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Cross-shelf eddy heat transport in a wind-free coastal ocean 
undergoing winter time cooling 

James M. Pringle • 
Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 

Abstract. A steady state cross-shelf density gradient of a wind-free coastal ocean 
undergoing winter time cooling is found for cooling and geometries which do not vary in 
the along-shelf direction. The steady state cross-shelf density gradient exists even when the 
average density of the water continues to increase. The steady state density gradient can 
be attained in less than a winter for parameters appropriate to the mid-Atlantic Bight. The 
cross-shelf eddy-driven buoyancy fluxes which cause this steady state gradient are found 
to depend critically on bottom friction and bottom slope, and the coastal polyna solutions 
of Chapman and Gawarkiewicz [1997] are significantly modified by this dependence in 
the limit of polynas with a large alongshore extent. Bottom friction retards the cross-shelf 
propagation of eddies, so that the buoyancy transport is no longer carried by self-advecting 
eddy pairs but mixed across the shelf by interacting eddies. The eddy interaction changes 
the length scale of the eddies until it is the lesser of the Rhines arrest scale or an analogous 
frictional arrest scale. The estimates of the steady state cross-shelf density gradient are 
found to compare well with numerical model results. 

1. Introduction 

In the winter an ice-free coastal ocean is cooled by the at- 
mosphere over length scales that are large compared to the 
shelf width or an internal radius of deformation. This cool- 

ing makes shallow waters colder than deeper waters, causing 
a density gradient which tends to increase as the cooling per- 
sists. At the same time, the cross-shelf heat flux driven by 
these density gradients tend to reduce the density gradients. 
Numerical and scaling solutions are given below in which 
the tendency of atmospheric cooling to increase the mean 
cross-shelf density gradient is balanced by the tendency of 
the cross-shelf eddy heat fluxes to reduce the gradient, and 
the cross-shelf density gradient reaches a steady state. 

Several recent works have examined problems of a sim- 
ilar nature: Visbeck et al. [1996] (hereafter referred to as 
VMJ) study the response of a deep, open ocean to local- 
ized cooling, which models the response of a locally pre- 
conditioned ocean to large-scale cooling events [Legg et al., 
1998]. Chapman and Gawarkiewicz [ 1997] (hereafter re- 
ferred to as CG) study the response of a coastal ocean to iso- 
lated cooling near the coast in order to model a polar ocean 
with an isolated ice-free region next to the shore. Both of 
these works find that the water beneath the cooling region 
reaches a steady state density and successfully predict that 
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density. Spall and Chapman [1998] show that the steady 
state density occurs when pairs of eddies advect themselves 
away from the cooling region, carrying dense water away 
from the cooling region. This horizontal buoyancy flux away 
from the cooling region increases as the density of the cooled 
region increases, and a steady state density is reached when 
the horizontal flux out of the cooling region balances the ver- 
tical flux into the cooling region such that the density no 
longer increases. 

It is found below, however, that adding realistic levels of 
bottom friction fundamentally changes the results of CG, at 
least in the limit of a polyna of infinite alongshore extent. 
The bottom friction prevents the propagation of eddies away 
from the cooling region, forcing them to interact. Similarly, 
eddies are forced to interact in an ice-free coastal ocean be- 

cause the horizontal density gradients which form the eddies 
can exist for many eddy length scales across the shelf. The 
eddies thus form everywhere and in close proximity to each 
other and interact. The interacting eddies merge, cascade to 
larger scales, and form a turbulent flow which mixes heat 
across the shelf. The cross-shelf buoyancy flux driven by 
this eddy mixing increases as the cross-shelf density gradi- 
ent increases, and a steady state cross-shelf density gradient 
is reached when the horizontal flux away from the coast bal- 
ances the vertical flux into the surface such that the horizon- 

tal density gradient no longer increases. 
It will be argued below that this steady state horizontal 

density gradient does not imply a steady state density. To 
the contrary, even in a semi-infinite model of the coastal 
ocean, the density will tend to increase without bound. If 
the coastal ocean is not semi-infinite, the mean density of the 
coastal waters will only depend on the surface flux and the 
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cross-shelfbreak flux of buoyancy. The work below confines 
itself to the dynamics of the coastal ocean and assumes the 
cross-shelfbreak flux of buoyancy is given. Even if the given 
cross-shelfbreak flux does not balance the surface cooling 
and the density increases without bound, the cross-shelf den- 
sity gradient reaches a steady state. For this reason, it will 
be the steady state cross-shelf density gradient which will 
be sought. Since it is the density gradient, not the density, 
which forces the currents and control mixing on the shelf, a 
steady state density gradient implies steady mean currents, 
steady cross-shelf transport and dispersion, and steadiness 
in all important motions and quantities on the shelf save the 
actual density. 

In order to motivate the derivation of an estimate for 

the steady state cross-shelf density gradient, two numerical 
model runs are presented, one with parameters appropriate 
for the mid-Atlantic Bight in winter, and another based on 
the model runs of CG but with a polyna of infinite along- 
shelf extent and with bottom friction. Following this is a 
derivation of an estimate for the steady state cross-shelf den- 
sity gradient. The derivation is then compared to an ensem- 
ble of model runs with differing forcings and geometries, 
and the successes and limitations of the scaling presented. 

In none of the scalings derived below and in none of the 
model runs shown is the geometry or forcing allowed to vary 
in the along-shelf direction: only the flow fields are allowed 
to vary along the shelf. The problem of along-shelf heat 
fluxes, parallel to isobaths instead of across them, is not con- 
sidered below. 

2. Numerical Model Run Motivated by the 
Mid-Atlantic Bight 

The physics important to the wintertime mid-Atlantic 
Bight, excluding wind, can be modeled crudely by a peri- 
odic channel with a linear bottom slope of 10 -3 between a 
depth of 10 and a 170 m (Figure 1), and a uniform surface 
buoyancy loss B of 7 x 10 -8 m 2 s -3, which is equivalent to a 
heat loss of 300 W m -2 from 3øC water or 170 W m -2 from 

10øC water. Both the geometry and cooling are appropriate 
for the northeast coast of North America [Brown and Beard- 

sley, 1978; Mountain et al., 1996]. No bouyancy leaves the 
domain through the horizontal boundaries (runs are made 
below which include an open offshore boundary). The nu- 
merical model, SPEM 5.1, is a primitive equation, modified 
cr coordinate, hydrostatic model. The effects of convection 
will be represented by an enhanced vertical diffusivity wher- 
ever the stratification is unstable because the physics of con- 
vection cannot be represented accurately by the hydrostatic 
model. The vertical walls have free slip boundary condi- 
tions. Other details of the model, convective adjustment, and 
forcing are given Appendix A. 

When cooling is imposed on the initially homogeneous 
water of the model, convection mixes the water from top 
to bottom in less then an inertial period (27rf -•) and keeps 
the entire water column slightly unstably stratified. This 
strong vertical mixing inhibits the cross-shelf flux of heat 
while preventing the Earth's rotation from strongly affecting 
the flow [Pringle, 1998]. During this regime the cross-shelf 
heat transport is small, the heat balance is essentially one- 
dimensional, and the vertical mean density • evolves as 

poBt 
• = gh ' (1) 

where h is the water depth, g is the gravitational accelera- 
tion, and Po is the mean density. Since there is a bottom 
slope, there is a cross-shelf density gradient which drives a 
weak (< I cm s -•) cross-shelf flow [Pringle, 1998]. Fig- 
ure 2a shows the density field in the model run during this 
convection-dominated regime at t = 40 days. 

Pringle [1998] shows how the cross-shelf flow v driven by 
the cross-shelf density gradient forces the water column to 
become stably stratified in this particular run after 40 days of 
cooling. The stable stratification reduces mixing at the base 
of the water column and allows rotation to affect the dynam- 
ics, allowing along-shore flow in thermal wind balance and 
baroclinic instabilities to form. The onset of the instabilities 

is shown in Figure 2b. Even before this time, a several day 
interruption of the cooling and thus the vertical mixing can 
allow along-shore flows and baroclinic instabilities to form. 

Once instabilities in the flow form, they quickly start to 
transport heat across the shelf, reducing the cross-shelf den- 

Uniform Surface Bouyancy Loss B 

y=0 
h=10 rn 

y=160 km 
h=170 rn 

Figure 1. The geometry and forcing of the model described in section 2. 
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Figure 2. (left) Depth-averaged density and (right) along-shelf averaged density after 40, 53 and 80 days 
of cooling. 

sity gradient by 40% in 15 days. Soon after, the cross-shelf 
density gradient achieves a statistical steady state, shown in 
Figures 2c and 3, in which surface cooling is balanced by 
a cross-shelf heat flux. It is for this steady state density 
gradient that the scaling below solves. Because there is a 
wall for the "offshore" boundary and the surface is every- 
where cooled, the mean density of the domain will always 
increase. However, the density will increase everywhere at 
the same rate, so the mean cross-shelf density gradient does 
not change. Not only' does the cross-shelf density gradient 
reach a statistical steady state, but the mean along-shore ve- 
locities, the length scales of the eddies, and the variance of 
the velocities all reach statistically steady states. The flow 

at this point appears turbulent in the sense that the fluctua- 
tions in the flow at a point are unpredictable, and Lagrangian 
particles disperse as would be expected in a turbulent flow 
[Davis, 1987]. 

3. Numerical Model Motivated by a Coastal 
Polyna 

In an ice-covered coastal ocean the wind can create gaps 
in the ice near the shoreline by blowing the ice offshore. 
These open patches of water can experience large surface 
buoyancy fluxes, both from cooling and from brine rejec- 
tion. CG examine eddy buoyancy fluxes out of the ice-free 
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Figure 3. The cross-shelf averaged cross-shelf gradient in 
the depth and along-shelf averaged density. The average is 
computed across the entire model domain. The letters on the 
abscissa refer to the panels of Figure 2. 

region and give scales for the maximum density attained by 
the water beneath the polyna and the time needed to achieve 
this density in the limit of no bottom friction. 

To examine how these dynamics are changed by bottom 
friction in the limit of a polyna with along-shelf extent much 
greater than its cross-shore extent, two model runs are made 
with the cooling limited to the 10 km nearest to the shore, 
one with bottom friction and one without. The bottom is 

flat, with a depth of 100 m, and the surface buoyancy flux 
B is about double the base case of CG, or 10 -6 m 2 s -a. As 
in CG, the offshore wall is placed far enough offshore that it 
does not affect the results shown in this section, so the do- 

main is effectively semi-infinite (this is tested by repeating 
runs with the wall farther offshore). In the notation of CG 
and Chapman [1998], this is a >> b, b - 10 km, W - La, 
H - 100m, and Bo - 10 -6 m 2 s -3 In the runs with bot- 
tom friction, the bottom stress is proportional to pot times 
the bottom velocity, and r - 4./5 x 10-4m s -•. 

Spall and Chapman [1998] and Chapman [1998] predict 
that the density averaged over the cooling region will stop 
increasing at a time 

1 

/;steady m , (2) 

after which the surface buoyancy flux is balanced by hori- 
zontal eddy buoyancy fluxes out of the cooling region. The 
constant ce is found on theoretical grounds to be m 0.04 by 
Spall and Chapman [1998]. Here ycool is the offshore extent 
of the cooling. 

In Figure 4 the evolution of the mean density of the cool- 
ing region is plotted for the two numerical model runs. In the 
model run without bottom friction the density averaged over 
the cooling region is seen to reach a nearly steady state of 
m 0.4 kg m -3 at day 8, which agrees well with the predic- 

tion of Spall and Chapman [1998]. The very small upward 
trend in the density after day 8 occurs because the lateral 
diffusion of temperature slightly cools the water entering the 
cooling region to replace the water removed by eddies. 

In the numerical model run with bottom friction, however, 

the density in the cooling region does not reach a steady state 
at the time predicted by (2) as only part of the surface cool- 
ing is balanced by a cross-shelf eddy-driven heat flux. What 
is different in the frictional case? Spall and Chapman [ 1998] 
explain the steady state density and a priori derive ce by as- 
suming buoyancy is carried away from the cooling region 
by counter rotating vertically and horizontally offset pairs of 
eddies. These eddy pairs form a self-propagating system, a 
heton, which can move itself and the dense water it carries 
away from the cooling region at a speed of ce times the swirl 
velocity. [Hogg and Stommel, 1985; Legg et al., 1996]. 

t•o t•o This is illustrated in the top panel of Figure 5. In the model 
of heton propagation by Hogg and Stommel [1985], either 
of these eddies alone would not propagate horizontally, but 
the pair together does. Bottom friction disrupts the heton 
by consuming the bottom eddy, leaving the surface intensi- 
fied eddy unable to propagate across the shelf. The surface 
intensified eddy is then trapped, unable to escape the cool- 
ing region and thus unable to balance the surface buoyancy 
flux. This is illustrated in the bottom panel of Figure 5. (A 
similar mechanism for disrupting heton propagation over a 
frictionless but sloping bottom is given by LaCasce [1996].) 

Bottom friction will retard the cross-shelf propagation of 
hetons within a friction timescale (h/r) of their generation, 
where r is the coefficient of a linear bottom drag law. This 
friction timescale is about 2.5 days in the bottom friction 
case, short compared to the time scale for the achievement of 
a steady state density in the cooling region, (2). It is thus un- 
likely that heton dynamics are ever important in the run with 

0.8 

0.4 

0.2 

no bottom friction 

r=4.5x 10 -4 m s- 1 

steady 

1'0 1'5 2'0 2•5 3•0 3'5 4•0 
time in days 

Figure 4. The average density of the cooling region for two 
numerical models with cooling limited to within 10km of 
the coast, one with bottom friction and one without. Each 
curve is the result of the average of four identical model runs, 
each initialized with an RMS noise in the density field of 
10 -3 kg m -3. 
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Figure 5. Two cartoons illustrating eddy transport of heat offshore in a model with and without bottom 
friction and plots of the barotropic stream function overlaying the depth averaged density from day 20 
of two corresponding model runs. Negative streamlines are dashed, and the contour interval is 5 x 104 
m 3 s -1 ' 

bottom friction. Deprived of their ability to propagate across 
the shelf, these eddies remain near to their source and be- 

gin to interact, forming a turbulent flow which mixes density 
across the shelf. In fully spun up runs with bottom friction 
the eddies neither propagate far nor propagate in a consistent 
direction across the shelf, before they are sheared apart by 
other eddies (Figure 6). When a patch of passive tracer was 
placed in the flow, the dispersion of the patch increased in a 
manner consistent with turbulent mixing processes [Pringle, 
1998]. 

The density at the coast evolves in a fundamentally differ- 
ent manner when dense water is mixed across the shelf in- 

stead of being transported across the shelf by self-propelled 
eddy pairs. The flux of buoyancy across the shelf by the 

eddy pairs, as described by Spall and Chapman [1998], is a 
function of the density anomaly of the cooling region: thus, 
in the frictionless model the density anomaly increases un- 
til it drives a flux sufficient to prevent the density anomaly 
from increasing further. The cross-shelf buoyancy flux in the 
frictional sloping bottom model is shown below to be a func- 
tion of the cross-shelf density gradient: thus, the cross-shelf 
density gradient increases until it drives a buoyancy flux suf- 
ficient to prevent the cross-shelf density gradient from in- 
creasing further. Since it is density gradients which drive 
cross- and along-shelf currents and mixing, these too are in 
a steady state. However, a steady state density gradient does 
not imply a steady state density. This can be seen most eas- 
ily in the simple case of a cross-shelf buoyancy flux, which 
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depends linearly on the cross-shelf density gradient (i.e. a 
constant eddy diffusivity). In a semi-infinite ocean the den- 
sity at the coast will then increase as the square root of time. 
This is because for a constant eddy diffusivity the offshore 
extent of the buoyancy anomaly will scale as the square root 
of time. The total buoyancy in the ocean anomaly will scale 
as the buoyancy at the coast times the offshore extent of the 
buoyancy anomaly and must also increase linearly with time 
as the surface buoyancy flux is constant: thus the anomaly at 
the coast will increase as the square root of time [Kevorkian, 
1990 p. 22]. It is straightforward to extend this result and 
show that the buoyancy anomaly at an arbitrary point will 
also increase as the square root of time at long time if the 
cross-shelf buoyancy flux scales as the cross-shelf density 
gradient raised to any nonzero power. In a semi-infinite 
ocean the cross-shelf buoyancy flux at a point differs from 
the net surface flux inshore of that point by an amount pro- 
portional to the time rate of change of the average buoy- 
ancy inshore of that point. Since the buoyancy increases as 
the square root of time, the cross-shelf buoyancy flux will 
asymptote to a constant as one over the square root of time 
at long time. 

4. Scaling for the Steady State Cross-shelf 
Density Gradient: Introduction 

In section 3, numerical model results were shown that 

described the evolution of a coastal ocean from a homoge- 
neous body of water to a stratified ocean with a statistically 
steady cross-shelf density gradient. This steady density gra- 
dient is sufficient to drive a cross-shelf buoyancy flux which 
balances the surface cooling. The eddies which produced 
the mixing that caused the cross-shelf buoyancy flux were 
formed and destroyed with little cross-shelf translation: thus, 
presumably, the dynamics of the eddies depends on local 
conditions. 

The scalings below solve for the resulting cross-shelf den- 
sity gradient in three steps: First, given the distribution of 
the surface buoyancy flux, the cross-shelf buoyancy flux for 
a steady state buoyancy (and hence density) gradient is di- 
agnosed. Second, a scale is found relating the cross-shelf 
density gradient to the cross-shelf buoyancy flux it causes. 
Third, these two steps are combined algebraicly to find the 
cross-shelf density gradient. 

4.1. Buoyancy/Heat Balance 

The first step in solving for the steady state is to find the 
cross-shelf buoyancy flux which leaves the cross-shelf den- 
sity gradient in steady state. To make the following deriva- 
tions simpler, the Boussinesq approximation is made, and 
a linear equation of state will be assumed, allowing either 
cooling or brine rejection to be included in a single equation 
for the conservation of density' 

O• 1 OF poB 
• = . (3) 

ot h Oy gh 

The overbar is a depth and along-shelf averaging operator, 
F is the depth-integrated cross-shelf flux 

F- h•pp, (4) 

and B is the surface buoyancy flux. (Details of the conver- 
sion of a heat flux to B are given in Appendix A.) 

For the buoyancy balance to be in steady state the eddy 
currents which mix the buoyancy across the shelf must be 
in a statistically steady state. For the currents to be in a sta- 
tistically steady state the cross-shelf density gradient which 
drives them must also be in a statistically steady state. For 
the cross-shelf density gradient to be in a steady state the 
time rate of change of density must be the same everywhere 
on the shelf. Thus the derivation below solves for the cross- 

shelf density flux which causes the time rate of change of 
density, Op/Ot, to be constant across the shelf. The flux at 
the seaward edge of the shelf, Fo = F(yo), is assumed to be 
known, and the flux at the coast must be zero. These three 
conditions taken together allow (3) to be solved: 

_ (/o TM )(/o TM Ot- gB(y)p• xdy - Fo h(y)dy (5a) 

y Op foy F - gB(y)p•Xdy- • h(y)dy. (5b) 
Assuming that the cross-shelf flux at the seaward side of 
the domain is known is clearly artificial, but making that 
assumption allows one to focus on the processes occurring 
on the shelf. It is important to note that unless the cross- 
shelf heat flux at the oceanward boundary exactly matches 
the cross-shelf integral of the surface cooling, the mean den- 
sity of the water over the shelf changes with time. This in no 
way precludes the existence of a statistically steady cross- 
shelf density gradient. 

4.2. Relating O•/cOy to F 

The second step toward finding the steady cross-shelf den- 
sity gradient is to find the cross-shelf flux F driven by a 
known cross-shelf density gradient. 

The cross-shelf depth-integrated density flux F can be 
written 

F- h•pp, (6) 

and the flux can be scaled as 

F - hfV*p*, (7a) 

- L* p* py , (7b) 

where V* is a cross-shelf velocity scale, p* is a density 
anomaly scale, •yy is the along-shelf averaged cross-shelf 
gradient in the depth mean density, L* is the cross-shelf 
length scale of the eddies which transport heat across the 
shelf, and •, is the correlation between the depth-averaged 
cross-shelf velocity and the depth-averaged density field. 
Note that •' will not be used as a fitting parameter in this 
work. Equation (7) is a classical turbulent mixing scale; the 
restrictions on a flow field needed for it to be valid are given 
by Davis [1987]. Equation (7) also assumes that the flux is 
the product of the depth-averaged velocity times the depth- 
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averaged density anomaly and that the transport carried by 
the mean overturning circulation is small, an assumption 
whose validity is examined in section 5. 

4.2.1. Velocity scale V*. The velocity scale is 

V*= gh pofpy , (8) 
which assumes that the cross-shelf velocity perturbation 
scales as the mean along-shelf thermal wind velocity and 
that the bottom Ekman layer occupies a negligible fraction 
of the water column. This assumption is traditionally jus- 
tified by invoking an equipartition of kinetic and potential 
energy in the instability, which is the same as assuming that 
the length scale of the instabilities is the radius of defor- 
mation [Visbeck et al., 1996]. Since, in general, the length 
scales found below are not the radius of deformation, this 

argument is not very convincing in this case. When V* is 
compared with the velocities in the numerical model runs 
presented in section 5, it is found to vary with the Burger 
number as would be expected from Pedlosky [1987, p. 374, 
equation (6.10.27)]. Unfortunately, I have not been able 
to find a scale for the Burger number in the present case. 
This frustrates the effort to find a truly a priori scale for the 
cross-shelf buoyancy flux forced by geostrophic turbulence. 
There is some hope in deriving a rigorous upper bound on 
V* by the method of Shepherd [1988] but with a more real- 
istic dissipation scheme [Held and Larichev, 1995; Stone, 
1972]. For now, however, the scale must be regarded as 
an ad hoc assumption with a good pedigree [Chapman and 
Gawarkiewicz, 1997; Chapman, 1998; Stone, 1972; VMJ]. 

4.2.2. Correlation between v and p: % The theoreti- 
cal basis for choosing a correlation between the cross-shelf 
velocity and the density perturbation is currently limited to 
linear instability theory, but it is unclear what relevance lin- 
ear instability theory has to finite amplitude eddies. It is not 
unreasonable, however, to expect the linear instability anal- 
ysis to capture approximately the dynamics of the eddies, 
and several authors have gone so far as to base eddy tur- 
bulence closure schemes on the linear instability solutions 
[Killworth, 1998; Stone, 1972]. Blumsack and Gierasch 
[ 1972] have performed a linear stability analysis for an Eady 
instability over a sloping bottom and found a correlation co- 
efficient 3' which varies from • 0.4 for a flat bottom to a 
maximum of m 0.7 for a bottom slope half that of the isopy- 
cnal slope. (The value of 3' is very different from the value 
of ce found by Spall and Chapman [1998] and used in VMJ 
and CG because the underlying processes they represent are 
very different, ce is the ratio of the swirl speed of an eddy to 
the propagation speed of a heton pair, while 3' is the correla- 
tion between the depth-averaged density anomaly and depth- 
averaged velocity in a turbulent flow.) 

4.2.3. Cross-shelf length scale L*. Simply choosing 
the radius of deformation or the wavelength of the most un- 
stable mode for the length scale L* ignores much work that 
describes a cascade to larger horizontal and vertical scales in 
dense eddy fields. Rhines [ 1977], Held and Larichev [ 1995], 
and LaCasce [1996] show that in inviscid flows where the 
internal radius of deformation Lc• is less than the Rhines ar- 
rest scale Lnn a turbulent flow will experience a cascade 

to larger horizontal and vertical scales until the cross-shelf 
length scale is the Rhines arrest scale: 

Laa - • , (9) 
where/• is the planetary or topographic vorticity gradient 

/• _ f On (10) 
h Oy' 

This scale is most easily understood as the length at which 
advective terms in the quasigeostrophic potential vortic- 
ity equation becomes smaller than the topographic/• term. 
Once the length scale of the flow has increased to L•n, lin- 
ear terms balance the nonlinear terms, thus preventing a fur- 
ther cascade to large scales [Pedlosky, 1987, p. 174]. Thus 
one candidate for the cross-shelf length scale of the eddies is 
L•n. 

However, the timescale of the cascade of energy to larger 
scales and the timescale for the conversion of potential to 
kinetic energy are 

L* 

•dvect: V* (11) 
[Pedlosky, 1987, p. 174]. The timescale for the dissipation 
of eddies by bottom friction when L* >> La is 

h 
ric = --, 

where r is the friction coefficient for a line• drag law of 
the form r = poru [St-Maurice and Veronis, 1975]. If 
•dvect > •ric, the energy at the largest scales would be dissi- 
pated by bottom friction faster than energy could cascade to 
thin scale. If the choice of L* = L•n caused •dvect > •ric, 
it is improbable that L•n could be the length scale, and 
instead, it seems probable that the energy-containing scale 
would be the one for which the conversion of potential en- 
ergy to kinetic would be balanced by the dissipation of ki- 
netic energy by friction, e.g., 

dvec = ric, 

which occurs when L* is 

nV* Lfr -- 7 ' (14) 

L* is thus the lesser of Ll•n and Lfr: 

L*- { Lnn Lnn/Lfr < 1 Lfr LRh/Lfr > 1 
(15) 

4.2.4. Given V* and L*, what are F, Pu and 
LRn/Lir? The scales for V* and L* can be substituted 
into (7) to obtain an estimate of F: 

2 4 
•7g h _--3 

F- 

i 05 --21-- 7hSg• • 
2• •- 5 PY Y P3 f2 

Lnn/Lir _> 1 

Lnn/Li• _< 1. 

(16) 
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F is already know from the a priori assumption that the 
cross-shelf density gradient is in steady state (equation (5)), 
and so (16) can be solved for •y (the third step of section 4): 

2-- 2 

r« p• f • « Lnn/Lfr > 1 ¾-•- F 
7shag • - 

PY -- a_ (17) 
Oh • p__• f • 

which can be substituted into (9) and (14) to get Lnn/Lfr, 

ZRh 

Lfr 

1 

r-• Oh-« 2«7•p• F-• Lnn > 1 
Oy g•h« f« Lf• - 

Oh-] 2«7•p• F • Lnn <1. 
roy g• h] f ] LI• - 

(18) 

(Since both estimates of LRu/Lfr are equal to one at the 
same time, this is mathematically consistent.) These scales 
can be combined with (5) to find •y and LRn/Lfr for a given 
bathymetry and cooling distribution. 

Some implications of these scales are (1) Bottom friction 
does not affect the solution when L•n/Lf• < 1, (2) Bot- 
tom slope does not affect the solution when L•u/Lfr > 1, 
and (3) The steady state cross-shelf density gradient is only 
weakly dependent on the cross-shelf density flux F, and 
thus only weakly dependent on the surface buoyancy flux 
B. These scales will be compared to numerical model runs, 
and the limits of their validity will be explored, in section 5. 

5. Testing the Scales in Numerical Models 

The scale for the cross-shelf density gradient, (17), is 
tested by comparing (17) with the results of 36 model runs 
made with four different geometries and forcings. These 
model runs are also used to examine the parameter ranges 
over which the scalings are valid and to examine the transi- 
tion from L* = Lm• to L* = Lfr. 

Two of the geometries have the uniform bottom slopes and 
surface forcings illustrated in Figure 1, one having a seaward 
boundary which transmits a buoyancy flux sufficient to bal- 
ance the surface cooling, the "open wedge" geometry, and 
one having a seaward boundary through which no buoyancy 
is transmitted, the "closed wedge" geometry. The base cases 
of these model runs have a surface buoyancy flux of 7 x 10 -8 
m 2 s -3, which is equivalent to a heat loss of 300 W m -2 
from 3øC water or 170 W m -2 from 10øC water (the details 
of this conversion are given in Appendix A). The base cases 
have a depth at the coastal wall of 10 m and a bottom slope 
ofl0 -3. 

Two of the model geometries have the surface forcing 
limited to within 10 km of the shore and an offshore wall 

through which there is no buoyancy flux. One geometry has 
a flat bottom, the "flat bottom" geometry, and the other has a 
bottom of uniform slope, the "local cooling" geometry. The 
bathymetry of the local cooling case is 

h = a(y - 23.3 x 10 3 m) + 100 m, (19) 

where a, the bottom slope, is 10 -3. The base case surface 
density forcing is 10 -6 m 2 s -3 for both of these geometries. 
This would represent a tremendous heat flux if it only repre- 
sented a heat flux; however, when brine rejection is included, 
it is a reasonable forcing for Arctic polyna events [Cavalieri 
and Martin, 1994]. All of the runs are summarized in Table 
1. 

All of the model runs have a linear bottom drag law 

Tbottom •- rpou (20) 

and in the base cases, r = 4.5 x 10 -4 m s -1 . All of the mod- 
els were run with a domain 160 km wide in the cross-shelf 

direction. The grid spacing was adjusted so that there were 
at least five eddies in the along-shelf direction and a typical 
eddy was resolved by at least 12 along-shelf grid points. The 
models were run until the cross-shelf density gradient and 
the mean density of the domain in the "open wedge" runs 
reached a steady state. The models were then run for a fur- 
ther 50-100 days while averages of the mean density, density 
gradients, velocity variances, etc, were made. All averages 
were made at least one eddy length away from the coastal 
wall and from the offshore wall if present. The parameters 
of each model run are given in Table 1. 

The first and most basic test of the model is to ask how the 

average cross-shelf density gradient in the model compares 
to the cross-shelf average of (17). To do so, a value of 7 must 
be specified. Here 7, the correlation coefficient between the 
depth-averaged density and the depth-averaged cross-shelf 
velocity, is computed directly from time series of velocity 
and density taken from the numerical models, and an average 
value for each model run is presented in Table 1. The value 
of 7 differs systematically between the Laa/Lf• > 1 and 
Lna/Lf• < 1 runs. In comparing (17) to the model runs, 

0.45 Laa/Lf•_>I, L*-Lfr (21) q'- 0.38 Lan/Lf• < 1, L* - Laa 

is used. These 7 values were chosen by averaging the model 
run 7 values for all runs with Laa/Lf• < 0.5 (runs 1-6) 
and all runs with Lna/Lf• > 3 (runs 18-21 and fl-f15). 
Because the scales for V* and L* which make up (17) are 
only defined to within O(1) constants, an O(1) coefficient 
must be found to fit (17) to the data (the scales V* and L* 
are examined in section 6). The best fit constant is found for 
each model run, and the best fit constants are averaged in the 
same manner as 7- When L•/Lf• > 3, the average fitting 
constant is 0.98, and when Lan/Lfr < 0.5, the constant is 
0.65, and so (17) becomes 

Lnn/Lf• _> I 

Lnn/Li• < 1. 

(22) 
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Table 1. Geometry and Changes From the Base Case for the Model Runs 
Enumerated in Figures 10 and 9 a 

Run Geometry ')' Lnh/Lf,. Ax Change From Base Case 

fl flat bottom 0.45 cx• 2 base case 

f2 flat bottom 0.47 cx• 2 hi2 
f3 flat bottom 0.43 oc> 2 2h 
f4 flat bottom 0.43 cx• 4 3h 
f5 flat bottom 0.47 cx• 4 4h 

f6 flat bottom 0.48 cx• 2 r/4 
f7 flat bottom 0.44 cx• 2 r/2 
f8 flat bottom 0.39 cx• 2 2r 

f9 flat bottom 0.40 cx• 2 Q/4 
f10 flat bottom 0.44 cx• 2 
fl 1 flat bottom 0.47 cx• 2 2Q 
f12 flat bottom 0.50 cx• 2 hi2, r/2 
f13 flat bottom 0.51 cx• 2 hi2, r/4 
f14 flat bottom 0.52 cx• 2 hi2, r/10 
f15 flat bottom 0.45 cx• 2 3h/4, 2f 

1 local cooling 0.31 0.18 2 2Q, 2f, 1/2r 
2 local cooling 0.38 0.22 4 slope x 5, depth+26.5m 
3 local cooling 0.38 0.29 4 r/4 
4 open wedge 0.40 0.31 2 r/2 
5 closed wedge 0.43 0.37 2 r/2 
6 local cooling 0.38 0.43 4 r/2 
7 open wedge 0.45 0.47 2 2f 
8 local cooling 0.34 0.52 4 double slope 
9 open wedge 0.40 0.62 2 base case 
10 closed wedge 0.45 0.63 2 2Q 
11 closed wedge 0.47 0.73 2 base case 
12 local cooling 0.38 0.87 4 base case 
13 local cooling 0.39 1.30 2 slope/1.6 
14 local cooling 0.42 1.39 2 slope/2 
15 closed wedge 0.47 1.40 2 slope/2 
16 local cooling 0.37 1.70 4 2r 
17 local cooling 0.42 2.30 2 slope/5 
18 local cooling 0.42 3.20 2 slope/10 
19 local cooling 0.45 5.05 2 slope/24 
20 local cooling 0.44 8.00 2 slope/60 
21 local cooling 0.45 13.1 2 slope/160 

a Here 3' is the correlation between the depth averaged v and p fields observed 
in the model. LRn/Lfr is an average of (18) over the model domain and is 
calculated from the forcing and geometry. Az is the grid spacing in kilometers. 
2Q means double the cooling of the base case, 2f means double the rotation rate, 
etc, r is bottom friction, "Slope" is the bottom slope, and h is the water depth. 

A comparison between cross-shelf-average of (22) and the 
cross-shelf averaged density gradients in the numerical 
model runs is given in Figure 7, and the demeaned depth- 
averaged density anomaly for four of these model runs is 
also shown along with the cross-shelf integrals of (22) in 
Figure 8. The choice of the constants in (22) does not make 
the comparison circular, for the scalings must still reproduce 
how Pu varies as the parameters are varied. Figures 7 and 
8 indicate that over a wide range of geometries, forcings, 
and bottom friction, (22) does well predicting how the cross- 
shelf density gradient changes in the numerical model as pa- 
rameters are changed. (The derivation of the error bars in 
Figure 7 and following is discussed in Appendix A.) 

Nonetheless, it is difficult to discern from Figures 7 and 
8 how well the scalings predict the response of the model 

to changes in water depth, bottom friction, and cooling indi- 
vidually. It is also hard to explain the causes of the outliers 
in Figure 7, the nature of the transition from LRh/Lfr > 1 
to < 1, and the limits of validity to (22). These will be ad- 
dressed in turn below. 

In Figure 9 the changes in the cross-shelf-averaged cross- 
shelf density gradient in the flat bottom cases are shown as 
the cooling, depth, bottom friction, and inertial frequency 
are varied: the expected percent changes from the base case 
cross-shelf density gradient are shown as boxes, and the per- 
cent change in the numerical models are shown as shaded 
bars. The change in the density gradient is well predicted by 
the scalings, and these changes are resolved by the model, 
for all of the changes in the forcing and geometry except for 
halving of the water depth (runs f10-f12). Equation (22) sys- 
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Figure 7. A comparison of the cross-shelf-averaged cross-shelf density gradient predicted by (22) with 
those in the numerical models. Each point is labeled with the model number from Table 1. The labels are 
above the diagonal when Lnh/Lf,. > 1 and below when Lm•/Lf,. < 1. The error bars are 4-1 standard 
deviation, and their calculation is described in Appendix A. 
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Figure 8. The along-shore and depth-averaged steady state density anomaly from the numerical model 
runs (solid line) and the cross-shelf integral of (22) (dashed line). The run number is on each panel. 
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The Boxes are the Predictions of the Scaling of the Percent Change of O•/Oy From the Base Case, and the 
Gray Bars are the Numerical Model Results 

percent change from base case adjusted percent change 

f2 half depth 
fl base 
f3 double depth 
f4 treble depth 
t5 4xdepth 

f6 quarter friction 
iV half friction 
f8 double friction 
f9 quarter cooling 
f10 half cooling 
fl 1 double cooling 

f13 half depth 0.25xfriction 
f14 haft depth tenth friction 
fl 5 Double f, 3/4 Depth 

- 100 0 100 200 - 100 0 100 200 

Figure 9. The percent change of the cross-shelf-averaged cross-shelf density gradient from the base 
case. The hollow boxes are the predictions fi'om the scaling, and the shaded area is the results from the 
numerical model. The horizontal lines are one standard deviation error bars. The right-hand side has been 
adjusted for a finite Ekman depth, but the left-hand side has not. 

tematically underestimates the change in the density gradient 
as the water depth is reduced from a 100 to 50 m. This error 
may be due to the increased fraction of water column occu- 
pied by the bottom Ekman layer. The average Ekman depth 
in the model is m 10 (estimated as the height above the bot- 
tom where the RMS vertical stress falls below one tenth the 

RMS bottom stress). If, as an ad hoc correction, the water 
depth in the scaling is reduced by this 10 m, the comparisons 
in Figure 9 improve significantly. Even without this ad hoc 
correction, the error in the scale for the cross-shelf density 
gradient is < 40% when the depth is but 20 m. In other runs, 
not shown here, it was found that the flow changes qualita- 
tively and abruptly when h/r <• 4f -• (about half a day 
at midlatitude). The cold dense water is then transported by 
eddies trapped to the bottom boundary layer, and, over slop- 
ing bottoms, resembles the work of Swaters [1991]. In this 
limit, the scalings of the mean cross-shelf density gradient 
in (22) show no skill. 

The transition from the L* = Lit to the L* = L• 
regimes leads to errors in the estimate of the cross-shelf den- 
sity gradient, (22). This can be seen in Figure 10, a plot of 
the percent error in the estimate as a function of the ratio 

of Lnu to Li•.. The error in the L* - Li• estimate ap- 
proaches zero as the ratio becomes much less than 1, and 
the error in the L* - L nu estimate approaches zero as the 
ratio becomes much greater than 1. However, in the range 
0.5 _< L•/Lf,. _< 3, the scale for L* - Lf,. overpredicts 
the cross-shelf density gradient by m 20%, and the scale for 
L* - Ln• underpredicts the gradients by m 20% as the tran- 
sition is made from one scale to the other and the physics is a 
mix of the two. It is for this reason the 0.5 _< Ln•/Lf,. _< 3 
model runs are excluded from the averages used to compute 
7 in (21) and the constants in (22). 

In this section, model runs have been presented in which 
Ln•/Lf• varies from infinity down to 0.18 but no less. 
This is because there is another change in the dynamics at 
Lm•/Lf•. _• 0.15. When L•n/Lf•. is < 1, it can be in- 
terpreted as not only the ratio of the two length scales but 
also as the timescale of energy conversion from potential to 
the kinetic •dwct to the timescale of kinetic energy dissipa- 
tion 7•ic. When this ratio falls below 0.15 and dissipation 
is relatively weak, the along-shelf (zonal) jets formed by the 
cascade to large scales [Rhines, 1977] acquire enough rel- 
ative vorticity that they, not the topographical/?, dominate 
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the vorticity gradients that set LRh. To move the base open 
wedge case into the LRh/Lfr < 0.15 regime, one would 
have to increase the cooling by m8000 times, decrease the 
friction by 6, increase the bottom slope by 20, or increase f 
by m 80, and so this regime is not addressed herein. This 
regime has been studied elsewhere because it is appropriate 
to the gas giants, Jupiter, Saturn, Neptune and Uranus. A re- 
view of the applicable literature is given by Dowling [1995]. 

The estimate of • also breaks down when the cross-shelf 
buoyancy flux is carried by an overturning circulation, with 
dense water flowing offshore at depth and less dense water 
returning near the surface. This is similar to the Hadley cell 
circulation in the equatorial atmosphere and has been studied 
in an oceanic context by Condie and Rhines [ 1994]. The size 
of the overturning cell is the radius of deformation [Held and 
Hou, 1980]. The vertical density difference is assumed to be 
the same as the horizontal density difference across the cell, 
the cross-shelf velocity is assumed to scale as v/-• 'h, and the 
density of a water parcel crossing the shelf at the surface 
is assumed to increase in proportion with (1). The density 
difference then scales as (poB)(ghf) -• and the width of the 
cell is proportional to v/B/f3, which is equal to or less than 
1 km for the base case runs presented here. Since the model 
domain is much larger than this, the overturning circulation 

hardly matters. (This derivation is similar to James [1994] 
and Held and Hou [1980]. An alternate derivation with the 
same result is given by Jones and Marshall [1993].) 

6. Testing the Length and Velocity Scales 

The scales for the cross-shelf density gradient contain 
scales for the depth-averaged cross-shelf velocity anomaly 
and the length scales of the eddies. When these scales are 
compared with the numerical models, they show system- 
atic errors which are functions of the Burger number, the 
square of the ratio of the internal radius of deformation in 
the numerical model to the eddy length scale observed in the 
model. 

The ratio of the root mean square of the depth-averaged 
cross-shelf velocity in the numerical model to the velocity 
scale V*, V', is shown as a function of the Burger number 
in Figure 11. If the scaling for the cross-shelf velocity were 
completely successful, V' would be an O(1) constant, but 
instead it increases nearly linearly with the Burger number. 

The ratio of the cross-shelf eddy length in the model to the 
scale cross-shelf eddy length, L', shows a complementary 
relation when plotted against the Burger number: it scales as 
m 1 over the Burger number less 6, forming a rough hyper- 

Percent Error in Estimate of Steady State Cross-Shelf Density Gradient in Equation (22) 
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Figure 10. The error in the prediction of (22) when compared to the results of the numerical model. Here 
3' is computed from the model. The fit for LR•/Lfr = oo is the average error of the flat bottom runs, 
except for the h = 50 m runs. The error bars are q-1 standard error as described in Appendix A, and the 
model runs are keyed above the data points. 
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Figure 11. V t and L t against the square root of the inverse 
Burger number, Lrnøde]/Ld, as computed from the flat bot- 
tom model runs. 

bola. (The same result is found for the sloping bottom cases, 
although the analysis is complicated by the change in Burger 
number across the shelf.) 

These results agree with some quasi-geostrophic energetic 
arguments of Pedlosky [1987] and Visbeck et al. [1996] and 
with the work of Held and Larichev [1995] and Shepherd 
[1988]. Unfortunately, this cannot be used to improve the 
scalings for V* and L*, for I have been unable to find a 
satisfactory a priori scaling for the vertical stratification and 
thus the radius of deformation. 

Fortunately for the success of the estimate of the cross- 
shelf density gradient, the errors in the scales for the cross- 
shelf velocity and the eddy length scale are such that their 
product is nearly constant, and thus the scale for VL is much 
better than the scale for either alone. It is this product which 
enters into the scale for the cross-shelf buoyancy flux, (16), 
and hence into the estimate of the cross-shelf density gra- 
dient. The deficiencies in the scales for V* and L* clearly 
point out their ad hoc nature and indicate a direction that 
future work must take. 

7. Conclusion 

The cross-shelf buoyancy flux driven by a given cross- 
shelf density gradient is found for a coastal ocean with no 
mean along-shore variation in forcing or geometry (16). It is 

found under the assumption that the baroclinic instabilities 
in the flow field have grown to form eddies and that the cas- 
cade of these eddies to lar'ger length scales has reached equi- 
librium. The resulting length scale of the eddies is estimated 
to be the lesser of the Rhines arrest scale, (9), or a friction 
arrest scale, (14). The strength of the cross-shelf buoyancy 
flux is found to depend on bottom friction and slope, modi- 
fying the results of CG, at least in the limit of polynas with 
a large along-shore extent. 

This relation between the cross-shelf density gradient and 
the cross-shelf heat flux is then used to estimate the steady 
state cross-shelf density gradient of a continental shelf ex- 
posed to steady wintertime cooling (17). The steady state is 
attained when the sum of the divergence of the cross-shelf 
heat flux and the surface cooling divided by water depth is 
everywhere the same, so that the density of the water in- 
creases everywhere at the same rate, leaving the cross-shelf 
density gradient unchanged (5). The steady state cross-shelf 
density gradient exists even when the offshore boundary 
condition precludes the existence of a steady state density. 

The steady state cross-shelf density gradient scaling is 
tested in numerical models of the continental shelf run over 

a broad range of parameters (Table 1), and it is found that the 
scaling predicts the cross-shelf density gradient well (Figure 
7). In model runs whose parameters are similar to those of 
the mid-Atlantic Bight the steady state cross-shelf density 
gradient is achieved in less than a winter (Figure 3). 

Because the scalings for the cross-shelf heat flux and the 
cross-shelf density gradients are only valid when there is at 
least weak bottom friction, they will not be directly relevant 
to the deep ocean and thus the work of VMJ. However, the 
result that the interaction of eddies is important to the evo- 
lution of broad regions of instability is likely to hold even 
in the absence of bottom friction and suggests further exten- 
sions to VMJ and Visbeck et al. [1997]. 

The effect of wind-driven boundary layer currents forced 
by the wind on the eddies has not been considered. Since 
these currents can be considerable, their effect on the eddies 

must be considered in any more complete theory. 

Appendix A 

The numerical model is SPEM 5.1, an enhanced ver- 

sion of the primitive equation model described by Hedstrom 
[1994]. This version of SPEM uses finite differences in the 
vertical and an implicit mixing scheme. The model is now 
built on a full three-dimensional Arakawa C grid and has a 
rigid lid. 

The model uses a modified cr coordinate system in the 
vertical, in which the vertical resolution near the top and 
bottom is kept constant while the interior vertical resolu- 
tion scales with the water depth [Song and Haidvogel, 1994]. 
The model was run with 30 levels in the vertical, concentrat- 
ing eight levels in both the top and bottom 10 m in order to 
resolve the boundary layers. The cross-shelf resolution was 
2 km, and the along-shelf resolution was between 2 and 4 
km, as required to resolve eddies with at least 12 grid points. 
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The numerics of the model were changed in order to im- 
prove the computational speed by a factor of 3 by running the 
implicit vertical mixing scheme at a shorter time step than 
the rest of the model. This is necessary because of the ex- 
tremely high diffusivities needed to model convection. See 
Pringle [ 1998] for details of the changes to the code. •o 

The seaward boundary is a free slip vertical wall in the 
9 

F0 - 0 cases. When the seaward boundary is required to 
supply an F0 capable of balancing the surface cooling, the • 8 
boundary is modeled with a 15 km seaward extension to the 
model domain in which the density is relaxed back to Po with 7 
a timescale of 3 days. The bottom is flat in this region. The 6 
horizontal eddy viscosity in that region is raised to 20 m s -2 
in the boundary region to dissipate eddy momentum. 

The model was run with the Pacanowski and Philander 4 

[1981] Richardson number mixing scheme. This mixing 
o 

scheme has given good results in previous studies [Allen and 
Newberger, 1996; Nunes Vas and Simpson, 1994] and is de- 
scribed by Pringle [1998]. Convective adjustment is handled 
by an enhanced eddy diffusivity: 

1 , lh•B« Aconvection-/2convection -- •W It- • . (23) 

This convection parameterization is related to data and more 
sophisticated mixing schemes by Pringle [1998]. 

The heat flux at the surface has been converted to a buoy- 
ancy flux for the model runs described here. If one assumes a 
linear equation of state, this is straightforward. Multiplying 
the boundary condition on temperature 

F 

uTz = Cppo z - O (24) 
Op by the thermal expansion coefficient a - •-• gives a bound- 

ary condition on density of 

•'pz = poB/g z = O, (25) 

where F is the heat flux in watts per meter squared and B, 
the equivalent surface buoyancy flux. Here a is a strong 
function of temperature, unlike Cp. For a given heat flux the 
equivalent buoyancy flux is 2.2 times greater at 5øC than at 
0 ø C. Figure 12 is a plot of the equivalent buoyancy flux for a 
heat loss of 300 W m -2 as a function of water temperature. 
A buoyancy flux of 7 x 10 -8 m 2 s -3 is used for the base 
sloping bottom cases, which is equivalent to a heat loss of 
300 W m -2 from 3 ø C water or 170 W m -2 from 10 ø C wa- 
ter. The surface buoyancy flux is 14 times greater in the base 
flat bottom cases to account for increased buoyancy fluxes 
driven by brine rejection. 

Error bars on the mean cross-shelf density gradient in the 
numerical models are computed from the standard deviation 
and degrees of freedom of a time series of the cross-shelf 
average cross-shelf density gradient computed every model 
day once the model had reached steady state. There is also 
a systematic error in cross-shelf density gradient because 
the domain is periodic in the along-shelf direction, and thus 
there must be an integer number of eddies in the along-shelf 
direction. This error is estimated and included in the error 

x •o -8 Bouyancy flux for a heat flux of 300 w m -v' 
13 

I i i i 

4 6 8 10 

Water temperature in øC 

Figure 12. The equivalent buoyancy flux for a heat flux of 
300 W m -2 as a function of water temperature. 

bars by calculating what effect a 4-0.SL2modelL•olmain change 
in the length scale L* would have on the cross-shelf density 
gradient scale, where Zmodel is the eddy length observed in 
the model and Ldomain is the along-shelf size of the domain. 
No estimate of the error induced by cross-shelf quantization 
was made since that would be an error in the estimate of the 

cross-shelf density gradient not the numerical model. 
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