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Sea state bias in altimeter sea level estimates determined

by combining wave model and satellite data

N. Tran,1 D. Vandemark,2 S. Labroue,1 H. Feng,2 B. Chapron,3 H. L. Tolman,4 J. Lambin,5

and N. Picot6

Received 25 May 2009; revised 29 September 2009; accepted 6 October 2009; published 19 March 2010.

[1] This study documents a method for increasing the precision of satellite-derived sea
level measurements. Results are achieved using an enhanced three-dimensional (3-D) sea
state bias (SSB) correction model derived from both Jason-1 altimeter ocean observations
(i.e., sea state and wind) and estimates of mean wave period from a numerical ocean wave
model, NOAA’s WAVEWATCH III. A multiyear evaluation of Jason-1 data indicates
sea surface height variance reduction of 1.26 (±0.2) cm2 in comparison to the commonly
applied two-parameter SSB model. The improvement is similar for two separate variance
reduction metrics and for separate annual data sets spanning 2002–2004. Spatial
evaluation of improvement shows skill increase at all latitudes. Results indicate the new
model can reduce the total Jason-1 and Jason-2 altimeter range error budgets by �7.5%. In
addition to the 2-D (two-dimensional) and 3-D model differences in correcting the range
for wavefield variability, mean model regional differences also occur across the globe
and indicate a possible 1–2 cm gradient across ocean basins linked to the zonal variation
in wave period (short fetch and period in the west, swells and long period in the east).
Overall success of this model provides first evidence that operational wave modeling can
support improved ocean altimetry. Future efforts will attempt to work within the limits of
wave modeling capabilities to maximize their benefit to Jason-1 and Jason-2 SSB
correction methods.

Citation: Tran, N., D. Vandemark, S. Labroue, H. Feng, B. Chapron, H. L. Tolman, J. Lambin, and N. Picot (2010), Sea state bias

in altimeter sea level estimates determined by combining wave model and satellite data, J. Geophys. Res., 115, C03020,

doi:10.1029/2009JC005534.

1. Introduction

[2] The sea state bias (SSB) in ocean altimetry refers to
the cm-level range adjustment applied to improve satellite
radar estimation of mean sea level. The first-order SSB
predictor, e, is the height of the dominant gravity waves and
can be written as e(m) = b*SWH, where SWH is significant
wave height and where b is O(0.03 or 3%). Most remaining
variability and uncertainty in b resides in a term called the
electromagnetic (EM) bias [e.g., Chelton et al., 2001],
arising in simplest terms because the radar altimeter power
backscattered from wave troughs is enhanced over that from
wave crests.
[3] Despite many field observation and modeling efforts,

unresolved complexities in the interactions between radar

scattering and gravity wave elevation and slope dynamics
dictate the continued reliance upon empirical satellite-based
SSB estimation to develop the operational models. These
empirical formulations have been refined in the past
decade using a nonparametric statistical estimation approach
[Gaspar et al., 2002], but a recognized limitation is that the
correction is solely determined by SWH and surface wind
speed (U) data. These two variables are chosen pragmati-
cally because they are readily obtained from the satellite
altimeter itself. However, it is expected that SSB uncertainty
can be lowered if additional and accurate information on the
instantaneous surface wavefield are obtained and applied as
indicated by several nonsatellite field studies [Millet et al.,
2003, Melville et al., 2004]. This task is a key remaining
challenge for SSB improvement.
[4] This study presents a new multidimensional satellite

SSB model where ocean wave period data are used within a
three-input estimator. The mean gravity wave period (Tm)
estimates come from a numerical wind-wave model,
NOAA’s WAVEWATCH III (NWW3) [Tolman et al.,
2002]. The impetus for this approach stems from recent
works examining NWW3 data application to the SSB
problem [Feng et al., 2006; Tran et al., 2006]. In particular,
Tran et al. [2006] showed that when using global satellite
and wave model data, SSB estimation improvement is
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regionally obtained when using two different wavefield
statistical parameters. The first is the swell amplitude
component of the total sea state (Hswell) partitioned using
Hanson and Phillips [2001] formulation and the second is
the mean wave period defined as

Tm ¼ m0=m1; ð1Þ

mx ¼
Z Z

S f ; qð Þf xdf dq; ð2Þ

where mx represents the respective statistical moments
derived from the directional wave elevation density
spectrum S(f, q), with frequency f and wave propagation
direction q. These findings were consistent with studies
indicating that wave age, or the overall degree of wave
development, measurably impacts the mean wavefield
steepness and hence the EM bias dynamics [Fu and
Glazman, 1991; Minster et al., 1992; Glazman et al.,
1996; Chapron et al., 2001; Millet et al., 2003; Melville et
al., 2004].
[5] A basic illustration of the Jason-1 altimeter range bias

explained by the NWW3 mean wave period using on-orbit
data is supplied in Figure 1. It presents simple bin-averaged
values of the altimeter sea level anomaly (SLA) data,
without any SSB model correction (see equation (4)), for
a given (SWH, U) data subset with respect to Tm. Results
show more than 3 cm of variation (i.e., 1% of SWH) across
a wave period range of 6.5–9 s. Since the current working
estimate of operational SSB model error is given as O(1%)
[Chelton et al., 2001], this finding appears significant. A
nearly linear relationship is displayed and the SSB magni-
tude is much larger for short period (associated to steeper
young seas) than for long period (i.e., sinusoidal older seas)
waves.
[6] While Tm is not the sole wavefield statistic pertinent

to gravity wave impacts on the altimeter electromagnetic
bias, this study will focus on removing the observed Tm
dependence by developing an empirical multidimensional
SSB model. The central study objective is to quantify the
positive impact that wave model data can have on altimeter
sea level data quality by combined use of NWW3 and
Jason-1 altimeter data. The new satellite correction model is
developed using a known two-dimensional (2-D) SSB
nonparametric estimation approach revised to include three
terms (SWH, U, Tm). Its skill will be compared to that of
the standard 2-D model (i.e., based solely on SWH and U)
developed in the same manner and with the same data sets.

2. Methods

[7] NWW3 was run on a global 1� � 1� grid at a 6 hourly
time step, without assimilation of altimeter wave height and
forced with synoptic winds from the European Centre for
Medium-Range Weather Forecasts (ECMWF). Further
details about the combined NWW3/Jason-1 data set can
be found by Tran et al. [2006]. Changes in the modeling
approach, compared to the one used in the 2006 study
include extending the nonparametric statistical model to
three dimensions and expanding model validation by adding

an assessment that uses collinear (10 days) range measure-
ment differences.
[8] Following Labroue et al. [2004], we derive an on-

orbit SSB model from the input data vector x using the
formulation

e ¼ 8 x; qð Þ; ð3Þ

where e is the SSB (in cm), 8 is a mapping function, and q
holds the scalar constants for the equation. A kernel
smoothing nonparametric approach [Gaspar and Florens,
1998; Gaspar et al., 2002] is used to solve equation (3).
Following recent studies [Vandemark et al., 2002; Labroue
et al., 2004; Tran et al., 2006] we develop a solution for e
by directly relating the altimeter SLA data, derived from a
sea surface height (SSH0) uncorrected for SSB, to input data
vector x as

SLA xð Þ ¼ SSH0 xð Þ �MSL xð Þ ¼ e xð Þ þ s xð Þ: ð4Þ

[9] MSL represents the mean sea surface level consisting
of a decade-long average [Hernandez and Schaeffer, 2001]
that enfolds both the geoid and mean dynamic topography
while s is a noise term combining all standard sea surface
height correction errors (e.g., tides, high-frequency baro-
tropic effect, ionospheric delay, water vapor, etc.) plus the
time-varying sea surface topography. The key assumption of
this approach is that under sufficient averaging s(xj) will
tend to zero for each specific combination (j) of the input
variables leaving a direct relationship between the depen-
dent data and e. In our study, the vector x data set is formed
using millions of coincident samples of SWH, U, and Tm;
the first two variables taken directly from the Jason-1
altimeter and the latter from the wave model data interpo-
lated in space and time to coincide with each altimeter
measurement. The extension of a satellite-based SSB NP
solution to include a third input has not been accomplished
before. However, increasing the input vector dimensions is
straightforward [e.g., Millet et al., 2003] and primarily
requires a computational increase and a sufficiently large
amount of measurements. For this study the same local-
linear kernel smoothing approach (including kernel and
adaptive bandwidth) is kept from Tran et al. [2006] and
the model now solved for the three-dimensional (3-D)
vector x = (SWH, U, Tm). We developed a solution
resulting in a 3-D lookup table that describes the SSB
behavior over 0–13 m in SWH, 0–25 m/s in U, and 0–
18 s in Tm. Models were generated using 1 complete year
of data, typically �16 million samples, for each of the
years: 2002, 2003, and 2004. Observed model differences
between these solutions are small, below cm levels, and we
principally discuss the year 2002 solution in this paper.
Next, as a means to the most direct evaluation of improve-
ment gained by extending the SSB model to higher dimen-
sions, a benchmark 2-D SSB algorithm is also computed on
the basis of the standard altimeter SWH and U inputs and
from the same Jason-1 data sets and using the same NP
methods.
[10] Our use of the direct SLA method [Vandemark et al.,

2002] as recalled in equation (4) does differ from the two
alternative SSB approximation approaches. These methods
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use elevation differences calculated at fixed locations and
between two successive satellite measurement times: over
the Jason-1 10 days satellite repeat pass period for the
collinear approach and over shorter periods of 3–5 days
for the satellite pass crossover approach [Labroue et al.,
2004]. In these indirect calculation approaches, the relative-
ly short time lapse between t1 and t2 and fixed location
range differencing allows near isolation of the SSB as
follows:

DSSH ¼ SSH02 � SSH01 ¼ e t2ð Þ � e t1ð Þ þ g: ð5Þ

[11] Labroue et al. [2004] evaluated both the direct and
indirect (SSH differences) methods and found that similar

SSB solutions are achieved even though the processes
determining if s and g tend to zero are not equivalent. On
the basis of that work, either approach is deemed reasonable
for this study. Numerically, it is significantly more straight-
forward to implement the direct approach for NP estimation
when including higher dimensional inputs and therefore this
study uses the direct method.
[12] The chosen approach for model comparison follows

from Tran et al. [2006]. 3-D model assessment against 2-D
and 1-D SSB benchmarks will be performed using the
recognized standard metric for comparing SSB models,
i.e., calculation of the total variance reduction in the derived
SSH after application of these specific SSB models. Results
are gathered in Table 1. It is recognized that this test and the
empirical methods for SSB modeling are each imperfect
solutions for model determination and validation. For
example, one disadvantage of the direct SSB model
solution is the possibility that data sparseness in certain
portions of the 2-D and 3-D input data domains will lead
to ineffective removal of the dynamic topography under
averaging in equation (4). While a full year of data is
deemed adequate to create the direct SSB model for study
objectives, we also address such concerns in two ways in
the validation. First, the variance reduction metrics are
evaluated over several complete-year data sets. This insures
independence between the data used in SSB model creation
and validation, i.e., the year 2002-version solutions are
evaluated not only using 2002 measurements but also with
2003 and 2004 altimeter SSH data. Results from the 2004
version of the models are also provided for comparison. A
second step is added both because of the familiarity in the
SSB community of working with collinear and crossover
differences and to expand confidence in validating this new
three-input SLA SSB solution; we include a separate 2-D
and 3-D model SSB assessment of the SSH variance
reduction by using equation (5) with 10 days repeat pass
Jason-1 difference data. This is a variance reduction calcu-
lation using the direct SSB model inserted into equation (5),
not a calculation of yet another SSB model using collinear
methods. If one observes relative consistency of results
between these metrics then this provides further support

Figure 1. Average altimeter sea state bias (SSB) estimates
versus mean wave period determined from Jason-1 sea level
anomaly (SLA) observations (without application of SSB
correction) where SWH is fixed at 3.2 m (±0.1) and U is
fixed at 9.5 ms�1 (±1.0). The result includes 156,200
samples from 2002 to 2004 and 95% confidence intervals
are shown. A normalized probability density function for
the mean wave period (dashed line) is also provided.

Table 1. Magnitude of Variance Reduction Obtained With the Common 2-D and the New 3-D SSB Correction Models Relative to the

Reduction Obtained When Applying a 1-D SSB Correctiona

Jason-1 SSB Models

Relative SLA Variance Reduction (cm2)
Relative Collinear DSSH
Variance Reduction (cm2)

Validation Data Set Validation Data Set

2002 2003 2004 2002 2003 2004

2002 version, 2-D SSB 1.37 1.62 1.88 2.80 2.98 3.20
2002 version, 3-D SSB 2.83 2.65 3.26 4.18 4.51 4.82
2002 version, difference (3-D–2-D) 1.46 1.03 1.38 1.38 1.53 1.62
2004 version, 2-D SSB 1.32 1.72 2.06 2.79 2.97 3.26
2004 version, 3-D SSB 2.47 2.74 3.56 3.89 4.33 4.74
2004 version, difference (3-D–2-D) 1.15 1.02 1.50 1.10 1.36 1.48

SLA w/o SSB (cm2) Collinear DSSH w/o SSB (cm2)

Total variance 120.99 121.08 118.72 82.22 83.97 81.90
Variance explained by 1-D SSB 22.55 23.48 21.88 18.94 18.37 17.24

aEach estimate is for a full year of global Jason-1 altimeter data. The results are calculated using both the Jason-1 sea level anomaly (SLA) and collinear
(10 days) sea surface height (SSH) difference data sets for the years indicated. Models were developed using year 2002 or 2004 data as indicated. Also
provided are the total variance of both SLA and SSH differences without (w/o) sea state bias (SSB) correction and the variance explained by the 1-D SSB
model computed as �3.8% SWH.
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that model inaccuracies lie significantly below the level of
improvements gained. We note the primary study objective
is to provide a method and solution for an improved SSB
model and not to attain a final operational model validated
under all conditions.

3. Results and Discussion

[13] Range error related to wind and sea state dynamics as
predicted by the new 3-D Jason-1 altimeter model is shown
in Figure 2. This model is developed with 1 year of satellite
and model data from year 2002. The corrections are
presented as familiar 2-D grids [cf. Gaspar et al., 2002]
with contours given in cm. The fixed value of the third
parameter for each part in Figure 2 is indicated in the
caption. Shading denotes the available sample density
across each 2-D data domain. Figure 2 (left) can be directly
compared to the Jason-1 2-D model by Labroue et al.
[2004] (their Figure 9) and agrees closely. Figure 2 (middle)
and Figure 2 (right) illustrate that SSB also varies system-
atically with Tm. Figure 2 (middle) in the data-rich region
shows a 3–4 cm variation versus Tm at a value of SWH =
3.2 m, with bias magnitude decreasing as the wave period
increases. This result is consistent with Figure 1, and an
O(1%) SWH variation is apparent at most SWH values in
Figure 2 (middle). Nonlinear variation of the SSB versus
dependent variables is evident in all parts and validates the
use of the kernel smoothing model approach.
[14] As with previous satellite SSB studies, we use

altimeter sea surface height variance reduction metrics to
assess model performance. The main objective is to deter-
mine if the 3-D correction model is able to reduce variance
in sea level measurements relative to the present-day
standard 2-D approach. For completeness, we present
results from two different validation metrics: (1) variance
reduction in the altimeter-derived SLA using candidate SSB
models and (2) variance reduction in the 10 days
differenced SSH obtained from along track satellite repeat
passes (collinear differences, equation (5)).

[15] Results for 1 year global estimates are provided in
Table 1. For both methods, evaluations are performed after
applying 1-D, 2-D, and 3-D SSB model corrections. The
explained variance is given with respect to a 1-D benchmark
SSB model [Tran et al., 2006] where positive numbers
indicate enhanced magnitude in correction skill (cm2). The
2-D Jason-1 model is built using altimeter SWH and U as
discussed earlier. As part of sensitivity tests for this study
we have produced SSB models using 1 year of data from
two separate years (2002 and 2004) and are evaluating them
against data in years 2002–2004.
[16] Model enhancement is most clearly seen in Table 1

by examining differences between the 3-D and 2-D variance
reduction. Also provided are the total variance of both SLA
and SSH differences without SSB correction and the vari-
ance explained by the 1-D SSB model as reference marks.
The change from 2-D to 3-D model consistently provides
more than 1 cm2 improvement with values as high as
1.6 cm2. The improvements are nearly equivalent for SSB
models developed using 2002 or 2004 data, with all values
agreeing to better than 0.3 cm2. The same holds for the
absolute 2-D and 3-D SSB reduction values for the 2002
and 2004 models. The largest variability in the 3-D–2-D
difference is from year to year, with 2003 SLA values being
smallest, but these values remain above 1 cm2. The average
of the six values based on SLA (1.26 ± 0.2 cm2) translates
to 1.12 cm in root-mean-square (RMS) sea level estimate
improvement as a result of this new model compared to a
model developed using only SWH and U.
[17] Note that differences between the two separate met-

ric estimators across Table 1 (e.g., 2-D SSB results across a
given row) are assumed to be related to different yearly
average of prevalent wind and sea state conditions but also
to different mean values of SLA and collinear SSH differ-
ences over these 3 years. Since the interest is on relative
SSB model performance within the separate metrics, the
comparison results are consistent within each data set.
[18] Differences between these two variance-reduction

metrics were expected since the variance of SLA and the

Figure 2. New 3-D Jason-1 SSB estimator as a function of significant wave height (SWH), U, and Tm.
This is shown using three 2-D arrays with the respective third variable held constant. From left to right,
these fixed values are Tm = 8.4 s, U = 9.5 m/s, and SWH = 3.2 m. Isopleths represent a given SSB value
(units in cm). Shaded areas represent data density with darkest gray holding no data, medium gray less
than 20 samples, lighter shade less than 100, and the white region exceeding 100 samples per bin. The
model is produced using all data in the year 2002.
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variance of collinear SSH differences do not encompass
exactly the same geophysical content. Collinear repeat
pass SSH differencing removes some possible correlation
between the suite of altimeter corrections, the dynamic
topography, and sea state that are contained in the SLA
estimator. Moreover, the absolute RMS value at any loca-
tion is much smaller than for the SLA and the relative SSB
correction contributions (2-D and 3-D) may well differ and
be enhanced in the collinear calculations. Table 1 shows that
while the relative differences of 2-D and 3-D SSB impacts
versus the 1-D benchmark are slightly larger for the collin-
ear versus the SLAmetric, the row three average of 3-D–2-D
differences (1.41 versus 1.26 cm2) are nearly equal and thus
the positive impact of wave period data due to the 3-D SSB
model is unambiguous in both tests. Overall, while Table 1
data only provide simple single year estimates of perfor-
mance, one sees that the 3-D model consistently indicates
positive impact and that results are nearly insensitive to
changes in the data period used to train the model. Year to
year variation in these results is slightly larger but this is still
small (<0.3 cm2) compared to the improvement, and a likely
source for these dynamics is temporal variability in the
actual wind and wavefields in these years.
[19] Figure 3 expands beyond a single global value to

further examine model performance. Results show variance
reduction due to 2-D and 3-D SSB models versus the 1-D
benchmark with respect to latitude and using year 2004
collinear DSSH Jason-1 measurements (from SSB models
trained with 2002 data). It is apparent that the 3-D model
provides an enhanced correction at all latitudes. The im-
provement often exceeds 1.0 cm2, especially at high lat-
itudes where SWH values are larger. Comparisons along
latitude show that the 3-D value is typically a factor of 1.4–
1.6 greater than the 2-D SSB explained variance. The
improvement at all latitudes can be seen as a large improve-
ment compared to any of the candidate 2-D SSB models

developed by Tran et al. [2006] (cf. their Figure 4), thus
demonstrating that retaining both the SWH and U from the
actual altimeter and adding a wave model parameter into a
3-D estimator leads to increased performance.
[20] Results in Figure 4 further illustrate the impact of Tm

in the SSB correction showing a global map of annually
averaged differences between 2-D and 3-D SSB models,
presenting both the mean and variance. Clear spatial pat-
terns emerge. One sees highest positive mean differences
can exceed 1 cm along the western edges of the ocean
basins while negative values are found to the east. Nearly
continuous zonal gradients are apparent across each ocean
basin in both the mean and variance differences. We
attribute these features to the zonal gradient in mean wave
period distributions, with known dominance of long-period
swell in the east and limited fetch and shorter-period waves
prevailing in the west [Young, 1999; Chen et al., 2002; Tran
et al., 2006; Alves, 2006]. This systematic variation in the
wave period can be contrasted with the known meridional
gradient in both wave height and wind speed where higher
wind and waves most frequently occur at highest latitudes.
[21] Results in Figure 4 also highlight that one possible

ramification of this 3-D SSB correction would be the
alteration of the mean sea surface [Hernandez and
Schaeffer, 2001] and mean dynamic topography (MDT)
[Rio and Hernandez, 2004] derived using long-term
altimetry missions. These altimeter-influenced products as-
sume that the 2-D SSB model is accurate and is consistently
applied within a multiyear average. Figure 5 provides one
slice across the 3-D–2-D difference map of Figure 4 (top).
Here one sees a nearly linear 1–2 cm difference between the
2-D and 3-D models across the middle latitude in the North
Pacific and North Atlantic driven by Tm variation. A review
of recent work attempting to measure the global MDT by
combining surface current drifters, geoid measurements,
and altimetry [Vossepoel, 2007; Maximenko et al., 2009]
has shown: (1) zonal SSH gradients are of order 80–200 cm
across basin at middle latitudes in the northern hemisphere
and (2) error in estimation methods are 4–5 cm RMS in
low-current regions and 10–15 cm in higher-current
regions. The 1–2 cm cross basin gradient due to an SSB

Figure 3. Variation with latitude of band-averaged sea
surface height (SSH) variance (cm2) reduction (positive
values) obtained using the 2-D and 3-D models in
comparison to a 1-D (�3.8% SWH) benchmark. Results
are obtained by collinear analyses for year 2004 and derived
using 10� latitude bands.

Figure 4. Maps of (top) annual average of the difference
(2-D–3-D) between the two models (in cm) and (bottom)
variance difference (3-D–2-D) between the models.
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model change would then be O(1%–2%) and this would be
both in the MDT and in any derived meridional geostrophic
current, and translates grossly in an absolute velocity error
below 0.2 cm/s. Combining the small impact with the fact
that this systematic 1–2 cm SSB effect lies well below the
present MDT detection limits suggests these concerns are of
second order at this time.
[22] One further means to quantify this study’s implica-

tion is to insert the average 1.12 cm RMS improvement of
Table 1 into the overall altimeter measurement error budget.
The SSB uncertainty estimate used in these budgets is
typically �1% of SWH which translates to 2.3 cm of
uncertainty at the global median SWH value of 2.3 m.
While such a single number estimate does not fully enfold
the global range of SWH and SSB dynamics that increase
with latitude as in Figure 3, a 1.12 cm reduction applied to
2.3 cm amounts to a 12.6% improvement. Table 1 of
Vincent et al. [2003] calculates the Jason-1 altimeter range
estimate uncertainty to be 2.95 cm RMS at SWH = 2 m.
This includes ionospheric, atmospheric, and wave correc-
tions. Inserting the SSB improvement into that budget
lowers the total mark to 2.73 cm, a �7.5% improvement
in the total range measurement uncertainty budget. Note that
use of filtered SWH when computing the SSB correction
values in the operational chain would also reduce the
amount of range estimate uncertainty coming from the
SSB term. Indeed similarly to the dual-frequency iono-
spheric correction which is filtered over 100 km in the
Jason-2 products, the along-track SSB values would be
smoother. The SWH filtering could consists in along-track
averaging of the 1 Hz SWH data over a 40–100 km (to be
determined) ground segment in order to reduce sporadic
noise in the SWH data which do not always look physical.
[23] Finally, as another component of this investigation

and while not shown here, a separate 3-D SSB model was
also developed by replacing Tm with a variable related to
the amplitude of swell (Hswell) defined as

Hswell ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m0 �

Z Zf4

fhp

S f ; qð Þ df dq;

vuuuut ð6Þ

where f4 = 0.4 Hz and fhp is the spectral frequency just
below the wind sea spectral peak at the half power point in
the wind sea spectral density [Hanson and Phillips, 2001].
[24] This model was developed in part because of work in

Tran et al. [2006] indicating that Hswell data are another
candidate for improved global scale SSB modeling. The
swell-informed 3-D model slightly but consistently outper-
forms this study’s Tm 3-D model at latitudes below 20�
(improvement of 0.1–0.3 cm2), but at high latitudes it
underperforms and can even revert to 2-D model levels.
As evident in Table 1, 0.3 cm2 is also near the confidence
level of estimate evaluations. Still, the ubiquity and frequent
dominance of swell in the tropics, its modeling, and its
impact on the SSB should not be neglected. Future work
will look at both higher-dimensional SSB models and the
possibility of more regionally focused corrections. Howev-
er, in keeping with the objective of this paper, we assert that
the comprehensive and robust improvement obtained solely
using Tm provides evidence that ocean wave model data, in
this case longer wave information related to the mean
spectral wave number hki, can be used to improve the
precision of altimeter sea level measurements.

4. Conclusion

[25] This study was built under the assumption that the
wave-dependent range bias in satellite altimetry can be
improved by the inclusion of ocean wavefield data taken
from a global hindcast model. Mean wave period estimates
from the NOAA’s WAVEWATCH III wind-wave prediction
system are combined with Jason-1 altimeter sea state and
wind speed estimates to develop a new SSB model and
quantify its impact. Results show reduced sea surface height
variance both at global and regional scale. This is obtained
when comparing to the accepted standard two-dimensional
altimeter SSB correction that uses only altimeter measure-
ments. Both the 2-D and 3-D models were produced using
the same SLA data (year 2002 or 2004) and nonparametric
estimation method to insure clear demonstration of wave
model data impacts. Results of Table 1 and Figure 4 indicate
comprehensive improvement with a global 3-D SSB model
where a single value global variance gain estimate is 1.26
(±0.2) cm2, or 1.12 cm in RMS. While this value may
appear small, the average improvement is of order 0.13% in
SWH (the global mode SWH is 2.3 m), a considerable value
given that the two parameter model uncertainty is near 1%
SWH. Moreover, as each of the precision mission ocean
altimeter correction terms are refined, this O(1 cm) im-
provement is comparable to or greater than those recently
achieved in revised orbits, water vapor, and high-frequency
barotropic model modifications [e.g., Beckley et al., 2007;
Carrere and Lyard, 2003]. We estimate the improvement at
7.5% in the total range error for the Jason-1 altimeter and
this should similarly apply for the presently orbiting Jason-2
altimeter. Perhaps most notably, this study provides a gain
in global SSB variance reduction that has not been previ-
ously achieved through many attempts that have dealt solely
with use of the two altimeter measurements of SWH and U.
[26] There are several caveats to mention and key issues

to address in the near future pertaining to this work. First,
the error and resolution limitations of wavefield estimates
taken from a wave model must be recognized. For this study

Figure 5. Annual average of SSB estimate differences
between the two models across the North Pacific and North
Atlantic at about 39�N (extracted from Figure 4 (top)). They
are compared with mean wave period Tm variation.
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data set, the agreement between altimeter and wave model
SWH was better than 0.2 m RMS and for altimeter and
model wind speed, better than 1.5 m/s RMS. Validation of
the full directional spectrum including swell mode ampli-
tudes and directions are much harder to document and those
aspects of the model more suspect [cf. Bidlot et al., 2007].
Thus an important near term issue is documenting uncer-
tainty within SSB models and end product SSH data related
to wave model uncertainty. And while the SSB approach
here is primarily empirical, further sensitivity studies are
underway to evaluate optimal use of wavefield parameters
from WAVEWATCH-III used in 3-D and 4D SSB models
including the mean wave number and swell field amplitude.
Next, the direct or SLA bias determination method requires
a significant amount of data increase in the data density (see
Figure 4) to assure model accuracy in data poor areas of the
3-D domain. Therefore, we are also developing revised
numerical inversion methods to handle very large multiyear
data sets spanning 2002–2009. Finally, the same methods
need to be applied to the Jason-2 and Topex/Poseidon
altimeter mission data to insure that this empirically derived
SSB approach is applicable to all data sets that are central to
the long-term ocean circulation and sea level rise observa-
tions that now extend from 1993 onward.
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