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High-resolution kinetic energy release distributions and dissociation
energies for fullerene ions C n

¿, 42ÏnÏ90
K. Głuch,a) S. Matt-Leubner, O. Echt,b) B. Concina,c) P. Scheier, and T. D. Märkd)

Institut für Ionenphysik, Leopold Franzens Universita¨t, A-6020 Innsbruck, Austria

~Received 20 February 2004; accepted 12 May 2004!

We have measured the kinetic energy released in the unimolecular dissociation of fullerene ions,
Cn

1→Cn22
11C2, for sizes 42<n<90. A three-sector-field mass spectrometer equipped with two

electric sectors has been used in order to ensure that contributions from isotopomers of different
masses do not distort the experimental kinetic energy release distributions. We apply the concept of
microcanonical temperature to derive from these data the dissociation energies of fullerene cations.
They are converted to dissociation energies of neutral fullerenes with help of published adiabatic
ionization energies. The results are compared with literature values. ©2004 American Institute of
Physics. @DOI: 10.1063/1.1768172#

I. INTRODUCTION

The stability of fullerenes has been a controversial topic
for some time. Several groups have determined the standard
enthalpies of formation of C60 and C70 from graphite by calo-
rimetry with high accuracy. The weighted average of the nine
experimental values compiled for solid C60 in Ref. 1 amounts
to 2322.8 kJ/mol, or 0.401 eV per atom, with a standard
deviation of 2.1%.

Unfortunately, similarly accurate values for fullerenes
other than C60 and C70 are not available because those mol-
ecules are either not stable in condensed form, or not avail-
able in purified form in sufficient quantity. Therefore, the
~adiabatic! dissociation energies for the preferred dissocia-
tion reactions of isolated~gas-phase! fullerenes,

Cn ——→
kn

Cn221C2, ~1!

cannot be derived from measured thermodynamic quantities,
not even forn560 or 70.

At the same time, the interest in fullerenes has broad-
ened to include larger as well as smaller species. Fullerenes
of size 76<n<94 have been synthesized and extracted in
mass-selected, sometimes even in isomer-selected, form~see
Ref. 2 and references therein!. Nonclassical fullerenes, such
as C62 that includes a four-membered ring, have been
purified.3 Smaller fullerenes such as C36 ~Ref. 4! and C20

~Ref. 5! have been synthesized and characterized. Based on
photoelectron spectra it has been concluded that C82 is the
most stable fullerene below C60.6 All these fullerenes hold
promise for the formation of novel fullerene materials.

These experimental achievements have prompted a large
number of theoretical investigations into the stability of
fullerenes, ranging from sizes where fullerenes compete in
stability with planar sheets, bowls, or monocyclic rings,7,8 to
buckyball-sized fullerenes,9–11 beyond C70,8,12 and to very
large fullerenes at the crossover to nanotubes.13,14

It is desirable to compare this wealth of theoretical data
with experimental values but, as explained above, they are
not available for neutral fullerenes. An alternative approach
is to measure rate coefficients for the gas-phase reaction,

Cn
1 ——→

kn
1

Cn22
11C2. ~2!

If one obtains from these experiments the adiabatic dissocia-
tion energies,Dn

1 of fullerene cations then one may com-
pute the adiabatic dissociation energies for the neutrals from
a thermodynamic cycle,

Dn5Dn
11IEn2IEn22 , ~3!

whereIEn denotes the adiabatic ionization energy of Cn .
In this work we will present experimentally determined

values forDn
1 , for 42<n<90. With the exception of the

work by Barranet al.,15 this size range considerably exceeds
the range of all previous experimental studies. Dissociation
energies for neutrals will be derived by using recently pub-
lished experimental and theoretical values for the ionization
energies.16

Deriving Dn
1 from the rate coefficient of reaction~2!

faces a number of challenges~see Ref. 17 for an approach
that meets these challenges, but the technique is not appli-
cable to fullerenes!. One needs to know other quantities, and
the relation between them. Frequently an Arrhenius relation
is assumed,

kn
15An expS 2

Dn
1

kBTe
D , ~4!

whereTe is the emission temperature to be defined later, and
Dn

1 is the activation energy of the reaction. Kinetic energy
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release distributions~KERD! measured for reaction~2! sug-
gest that it does not feature a reverse barrier.18 Therefore,
Dn

1 is identical to the adiabatic dissociation energy. Recent
experimental19 and theoretical studies20 indicate that C2 at-
tachment to neutral or charged C60 and other fullerenes fea-
tures a complex reaction path but, again, there is no evidence
for a net reaction barrier.

A large uncertainty arises from the preexponentialAn

and its size dependence. Klots21 has argued that a value of
1.631015s21 is appropriate for atomic clusters over a wide
range of sizes. In the last few years it has been realized that
A60 is several orders of magnitude higher than previously
thought22–26 ~also see the recent reanalysis ofA factors by
Hansen and Campbell27 for other elemental clusters!.

The other critical quantity in Eq.~4! is the vibrational
excitation energy of the metastable complex from which the
emission temperatureTe is computed.28 Very few experi-
ments on fullerenes have been performed where this energy
has been controlled directly, such as in sticking collisions at
hyperthermal energies;29,30 those results, though, pertain to
collision complexes ~endohedral fullerenes!. For bare
fullerenes, one has to proceed differently. One may deter-
mine the excitation energy from estimated energy deposition
functions,31,32 from an analysis of the temporal evolution of
the dissociation rate and its modification due to competing
channels such as radiation,24–26 or from the kinetic energy
release~KER! for reaction~2!.33

We have applied this latter method. One of its advan-
tages is its ability to directly provide a measure of the exci-
tation energy that drives the reaction. By contrast, an analy-
sis of metastable fractions15 does not provide this
information and only yieldsrelative dissociation energies.
Several KER measurements have been reported before but,
with one exception,34 they were restricted to singly or mul-
tiply charged fullerenes in the immediate vicinity ofn560
or n570.18,35–37The data presented here have a greatly im-
proved accuracy because they are recorded with a double
focusing mass spectrometer of reversed geometry equipped
with a second electric sector.38–40 This instrument avoids a
number of artifacts that commonly occur in measurements of
large clusters that are not isotopically pure.41 However, size-
averaged dissociation energies derived in the present work
tend to be approximately 13% higher than values derived
from other experiments in the gas phase,25 from calorimetric
measurements,1 and from theory.10

II. EXPERIMENT

The apparatus consists of a high-resolution double fo-
cusing mass spectrometer~Varian MAT CH5-DF! of re-
versed Nier-Johnson type BE1 geometry combined with a
second electrostatic analyzerE2.42 Fullerene powder from
MER Corporation~either pure C60(99.5%), or C70(99%),
or a mixture of higher-order fullerenes specified to contain
mainly C76, C78, C84, and C92) was, without further treat-
ment, evaporated into a vacuum of about 1027 Torr by a
temperature controlled oven operating at 650–900 °C. The
effusive beam of neutral fullerenes is crossed at right angles

with an electron beam of 120 eV and a current of about 1
mA. The resulting ions are extracted perpendicular to the
fullerene and electron beams and accelerated into the mass
spectrometer with 3 kV. Ions pass through the first field free
region, are momentum analyzed by a magnetic sector fieldB,
enter a second field-free region, pass through a 90° electric
sector field (E1), enter a third field free region (f f 3, length
92 cm!, pass through another electrostatic sector field (E2),
and are detected by an electron multiplier. Referenced to the
time of their formation, C60

1 parent ions traversef f 3 during
the time interval 75<t<91ms, equivalent to a most prob-
able time of 82.7ms. The corresponding times for other sizes
n are obtained by multiplying withAn/60.

Mass-analyzed ion kinetic energy~MIKE ! spectra of
ions that undergo spontaneous dissociation inf f 3 are ana-
lyzed by tuning the magnet and first electric sector field to
transmit the parent ion~massmp), and scanning the sector
field voltage ofE2. In this mode,B and E1 constitute a
double focusing high-resolution mass spectrometer, andE2
will transmit fragment ions~massmf) formed in f f 3 if the
sector field voltageU f is set to

U f5
mf

mp
Up . ~5!

These MIKE spectra, together with a scan of the parent ion
around voltageUp , provide the experimental raw data from
which the KERD will be derived.

Of particular concern in the present study was the effect
that isotopomers may have on the shape of the MIKE peaks
and, therefore, on the values that are derived for the average
kinetic energies and dissociation energies.39 For example,
C60 synthesized from naturally occurring carbon will contain
isotopomers of mass 721 u or higher with 49% probability.
When a double focusing mass spectrometer is used to record
MIKE peaks, the parent ion beam will not be fully mass
resolved because ions from the ion source emerge with a
dispersion of kinetic energies. The daughter ions from these
different parent ions will be located at slightly different
sector field voltages@see Eq. ~5!#, but they cannot be
resolved.

Furthermore, if the parent ion is not isotopically pure,
then the mass of a fragment ion is not uniquely determined.
For example, the fragment peak arising from C2 loss from
C60

1 parent ions of mass 721 u~containing exactly one13C
isotope! will have contributions from loss of a pure dimer
(12C)2 , and loss of the mixed dimer12C-13C. The corre-
sponding fragment ion peaks will be located at different sec-
tor field voltages@Eq. ~5!#, but their separation is usually
much smaller than their width which arises from the KER.
As a result, an uncritical analysis of the total MIKE peak will
lead to KER values that are too large.

These effects have been illustrated in Ref. 39. In the
present work the average KER values are either derived from
experiments on isotopically pure (12C)n

1, or they have been
corrected for contamination by other isotopomers based on
detailed test experiments combined with theoretical
modeling.38 Without these precautions, the average KER
may be overestimated by as much as 15%.

2138 J. Chem. Phys., Vol. 121, No. 5, 1 August 2004 Głuch et al.

Downloaded 18 Dec 2012 to 132.177.229.1. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



III. DATA ANALYSIS

Experimental MIKE peaks are usually converted to ki-
netic energy release distributionsf (e) by removing statisti-
cal noise, deconvoluting with the smoothed parent ion peak,
differentiating the resulting spectrum, and converting the
sector-field voltage to kinetic energies.33,43,44 In the present
work we have inverted the procedure in order to avoid errors
that may arise from the unavoidable data smoothing and de-
convolution; details have been described elsewhere.40

Strictly speaking,f (e) is that distribution which, with proper
parametrization, provides a best fit~lowest chi square,x2)
between a synthetic MIKE spectrum computed fromf (e)
and convoluted with the parent ion peak, and the observed
MIKE spectrum.

f (e) reveals the microcanonical temperatureTf of the
fragment ion45,46

f ~e!}es~e!e2e/kBTf , ~6!

where s~e! is the capture cross section for the reverse of
reaction ~2!. Comprehensive studies have shown that, for
unimolecular dissociation of C56

1 , C58
1 , and C60

1 ~Ref.

40! and some other atomic cluster ions,47 the energy depen-
dence of the capture cross section is, within experimental
error, indistinguishable from the Langevin cross section,
s(e)}1/Ae. Consequently,Tf is related to the average KER
by

1.5kBTf5 ē. ~7!

We apply the concept of microcanonical
temperatures28,46 to compute fromTf the dissociation energy
Dn

1 . To first order, the emission temperatureTe in Eq. ~4! is
the mean ofTf and Tp , the microcanonical temperature of
the parent ensemble. The fragment and parent ensembles dif-
fer by an energyDn

1 , hence

Te5Tf1Dn
1/2Cm5Tp2Dn

1/2Cm , ~8!

whereCm is the microcanonical heat capacity for which we
assume the high-temperature limit,Cm5(3n27)kB .

The preexponentialAn in Eq. ~4! is, for lack of addi-
tional information, assumed to be independent of sizen; we
useAn5231019s21. This is identical to, or very close to,
the value used in most other recent studies of unimolecular
dissociation of fullerene ions.25,30,34,36,37,48,49

Equation~4! also involves the rate coefficientkn
1. If an

evaporative ensemble of cluster ions Cn
1 is sampled at time

tn after excitation and if competing cooling channels can be
neglected, then the most probable dissociation rate coeffi-
cient will be21,50

kn
1>1/tn . ~9!

However, from time-selective measurements of C2 emission
rates or metastable fractions,22,25,28,51 kinetic energy
releases,18,37 and electron emission rates52 it has been estab-
lished that thermal radiation can significantly reduce the rate
coefficient if tn@1 ms. In our analysis we take this into ac-
count by replacing Eq.~9! with

kn
1>R~ tn!/tn . ~10!

We estimate the reduction factorR(tn) from the dissociation
rate of photoexcited fullerene cations measured by Tomita
et al.25 in an ion storage ring. Radiative cooling causes the
dissociation rate to drop below thet21 power law. From the
data for C58

1 ~Ref. 53! evaluated att581.3ms, the time
characteristic of our instrument, one findsR(t58)50.29.

For other sizes we compute the reduction factor as fol-
lows: The ion transit timetn through our instrument scales as
the square root ofn while R(t) scales ast/@exp(t/tc)21#
where tc'44ms,53 henceR(tn) decreases from 0.35 for
C42

1 to 0.21 for C90. However, we ignore the dependence of
the characteristic cooling timetc on the dissociation energy,
tc}(Dn

1)25 ~Ref. 54!, which may cause local variations in
the radiative cooling correction.25 Note that another factor,
namely, the linear increase of the radiation intensity with size
n,54 cancels against the approximately equal size dependence
of the heat capacity. Overall, our radiative corrections are
estimated to be accurate within a factor of 2.

IV. RESULTS AND DISCUSSION

A. Kinetic energy release

In Fig. 1 we show a composite mass spectrum of
fullerene cations obtained by electron impact ionization. Ions
of sizen<70 were recorded by vaporizing a mixture of C60

and C70 at a temperature of 450 °C; larger fullerene ions were
obtained by vaporizing the mix of higher-order fullerenes at
700 °C. In order to ensure that the cluster ions conform to the
evaporative ensemble, we have analyzed ions Cn

1, n<58
produced from C60 powder, ions Cn

1, 60<n<68 produced
from C70 powder, and larger ions produced from a mixture of
higher fullerenes. For comparison, we have also analyzed
C60

1 produced from C60 and found no significant difference
in the KER. The reason for this is that measurements of the
KER, in contrast to measurements of other quantities such as
the dissociation rate coefficients and metastable fraction, are
self-selecting. If an ensemble of cluster ions has never un-
dergone dissociation then it may contain a large, unknown
fraction of relatively cold species, but those will not decay

FIG. 1. Composite mass spectrum of fullerene ions Cn
1 formed by electron

impact ionization from a mixture of C60 and C70 (n<70), and a mixture of
higher-order fullerenes.

2139J. Chem. Phys., Vol. 121, No. 5, 1 August 2004 Kinetic energy release distributions
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on the experimental time scale because their rate coefficients
are low, and therefore this subensemble will not affect the
KER that is being measured.

Figure 2 displays MIKE scans for unimolecular dissocia-
tion of Cn

1; they are representative of other MIKE scans
recorded in the third field free region. The parent ion appears
at a sector field voltage of about 511 eV; the fragment ion at
a voltage as given by Eq.~5!. The ratio of the peak ampli-
tudes of parent and fragment ion is not to scale; the former
has been reduced as indicated in Fig. 2. The shape of the
fragment peak reflects the KERD; its width~corrected for the
width of the parent! scales as the square of the average KER.
It is obvious from these spectra that the fragment ion peaks
are broadened dramatically, and that the statistical quality of
the data is high in comparison to other published KER mea-
surements on fullerene ions.

In Fig. 3 we present the average KER obtained from the

MIKE spectra, together with statistical errors extracted from
the fitting routine.40 The local anomalies atn550, 60, 70,
and 80 greatly exceed the error bars.

Selected values from Fig. 3 are compared with some
published values in Table I; for a compilation of data re-
ported prior to 1999 see Ref. 43. The present values have
significantly smaller uncertainties than all previously pub-
lished data. We also note that the steep drop in the average
KER from C80

1 to C82
1 agrees with observations reported

by Lifshitz and co-workers,34,55 although it is less dramatic
in our experiments. In general, the agreement between values
from different experiments for one and the same size is poor.
Previously published values tend to be higher; part of this
disagreement probably arises from the neglect of the effect
of isotopomers on the MIKE peak in earlier work. However,
data compared with different instruments cannot be com-
pared directly unless they monitor reaction~2! in identical
time windows because the emission temperature of the clus-
ters will decrease due to dissociation and radiation.

Similarly, a comparison with the average KER of ther-
mally emitted delayed electrons reported by Bordas and
co-workers57 would have to take into account a number of
differences between the two experiments. We will return to
this topic further below.

B. Dissociation energies of charged
and neutral fullerenes

From the experimentally determined average KER val-
ues we compute dissociation energies with the help of Eqs.
~4!, ~7!, ~8!, and ~10! assumingAn5231019s21 for all n.
The results are displayed in Fig. 4 as full circles. Note that
these values are corrected for the estimated effect of radia-
tive cooling ~see Sec. III!. If we had ignored radiation by
applying Eq.~9! instead of Eq.~10!, we would have obtained
dissociation energies that are smaller by 0.3 to 0.4 eV. Un-
certainties shown in Fig. 4 reflect the statistical uncertainty
of our kinetic energy release values.

Open triangles in Fig. 4 are values derived by Tomita
et al.25 from the effect of radiative cooling on the time de-
pendence of the dissociation rate coefficientkn

1. Like us,
the authors assumedAn5231019s21 for all n. The open
squares in Fig. 4 have been determined from metastable frac-
tions by Barranet al.15 This technique does not provide ab-
solute values; we have normalized them to our value for
C54

1 as suggested by Barranet al.; their value for C60
1 was

FIG. 2. MIKE spectra~open circles! for unimolecular dissociation of C60
1

and C82
1 ~top and bottom panel, respectively!. The solid lines represent fits

that include instrumental broadening as inferred from the parent ion peaks
~solid circles!.

FIG. 3. Average kinetic energy release for unimolecular loss of C2 from
fullerene ions Cn

1 derived from experimental MIKE peaks.

TABLE I. Average kinetic energy release~in meV! measured in the present
work for selected sizes, and comparison with published values.

Parent
ion This work Mattet al.a Laskin et al.b Caoet al.c Pereset al.d

C58
1 36667 4606120

C60
1 39463 400 450

C80
1 36764 460610

C82
1 33264 350620

C84
1 33664 450620

aReference 36.
bReference 55.
cReference 56.
dReference 34.

2140 J. Chem. Phys., Vol. 121, No. 5, 1 August 2004 Głuch et al.
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possibly effected by saturation. Several other experimental
studies of the size dependence ofDn

1 have been
reported24,32 ~see Ref. 58 for a more comprehensive list!.
However, they cover narrow size ranges and are not shown
here.

Several features in Fig. 4 are reproduced by all three
measurements, in particular, the steep drop atn560, and
smaller drops atn550 and 70. Our data track Barran’s data15

remarkably well for small fullerenes. Forn<72 all local
anomalies are reproduced, but there is a discrepancy atn
580: Our KERD data, as well as those by Lifshitz and
co-workers,34,55 suggest a drop fromD80

1 to D82
1 . On the

other hand, neither the metastable fractions15 nor the abun-
dance spectrum in Fig. 1 suggests that C80

1 has enhanced
stability. This discrepancy deserves further study.

The agreement with the data by Tomitaet al. ~which,
like ours, provide absolute values! is less satisfying. On av-
erage, our values are 13% higher than theirs. The discrepan-
cies may be due to unidentified systematic errors; we will
return to this issue at the end of this paper.

Equation~3! allows to derive dissociation energies for
neutral fullerenes from our data. Ionization energies of
fullerenes other than C60 and C70 have been determined by
experiment16,59 and theory.10,16,60The only study that com-
pletely covers the size range of our data is the one by Bolt-
alina et al.16 The authors measured adiabatic ionization en-
ergies for n>70 by ion-molecule equilibria Knudsen cell
mass spectrometry, and computed adiabatic values forn
<84 by a density-functional-based tight-binding scheme. We
use their computed values forn<80 and experimental values
above, because atn580 both data sets yield very similar
values forIEn2IEn22 .

The values forDn are presented in Fig. 5 by solid
circles. The uncertainty introduced in the conversion from
Dn

1 to Dn has been estimated from the standard deviation of
the difference in the values ofIEn2IEn22 between experi-

ment and theory, for the size range where the two data sets
overlap. The result,s50.21 eV, has been combined with the
statistical error ofDn

1 .
Also shown in Fig. 5 are dissociation energies reported

by Diaz-Tendero, Alcami, and Martin10 using density func-
tional theory ~open squares!, and by Zhanget al.11 using
tight-binding molecular dynamics~open triangles!.

Cioslowski12 has computed standard enthalpies of for-
mation at the B3LYP/6-31G* level for the reaction
(n/60)C60→Cn , using the experimental value of
DH f

0(C60,g)526.82 eV~Ref. 61! for the standard enthalpy
of formation for gas-phase C60. We have deducedDn values
from Cioslowski’s data ~open circles in Fig. 5! using
DH f

0(C2 ,g)58.68 eV for the standard heat of formation of
gas-phase C2.62 The solid line in Fig. 5 is derived similarly,
from an analytical expression for the total energy of
fullerenes inI h symmetry (n560, 80, 140, 180, 240! com-
puted by Adamset al.13 using first principles. This curve
merely indicates the trend of increasingDn with increasing
size n, and its extrapolation to sizes belown560 may be
questionable.

For 48<n<72 the trend in the experimental data agrees
quite well with the theoretical values by Zhanget al.11 and
Diaz-Tendero, Alcami, and Martin10 although the extrema,
especially the minima forn562 and 72, are significantly less
pronounced in the experimental data. Beyondn572 there is
little, if any, correlation between the three available data sets.
On average, our values exceed those by Zhanget al. by 8%,
and those by Diaz-Tenderoet al. by 12%.

As explained in the Introduction,Dn values cannot pres-
ently be derived from quantities measured in thermodynamic
equilibrium. However, experimental or theoretical values for
Dn should satisfy the following relation:

DH f
0~C70,g!2DH f

0~C60,g!25DH f
0~C2,g!5 (

n562

70

Dn .

~11!

FIG. 4. Dissociation energies for C2 loss from fullerene cations. Filled
circles: calculated from kinetic energies~Fig. 3! using the concept of micro-
canonical temperature and an Arrhenius factorA5231019 s21 for all sizes.
The data have been corrected for the effect of radiative cooling. Open
squares~Ref. 15! and open triangles~Ref. 25! are from the literature; they
were computed from measured unimolecular fractions and rates of dissocia-
tion, respectively. The values from Ref. 15 are not absolute; they have been
scaled to match our experimental value for C54

1.

FIG. 5. Dissociation energies for C2 loss from neutral fullerenes. Filled
circles have been computed from our experimental dissociation energies for
cations and published adiabatic ionization energies~Ref. 16! with the help of
Eq. ~3!. Open symbols are theoretical values derived using variousab initio
methods~Refs. 10–12!. The solid line is constructed from an empirical
equation for the energies of icosahedral fullerenes C60 , C80 , C140, etc.
~Ref. 13!.
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Hennrichet al.2 quoted a value of 40.59 eV for the left-hand
side of Eq.~11!. Therefore, the average value ofDn over the
range 62<n<70 should beDn58.12 eV. It is worth to re-
examine this value using more recent thermodynamic data.
In Ref. 1 nine values forDH f

0(C60,s) are compiled. One of
them, by Steeleet al.63 appears to be an outlier. The non-
weighted average of the remaining eight values is 23.92
60.37 eV. Combined with the standard heat of sublimation
of C60, 2.3760.08 eV, a value of 26.2960.38 eV is obtained
for DH f

0(C60,g). For C70, three measurements are listed in
Ref. 64. If we discard the early value by Kiyobayashi and
Sakiyama,65 we find an average ofDH f

0(C70,g)528.78
60.38 eV where we have assumed that the accuracy of ex-
periments on C70 is no better than for C60. Combined with
the NIST value forDH f

0(C2 ,g) and neglecting its uncer-
tainty, we obtain 40.9360.54 eV for the left-hand side of Eq.
~11!, or Dn58.1960.11 eV.

Our experimental average is larger by 0.99 eV, or 12.1%.
A similarly large discrepancy was noted above when we
compared our results with values measured by Tomita
et al.,25 and with theoretical values.10,11 Furthermore, it is
instructive to compare the average kinetic energy that we
have measured for dissociation of C60

1 ~Fig. 3! with the
average kinetic energy of electrons emitted from photoex-
cited neutral C60 as measured by Bordas and co-workers.57

When one computes the parent temperatures from these data
with the help of Eq.~8! and corrects for various differences
between the two experiments such as the relation between
KER andTf , time scale, activation energy, etc., one is left
with a discrepancy of 18%.

What are the possible sources of error? First, in our
analysis we have assumed anA factor of 231019s21 for all
sizes. This value is derived indirectly, from the competition
between different cooling channels for highly excited C60

1 ;

its accuracy is unknown. We can bring our experimentalDn

value into agreement with the thermodynamic value if we
assumeA5631017s21 in the data analysis; this is about 1.5
orders of magnitude lower than the preferredA factors used
in other recent reports.25,37,48

Second, we have adopted the usual assumption thatAn is
independent of size. Recently, Andersen and co-workers26

have measured the time dependence of electron emission
from C60 and its neutral fragment C58. From a comprehen-
sive data analysis that included radiative cooling and C2

emission as competing channels, they concluded that theA
factor of neutral C60 is higher than that of C58 by more than
two orders of magnitude. In the course of the experiments
described here, we have determined the metastable fractions
for fullerene ions of size 42<n<70. These data provide in-
formation that is complementary to the kinetic energy re-
lease. For most sizes we can model the local anomalies in the
metastable fractions with the dissociation energies derived in
our current work with a commonA factor. However, there
are a few sizes in the vicinity of C60 which suggest that the
size dependence ofAn cannot be neglected.66 How large an
effect this will have on derived dissociation energies remains
to be seen.

Third, the kinetic energy distributions from which our

results are derived show a surprising feature. As discussed in
detail elsewhere,40 the distributions are best described by a
pure Langevin-type interaction between the two fragments
Cn22

11C2, although one would expect a distribution that
also reflects the hard-sphere cross section of the fullerene
fragment ion.47 The energy distribution of the capture cross
section,s~e!, affects the relation between the average KER
and fragment temperature, Eq.~7!. If, for example, the stick-
ing probability for the reverse reaction were energy depen-
dent, then an analysis of energy distributions could possibly
result in an erroneous assignment of the fragment tempera-
ture and, hence, the dissociation energy.

V. CONCLUSION

We have determined the KER distributions for unimo-
lecular C2 loss from fullerene cations Cn

1 of size 42<n
<90. The concept of microcanonical temperature together
with an estimate of radiative cooling was used to derive dis-
sociation energies. Forn<72 our data compare quite well
with relative dissociation energies that Barranet al.15 derived
from measured metastable fractions, but a significant dis-
agreement is found for C80

1 . The agreement with dissocia-
tion energies determined by Tomitaet al.25 with a different
method is less satisfactory. On average, our values are higher
by 13%.

Dissociation energies of neutrals are computed with help
of experimental and theoretical adiabatic ionization energies
reported by Boltalinaet al.16 For 48<n<72 the trend in the
experimental dissociation energies agrees quite well with
published theoretical values,10,11 although the local extrema,
especially the minima forn562 and 72, are significantly less
pronounced in the experimental data. Beyondn572 there is
little, if any, correlation between our experimental and
theoretical11,12 values. Our dissociation energies averaged
over 62<n<70 exceed the thermodynamic value by 12%.
Approximately the same disagreement is observed when our
data are compared with theoretical values for 52<n<60.10

These discrepancies deserve further investigation.
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