretical predictions. However, MMSE estimation 
can lead to inconsistent results because it does not include 

any information concerning the probabilistic structure of 

a)On leave at the Naval Research Laboratory, Code 7420, Washington, 
DC 20375-5350. 

the observed data. 4 Alternatively, the maximum likelihood 
(ML) criterion can be employed, which takes explicit ac- 
count of the statistical character of the received signal. For 
a given set of data, MMSE leads to the same results re- 
gardless of the underlying distributions, whereas the per- 
formance of ML-based estimators relies on these distribu- 

tions. If the statistical modeling is done correctly, thl• ML 
approach produces more reliable estimates by taking ad- 
vantage of existing knowledge concerning the nature of the 
observed data. For this reason, ML is the criterion of 
choice here. Our ML estimation technique is based on the 
following assumptions: First, the received reverberation 
quadrature components are normally distributed. Equiva- 
lently, the magnitude of the complex reverberation enve- 
lope is Rayleigh distributed and the instantaneous intensity 
is governed by a scaled 3( 2 distribution with two degrees of 
freedom. Second, the expected value of the received back- 
scattered intensity is assumed to be of the form predicted 
by the Helmholtz-Kirchhoff model as developed by Jack- 
son et al. 2 In this manner, our method combines elements 
of two well-known scattering models (point-scattering and 
Helmholtz-Kirchhoff) into a unified statistical framework 
where the ML criterion can be applied. The result is an 
efficient tool yielding globally optimum, reliable parameter 
estimates. In addition, the obtained likelihood surfaces of- 
fer useful insight into the uncertainty associated with this 
estimation problem. 

As in de Moustier and Alexandrou, 1 the estimation 
process is based on relating measurements of seafloor 
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acoustic backscatter to a Helmholtz-Kirchhoff formula- 

tion of the reverberation process based on a power-law 
roughness spectrum. 2 The selection of the particular scat- 
tering model is dictated by the range of angles of incidence 
we :iire interested in, which is 00-20 ø, as will be discussed 
later. For this angular range, the Kirchhoff approximation 
is considered preferable to other approaches. 2 

To test the proposed ML method, simulated backscat- 
ter data were created, based on the statistical model de- 
scribed above. This allows us to investigate the perfor- 
mance of the method in a controlled environment, giving 
us insight into the sensitivity of the method to variations in 
model parameters and hence into its ability to discriminate 
between different seafloor types. In addition, it allows us to 
study the effect of a normalization procedure that must 
often be applied to real data because of the absence of 
system calibration information. Following testing with 
simulated data, the ML method is applied to real acoustic 
data. 

The paper is organized as follows: The Helmholtz- 
Kirchhoff formulation as developed by Jackson et al. 2 is 
briefly discussed in Sec. I. Section II describes the statisti- 
cal model of backscattered intensity leading to the devel- 
opment of the ML estimator, which is presented in Sec. III. 
The performance of the ML processor with simulated data 
is presented in Sec. IV A, and Sec. IV B presents the esti- 
mation results obtained with data collected with the Sea 

Beam system over two central North Pacific seamounts. 

I. THE ACOUSTIC MODEL 

Backscattering strength rr is a parameter of bottom 
reverberation, which, on a logarithmic scale, is defined as 5 

The morphology of the seafloor is described by the 
structure function D(r), which expresses the mean square 
height difference of the seafloor for a specific horizontal 
distance r and can be expressed as 

D( r) = C•t ca. (3) 
The quantity C h is defined as 

C•= [2rcBF(2-a)2-2•]/[a(1-a)r( l +a) ], (4) 
where F is the gamma function and a =7/2-1. 

The backscattering strength rr can be written as 2 

g2(o) 
a( a,l,O ) - 8rr sin2 (rr/2-- 0) cos2 (rr/2-- 0) 

X exp(--qu2a)Jo(u)u du, (5) 

where 

q = sin2 ( rc/2_O)cos-2a( rc/2_O)C•21-2ak2a (l-a) 
(6) 

g(0) is the plane wave reflection coefficient at vertical in- 
cidence (0=0), J0 is the zeroth-order Bessel function of 
the first kind, ka is the acoustic wave number, and 0 is the 
angle of incidence. 

At vertical incidence, Eq. (5) is indeterminate. For 
0=0, the backscattering strength is defined as 1 

rr(ot,•,O) =g2(O)C•-2/a(2•2a)(•- 1)/•F (I/a) (8rra)-1. 
(7) 

The potential contribution of volume scattering is not 
taken into account, because it is desired to keep the com- 
putational requirements of the proposed estimation process 
manageable. 

S= 10 10g10 rr= 10 10glo(Iscat/Iinc), (1) 

where/scat is the intensity of sound scattered by a unit area 
of the seafloor, measured at a unit distance from the area, 
when the seafloor is insonified by a plane wave of intensity 
'/'irlc ø 

In Jackson's model, 2 the two main components con- 
tributing to the total backscatter are interface roughness 
and sediment volume scattering. The Kirchhoff approxi- 
mation is employed for the calculation of backscattering 
strength due to the roughness of the water-sediment inter- 
face, and it is assumed that the spatial power spectrum can 
be modeled in a power-law form. 6 In terms of the spatial 
wave number k, the spectrum can be written as 

(2) 

where 7 takes values in the interval 3-3.5 for high- 
frequency bottom backscatter. 1'2 Parameter/• is the slope 
of the power spectrum; it has been found to take values on 
the order of 10 -5 (in mks units) for sedimented regions 
over Horizon Guyot and Magellan Rise in the central 
North Pacific 1 and on the order of 10 -4 for tectonic or 
volcanic terrains. 3 

II. THE STATISTICAL MODEL 

The backscattered signal must ultimately be viewed as 
a random process. The "physical" model (i.e., the 
Helmholtz-Kirchhoff approximation) described in Sec. I 
provides a single second-order statistic of the random pro- 
cess, backscattering strength, in terms of two physically 
meaningful seafloor parameters (a and/•). However, it 
offers no clues as to the probability density function (pdf) 
governing the random process. An alternative view of re- 
verberation is given by the point-scattering model. 7 Ac- 
cording to this model, the scattered signal results from the 
linear superposition of the individual echoes emanating 
from a large number of point reflectors distributed inde- 
pendently on a plane surface. Although this model has a 
relatively weak physical connection, it has been shown to 
accurately predict probability distributions. 7-9 Here, we 
create a unified statistical framework consistent with both 

the Helmholtz-Kirchhoff and the point-scattering model. 
This framework will be used both to simulate backscatter 

and to formulate the ML estimator. 

It is assumed here that reverberation consists of a ran- 

dom (incoherent) component only. A coherent component 
usually appears in the near-specular returns; it is consid- 
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ered negligible compared to the incoherent field, when the 
rough surface relief is greater or comparable to the acoustic 
wavelength. 2 For typical values of a and /• (0.60 and 
4.0X 10 -5, respectively), the rms height difference calcu- 
lated from Eq. (5) for a horizontal range of 20 m is equal 
to 12.8 cm. For a frequency of 12 kHz, which is the oper- 
ating frequency at which the available data have been col- 
lected, the wavelength is approximately 12 cm. The rough- 
surface relief is then comparable to the acoustic 
wavelength, thus allowing the assumption that the coher- 
ent component is negligible. 2 Additional support for this 
assumption was provided by estimates of coherent intensity 
obtained from real data by calculating the squared mean of 
the scattered field, which indicated that this coherent term 
is three orders of magnitude smaller than the total average 
intensity. 

In the absence of a coherent component, the point- 
scattering model predicts that the envelope of bottom re- 
verberation is in the limit a complex Gaussian random 
variable (rv). The real and imaginary parts are indepen- 
dent and they have zero mean and equal variances. 7-9 
Equivalently, the reverberation magnitude (often referred 
to as "the envelope") is modeled as a Rayleigh rv and 
reverberation magnitude squared is modeled as a X 2 rv 
with 2 degrees of freedom (dof). Average intensity is de- 
fined as the expected value of the reverberation magnitude 
squared. Because our objective is to interpret the angular 
dependence of the backscattered intensity according to the 
acoustic model described in Sec. I, we focus our attention 
on the statistical behavior of reverberation magnitude 
squared. 

A X 2 pdf with v dof is given by 

fy(y) = [ 1/2v/2F(v/2) ] y(,,/2)-] exp( -- Y/2), Y>0, 
(8) 

with E[ Y] = v and VAR[ Y] = 2v. 
Let Z/and ZQ be two independent, normally distrib- 

uted rv's representing the real and imaginary parts of the 
received reverberation process. The fact that the coherent 
component is assumed to be negligible implies a zero mean 
for both rv's. In addition, Z/and ZQ have equal variances. 
Let us for the moment assume that their variance is equal 
to 1. Then, the pdf of the reverberation magnitude squared 
(Z• 2 q- Z•) is of the form of Eq. (8) with v = 2. Of course, 
the variance 42 will not, in general, be equal to 1. We can 
account for this by creating a scaled rv defined as 

X=•2(Z•+Z•) =•2y, (9) 
where Y is a X 2 rv of the form of Eq. (8) with 2 dof. This 
rv X is now used to model the squared magnitude of the 
received reverberation signal. 

Using Eqs. ( 8 ) and (9), the pdf of X can be written as 

1 X 1 --•-• fx(X)=•fy • =•--•exp , X>0, (10) 
with E[X]=2& 2 and VAR[X]=4& 4. 

According to Eq. (1), backscattering strength is an 
expression of normalized average backscattered intensity. 
Then, for a particular angle of incidence 0i, backscattering 

strength as given by Eqs. (5) and (7) is the expected value 
of a rv Xi, distributed according to Eq. (10). It follows 
that 

= = ( ) 
where Xi=X(Oi) , •i=•(a,B, Oi), and o•i=a(a,B, Oi). Thus 
the pdf of the received reverberation magnitude squared 
[Eq. ( 10)] is fully described by the backscattering strength 
for a given set of parameters a, B, and Oi. 

III. THE MI. ESTIMATOR 

The mathematical framework developed in Sees. I and 
II is now used to develop an optimum ML processor. It is 
assumed that the data consist of n acoustic backscattered 

returns obtained at rn different angles of incidence. Only 
the squared magnitude of each return is preserved. For an 
angle of incidence Oi, i= 1,...,m, this quantity is described 
by a rv Xi distributed according to Eq. (10). Assuming 
that the returns from different angles of incidence are in- 
dependent, the joint distribution of the random vector 
.•=[Xl•2,...•m] T (where [' ]T stands for the transpose 
of [']) is a product of the marginal one-dimensional X 2 
distributions (i.e., the individual distributions correspond- 
ing to each angle Oi). For n m-dimensional observations of 
ß , the likelihood function L(•2), where •2= [•b•,•b2 2,..., 
•2rn]r , is given by 

m 

i=1 

where 

] ( q•t 2. ) = 2n q• t2. n exp -- •-•/2 ß 

(12) 

(13) 

Parameter •,2. is related to Xi through Eq. (11 ), and x/• is 
the jth acoustic observation at the ith angle, j-1,...,n, 
i= 1,...,rn. 

The ML estimates for a and B could then be calculated 
by finding the values of a and B for which the likelihood 
function, or equivalently its logarithm, reaches a maxi- 
mum. This procedure requires a tranformation relating a 
and B to backscattering strength, or equivalently, to pa- 
rameters •6, 2.. This transformation is readily available 
through Eqs. (5) and (7). Specifically, we form a rectan- 
gular grid having a and B as its coordinates; every point on 
the grid corresponds to a scattering strength vector • cal- 
culated at the angle vector •=[0• ..... Om]r. Here, 
0i=4 8 5+7(i-- 1 ) degrees for i= 1,...,8. These specific values 
were selected because they correspond to the nominal 
beam steering angles of the Sea Beam bathymetric system. 
The sonar platform is assumed to be fixed and refraction 
effects are neglected so that beam steering angles are angles 
of incidence on a flat bottom. Knowledge of 5 leads to •2 
through Eq. ( 11 ). This, combined with the acoustic obser- 
vations xij, allows the calculation of the likelihood func- 
tion through Eq. (12) for each grid point. Finding the 
maximum of the resulting ML surface yields the ML esti- 
mates of a and B for the given set of acoustic observations. 
The computational load of this method depends only on 
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FIG. 1. (a) Backscattering strength as obtained by Eqs. (5) and (7) for a=0.5, 0.6, and 0.7 and/• such that Ca= 102a-3m(1-a); (b) average simulated 
backscattered intensity for the same parameters. 

the cell size of the grid. In addition, it is important to 
define the ranges in which a and B are allowed to vary. 
Parameter a is chosen to be in the range [0.4883, 0.73] and 
/• is constrained to be of the order of 10-5 for the seafloor 
regions of interest. The ranges for a and B are selected on 
the basis of the existing a priori information. •-3 

IV. SEAFLOOR PARAMETER ESTIMATION 

A. Simulated data 

Before we apply the ML estimator to real data, we test 
it with simulated data produced according to the statistical 
model described in Sec. II. Observations of instantaneous 

intensity are simulated by drawing samples from the dis- 
tribution of Eq. (10) for selected values of roughness spec- 
trum parameters and angles of incidence. Figure 1 (a) 
shows the (logarithmic) curves obtained by Eqs. (5) and 
(7) for a equal to 0.5, 0.6, and 0.7 and angles of incidence 
in the range [0, 20*]. The quantity Ch was set to 10 2a-3 in 
units of meters (l-a). Figure 1 (b) presents the curves ob- 
tained for the same parameters by averaging over 100 sam- 
ple vectors from scaled X: distributions with 2 dof, as de- 
scribed above. It can be seen that the simulation procedure 
closely approximates the theoretical backscattering 
strength curves. Since the simulated data obey exactly all 
model assumptions, we expect the results presented in this 
section to represent an upper bound of performance for the 
ML estimator. 

A factor that is likely to be of considerable importance 
in a real-world experiment is the number of observations 
(pings) available for each estimate. Because the seafloor is 
highly inhomogeneous, it would be desirable to utilize the 
smallest possible number of observations. The simulations 

afford us the opportunity to quantify the significance of 
this factor in the absence of modeling uncertainties. In 
addition, they allow us to study the impact of a data nor- 
malization scheme, which must often be used in the ab- 
sence of calibration information for the particular sonar 
system used during the experiment. 

Table I presents the results obtained by using a (30 
X20) grid, with 0.4883<a<0.73 and 5.0X10-6</• 
< 1.0 X 10 -4. Simulations were performed with 10, 50, and 
100 observations for different combinations of parameters 
a and B. Taking into account that ML estimation is per- 
formed on a digitized set of parameters, the real estimates 
in a continuous domain could be located in areas including 
the grid points given in Table I and their eight nearest 
neighbors. Figure 2 shows the likelihood surfaces, normal- 
ized with respect to their maxima, versus a and B for dif- 
ferent numbers of observations, for data generated with 
a=0.53 and/•=2.0X 10 -5. As expected, a larger observa- 
tion set results in a more peaked likelihood and a decrease 
in the uncertainty surrounding the main mode. The exist- 
ence of significant secondary modes indicates a potential 
difficulty in determining the most likely values for a and B. 
Because of the observed multimodality, the implementa- 
tion of "hill-climbing" techniques for finding the maximum 
of the likelihood surface, instead of the grid-based method 
used here, could prove troublesome, since the optimization 
processes could easily get trapped in local extrema. Finally, 
the existence of a number of modes indicates that the pre- 
sentation of only point estimates is not particularly mean- 
ingful. A measure of uncertainty, providing a synoptic 
view of all available information pertaining to the param- 
eters of interest, should accompany the point estimates. 
Here, this role is performed by the likelihood surface. It 
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TABLE I. ML estimates for a and/5 obtained from simulated backscatter 
with a X • modeling with 2 dof for 10, 50, and 100 observations. 

Maximum likelihood estimation of a and/5 

a=0.530 a=0.680 a =0.705 

Sample size /5=2.0)< 10 -s /5=4.0)< 10 -s /5=9.0)< 10 

10 0.5383 O. 7050 O. 6217 

2.0)< 10 -• 5.0)< 10 -• 7.5)< 10 -• 

50 0.5217 0.6967 0.7300 

2.0)< 10 -s 4.5)< 10 -5 1.0)< 10 -4 

100 0.5300 0.6883 0.7133 

2.0)< 10 -5 4.0)< 10 -5 9.5)< 10 -5 

0.8- 

0.4- 

0.2- 

x lo 4 

OA 

0.7 

O.6 

0.6 0.8 1 o.s dpha 

should also be noted, that the relative location of the mul- 
tiple modes on the grid reveals the high degree of correla- 
tion between ct and B. The exact nature of the correlation 
pattern is governed by the highly nonlinear function relat- 
ing •b• to a and B [i.e., Eq. (5)]. 

The results presented thus far are based on modeling 
the received mean backscattered intensity as scattering 
strength calculated by Eq. (5). However, in a real sonar 
deployment, it is often the case that reliable system cali- 
bration information is not available. This prohibits the cal- 
culation of backscattering strength from measurements of 
backscattered intensity. Therefore, it is necessary to de- 
velop a normalization scheme to establish a correspon- 
dence between real measurements and theoretical predic- 
tions. 

The normalization procedure used here is based on the 
introduction of a new rv W i. Let Wi=Xi/• 2, where Xi is a 
rv distributed according to Eq. (10) and corresponds to 
the backscattered intensity for the angle of incidence Oi, 
where i= 1,...,8, and • is a normalization factor. Then, the 

pdf f w i of Wi is 

•2 exp(- W'•2• fwi(W')---•t2. 2(•}t2. J 

1 2(•bi/g) 2 exp ' 2(•bi/g) 2 , W•>O. (14) 

The normalization factor is chosen to be the average 
intensity received at the angle of incidence closest to nadir 
(here 01=•ø). Thus the expected value of W1 should be 

E[W1]----2(•l/•)2=l. (15) 

Recalling Eq. (11) and the definition of Wi, this means 
that 22=c1=a(a,/•,•ø). Thus the synthetic data consist of 
observations of the rv's Xi scaled to Wi by division with al. 

The results of the normalization procedure are pre- 
sented in Table II and Fig. 3. The likelihood surfaces (Fig. 
3) now spread over a broader part of the grid compared to 
those of Fig. 2. This increase in ambiguity was expected 
since, following normalization, estimation is based only on 
the general form of the dependence of backscattered inten- 
sity on the angle of incidence and parameters a and B while 
it ignores the differences in intensity levels introduced by 
different values of a and B. However, the results shown in 

1 

(b) 
0.8 

0.$ 

0.4 

0.7 

0.:2 

0.6 

0.6 0.8 1 • 
x 10 4 

1'" 

0.8- 

0.6-- 

0.4- 

0.2t .7 
O• 0.6 
0 0.2' ,,, 

""' 0.6 0.8' 
x 10 .4 

FIG. 2. Likelihood surfaces for simulated )(2 data with 2 dof for a=0.53 
and/5=2.0)< 10 -s for (a) 10, (b) 50, and (c) 100 observations. 

Tables I and II indicate that the point estimates obtained 
with and without normalization are very similar. This 
means that the results (i.e., point estimates) of the ML 
procedure are not significantly affected by the lack of cal- 
ibration information. Therefore, this procedure can be ap- 
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TABLE II. ML estimates for a and/5 obtained from simulated backscat- 
ter with a X • modeling with 2 dof after normalization with respect to the 
first angle of incidence for 10, 50, and 100 observations. 

Maximum likelihood estimation of a and/5 

a =0.530 a =0.680 a =0.705 

Sample size /5=2.0X 10 -5 /5=4.0X 10 -5 /5=9.0X 10 -5 

10 0.5883 0.7217 0.6383 

3.0X 10 -5 5.0X 10 -5 8.0X 10 -5 

50 0.5217 0.6717 0.7050 

3.0X 10 -5 4.0X 10 -5 9.0X 10 -5 

100 0.5300 0.6967 0.7050 

2.0X 10 -5 4.5 X 10 -5 9.0X 10 -5 

O2 

0.7 

O6 

o.8 0.8 1 o.s dl• 

plied to real data even when calibration information is not 
available. 

Estimation after the application of the normalization 
scheme could prove problematic when the received field is 
scattered by a seafloor characterized by parameters a and 
/• significantly higher than the upper bounds of the grid 
used here. The angular dependence of backscatter de- 
creases with increasing values of a and/3, leading to rela- 
tively flat backscatter curves. Normalization of the re- 
ceived backscatter observations in cases of a small angular 
dependence would result in additional uncertainty in the 
estimation process. However, this problem does not arise 
for the ranges of interest of a and/3, as shown by the 
results obtained for data generated for a=0.705 and 
/3-- 9.0 X 10- 5 which are close to the u per bounds of the 
grid (Table II). 

We also investigated the effect of averaging over a 
number of observations prior to the application of the ML 
estimation processor. It was thought that data smoothing 
could possibly lead to improved performance. This poten- 
tial was tested using averages of 5 and 25 single observation 
vectors. Performing these averages leads to the creation of 
new rv's governed by scaled X 2 distributions with 10 and 50 
dof, respectively. Tables III and IV contain the calculated 
estimates of a and/3 for a X 2 modeling with 10 and 50 dof. 
The results indicate that averaging leads to an increase in 
accuracy. Tables V and VI show the corresponding esti- 
mates following normalization. Once again, it appears that 
the normalization procedure does not degrade the quality 
of the estimates. Figures 4 and 5 show the likelihood sur- 
faces obtained from 50 observations with 2, 10, and 50 dof 
before and after normalization, respectively. It can be seen 
that increasing the number of dof leads to reduced uncer- 
tainty, manifested here as a decrease of the secondary 
modes. Thus, when possible, it is desirable to average over 
a number of observations before applying the ML proces- 
sor. 

B. Real data 

Since the relationship between backscattered intensity 
and angle of incidence depends on the seafloor structure, 
multibeam bathymetric systems such as Sea Beam 1ø pro- 
vide us with data in an ideal form for seafloor parameter 
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FIG. 3. Likelihood surfaces for simulated 1/2 data with 2 dof for a=0.53 
and/5=2.0X 10 -5 following normalization for (a) 10, (b) 50, and (c) 
100 observations. 

extraction. The Sea Beam system operates at 12.158 kHz 
and receives acoustic backscatter through 16 preformed 

8o 
beams nominally spaced • apart, between • 20 ø in athwart- 
ship angle relative to the ship's vertical axis. 
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TABLE III. ML estimates for a and/5 obtained from simulated back- 
scatter with a X 2 modeling with 10 dof for 10, 50, and 100 observations. 

Sample size 

Maximum likelihood estimation of a and/5 

a=0.530 a=0.680 a=0.705 

/5=2.0X 10 -• /5=4.0X 10 -• /5=9.0X 10 -• 

10 0.5717 0.7050 0.6800 

2.5X 10 -5 4.0X 10 -5 8.0X 10 -5 

50 0.5300 0.6717 0.7050 

2.0X 10 -5 4.5X 10 -5 9.0X 10 -5 

100 0.5300 0.6800 0.7050 

2.0X 10 -5 4.0• 10 -5 9.0X 10 -5 

TABLE V. ML estimates for a and/5 obtained from simulated backscat- 
ter with a X 2 modeling with 10 dof after normalization with respect to the 
first angle of incidence for 10, 50, and 100 observations. 

Sample size 

Maximum likelihood estimation of a and/5 

a=0.530 a=0.680 a=0.705 

/5=2.0X 10 -5 /5=4.0X 10 -5 /5=9.0X 10 -5 

10 0.555 0.6717 0.6967 

2.5 X 10 -5 4.0X 10 -5 9.0X 10 -5 

50 0.5300 0.6800 0.7050 

2.5 X 10 -5 4.0X 10 -5 9.0X 10 -5 

100 0.5300 0.6800 0.7050 

2.0X 10 -5 4.0X 10 -5 9.0• 10 -5 

Here, we use data recorded with Sea Beam over two 
central North Pacific seamounts, Horizon Guyot and Ma- 
gellan Rise. In both cases the seafloor is heavily sedimented 
with similar morphology. 11 The complex beamformed ech- 
oes collected by the Sea Beam system have been corrected 
for bottom slopes, beampattern geometry, and ship's roll to 
obtain backscattered intensity versus angle of incidence. 1 

The angular dependence of the measured intensity sig- 
nals must be handled carefully. The ML processor is based 
on the premise that the angles of incidence can be assumed 
to be fixed and equal to the nominal beam directions for 
every ping. However, this assumption is violated by the 
movements of the ship carrying the system during the ex- 
periment. For this reason, before using the data sets as 
observations of pressure or intensity variables, we followed 
a data selection procedure, based on whether the actual 
angles of incidence for a ping, after the corrections re- 
ported by de Moustier and Alexandrou, 1 fall in bins cen- 
tered at the nominal angles Oi, where 

Oi=-20+•(i-1), (16) 

where i-1,2,..., 16. The bin size was selected here to equal 
8o 

• centered around the Oi's of Eq. (16). 
We work here with only the eight port beams. Follow- 

ing the binning procedure described above, we process only 
these pings for which the measured angles (after the cor- 
rections) fall inside the selected bins. The result of this 
procedure is the formulation of observation vectors of 

TABLE IV. ML estimates for a and/5 obtained from simulated back- 
scatter with a X •- modeling with 50 dof for 10, 50, and 100 observations. 

, 

Maximum likelihood estimation of a and/5 

a=0.530 a=0.680 a=0.705 

Sample size /5=2.0X 10 -5 /5=4.0X 10 -5 /5=9.0X 10 -5 

10 0.5383 0.6800 0.6967 

2.0X 10 -5 4.0X 10 -5 9.0X 10 -5 

50 0.5300 0.6800 0.7050 

2.0X 10 -5 4.0X 10 -5 9.0X 10 -5 

100 0.5300 0.6800 0.7050 

2.0X 10 -5 4.0X 10 -5 9.0X 10 -5 

length 8, the elements of which have been measured close 
to the nominal steering angles within a margin of tolerance 
defined by the bin size. 

The objective here is to produce ML estimates of the 
parameters a and B based on the available Sea Beam data. 
These same data were previously analyzed from an estima- 
tion point of view by using a curve-fitting method, attempt- 
ing to match the angular dependence formed by the obser- 
vations at the two regions to the model of Sec. I. 1 An exact 
fit was not found for either set. There were indications, 
however, that the observed curves were satisfactorily close 
(especially for Horizon Guyot) to the theoretical ones for 
two different pairs of a and B estimates, where each pair of 
estimates corresponds to different ranges of angles of inci- 
dence. The ML •stimator employed here attempts to find a 
global estimate (i.e., covering the whole range of angles of 
incidence) for each seafloor region. Therefore, some differ- 
ences from the curve fitting results 1 are to be expected. 

The ML processor requires information concerning 
the distributions of the variables of interest. The distribu- 

tion of instantaneous intensity for a specific angle of inci- 
dence is of a scaled ?(2 form, as has been previously ex- 
plained. Independence among observations from both 
adjacent angles and pings is assumed. Correlation coetfi- 
cients have been actually calculated and found to vary be- 
tween --0.2 and 0.26 for observations from both adjacent 
beams and consecutive pings. The modeling of the likeli- 
hood function follows from Eqs. (12) and (13), and the 
normalization scheme discussed in Sec. IV A is used be- 

TABLE VI. ML estimates for a and/5 obtained from simulated back- 
scatter with a X •- modeling with 50 dof after normalization with respect to 
the first angle of incidence for 10, 50, and 100 observations. 

, 

Maximum likelihood estimation of a and/5 

a=0.530 a=0.680 a=0.705 

Sample size /5=2.0X 10 -5 /5=4.0X 10 -5 /5=9.0X 10 -5 

10 0.5550 0.6800 0.7050 

2.5 • 10 -5 4.0X 10 -5 9.0X 10 -5 

50 0.5300 0.6800 0.7050 

2.0X 10 -5 4.0X 10 -5 9.0X 10 -5 

100 0.5300 0.6800 0.7050 

2.0X 10 -5 4.0X 10 -5 9.0X 10 -5 
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FIG. 4. Likelihood surfaces for 50 observations of simulated X 2 data with 
(a) 2, (b) 10, and (c) 50 dof for a=0.53 and B=2.0X 10 -5. 

cause the Sea Beam measurements were not calibrated. 

Following the binning procedure, there are 425 available 
observations for Horizon Guyot and 124 for Magellan 
Rise. 

Ideally, it is desirable to process average instead of 

2474 J. Acoust. Soc. Am., Vol. 95, No. 5, Pt. 1, May 1994 
, 

FIG. 5. Likelihood surfaces for 50 observations of simulated X 2 data with 
(a) 2, (b) 10, and (c) 50 dof for a=0.53 and/5=2.0X 10 -5 following 
normalization. 

/ 

instantaneous intensities within each beam for a specific 
ping. The number of samples within a beam varies with the 
angle of incidence, i.e., fewer measurements are obtained in 
the near-vertical beams, whereas more observations are 
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TABLE VII. ML estimates for the Horizon Guyot region obtained for 
10, 50, leo, and 425 observations. 

Maximum likelihood estimation of a and/• 

Sample size )(2 rv's (2 dof) X 2 rv's ( 10 dof) 

10 0.5883 0.6467 

3.0X 10 -5 4.5X 10 -5 

50 0.6467 0.6383 

4.5X10 -5 4.5X 10 -5 

leo 0.6217 

4.0)< 10 -5 

425 0.6133 

4.0)<10 -5 

0.6 

0.4 

0.2 

x lO • 

0.6 

0.6 0.8 10• MpM 

0.? 

available in the outer beams. • Thus averaging over different 
numbers of observations would require the construction of 
distributions with a varying number of dof from beam to 
beam, leading to a more complicated problem. In addition, 
averaging within each beam would require a test of inde- 
pendence between consecutive samples. For these reasons, 
we currently use a single measurement per beam, obtained 
at the expected center of the beam. 

On the other hand, returns from different pings have 
been found to be independent. Thus averaging over instan- 
taneous intensity observations obtained from several con- 
secutive pings is performed. The X 2 modeling with more 
than 2 dof as described in Sec. II is necessary in this case. 
Here, we average observations from five consecutive pings 
leading to X 2 rv's with 10 dof. It may be argued that aver- 
aging over a large number of pings would be desirable as it 
would lead to additional smoothing of the data. However, 
averaging over a large number of pings is not recom- 
mended, unless a certain degree of spatial homogeneity of 
the region under investigation is guaranteed. 

Table VII presents the estimates for parameters a and 
/• for Horizon Guyot obtained through X 2 modeling with 2 
ana su am. v, epresentative likelihood surfaces are shown in 
Fig. 6. Examining the results of Table VII, one could con- 
clude that for this data set a is between 0.61 and 0.64 and 

B is close to 4.5 X 10 -5. It should be noted that the quality 
of the estimates is not affected when the ML processor is 
applied to a relatively small number of samples (e.g., 50). 
This is a useful feature when surveying complex terrains. 

Curve fitting applied to the same data set produced 
estimates of 0.59 and 4.0X 10-5. • It must be recalled here 
that two different estimates were reported by de Moustier 
and Alexandrou • for the same data. The two pairs of esti- 
mates corresponded to the angular ranges 0-6 ø and 5-20 ø , 
respectively. Because of variance constraints on the data 
near nadir, the solution corresponding to larger angles of 
incidence had been selected (a=0.59 and B=4.0X 10-5). 
Again, we expect our results to differ somewhat because 
the ML processor relies on the entire angular range, 
whereas curve fitting emphasizes the outer angles. It 
should also be noted that the likelihood surface in Fig. 
6(a) exhibits a very strong secondary mode, peaking 
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FIG. 6. Likelihood surfaces for Horizon Guyot with a X 2 modeling with 
2 dof for (a) 50 and (b) leo observations and (c) with 10 dof for 50 
observations. 
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TABLE VIII. ML estimates for the Magellan Rise region obtained for 10, 
50, and 100 observations. 

Maximum likelihood estimation of a and B 

Sample size X • rv's (2 dof) X • rv's (10 dof) 

10 0.5217 0.4883 

5.0X 10 -6 1.5 X 10 -5 

50 0.4967 

5.0X10 -6 

100 0.5050 

5.0 X 10 -6 

around a=0.60 and/5=4.0X 10 -5, which are the domi- 
nating curve fitting estimates. 1 

Table VIII and Fig. 7 present the results obtained for 
the Magellan Rise data by following the same procedure. 
Accepting that modeling with more dof produces more 
reliable results, we select the estimates for a and/5 close to 
0.49 and 1.5 X 10 -5, respectively. All figures show the like- 
lihood surfaces to be mostly concentrated at a corner of the 
grid. Although it is possible that the correct estimates in 
fact happen to be located at the corner, the results suggest 
that the grid, selected based on our prior information con- 
cerning a and •, may not be broad enough to cover the 
range of the parameters valid for this seafloor region. The- 
oretically, it would be possible to extend the grid around 
the area of the peak and carry out a new search for a 
maximum. In this specific problem, however, this would 
violate the assumptions of the acoustic model, according to 
which the range of a does not extend below 0.5. 2 

For the Magellan Rise data, the ML estimation results 
differ from the curve fitting estimates, 1 where a and • were 
found to be equal to 0.55 and 3.5X 10 -5 . However, it 
should be noted that the curve-fitting procedure applied to 
these data did not yield a very close match to the theoret- 
ical backscattering strength curves. It could be that the 
chosen acoustic model is not appropriate for these data, 
particularly with regard to potential volume scattering 
contributions. Although core samples taken in each area 
revealed similar surficial lithologies of foraminiferal ooze 
with high calcium carbonate content, the sediments were 
more consolidated on Horizon Guyot thah on Magellan 
Rise. In addition, the Magellan Rise site is twice as deep as 
the Horizon Guyot site. Although every effort was made to 
render the measurements depth independent by accounting 
for transmission losses in the water column and the area 

insonified on the bottom for each beam, the measurements 
made over Magellan Rise have comparatively smaller 
signal-to-noise ratios, in part because of higher sea states at 
the time of data acquisition. These smaller signal-to-noise 
ratios coupled With a smaller set of samples available for 
the Magellan Rise area may have contributed to the poor 
fit and the discrepancies observed. 

V. CONCLUSIONS 

The ML estimation method suggested in this paper 
appears to be a readily applicable tool in the context of 
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FIG• 7. Likelihood surfaces for Magellan Rise with a X • modeling with 2 
dof for (a) 50 and (b) 100 observations and (c) with 10 dof for 10 
observations. 

seafloor parameter estimation based on real data, provided 
the data fit the selected acoustic model. Our technique has 
a number of advantages over the' curve fitting method. 1 
The ML processor is based on a quantitative performance 
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criterion as opposed to a qualitative goodness-of-fit and 
thus it can be highly automated. In addition, the ML 
method takes advantage of known statistical characteristics 
of bottom reverberation. As a result, it is more efficient, 
requiting a significantly smaller number of acoustic 
records. Finally, the likelihood surfaces provide useful in- 
sight into the uncertainty associated with the estimation 
process. 

The difficulty of estimating seafloor parameters from 
the Magellan data set points to potential modeling prob- 
lems. The ML estimation method can be refined by incor- 
porating into the model the influence of ambient noise and 
the presence of a coherent component in the near-nadir 
observations. The potential contribution of volume scatter- 
ing can also be included. In addition, efforts are currently 
underway to design a processor able to handle angular 
uncertainty. Such a processor would eliminate the need for 
the data selection process discussed in Sec. IV B and would 
make more efficient use of Sea Beam measurements. 
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