

University of New Hampshire University of New Hampshire Scholars' Repository

PREP Reports & Publications

Institute for the Study of Earth, Oceans, and Space (EOS)

12-31-2006

Shoreland Buffer Module for GRANIT Data Mapper

Fay A. Rubin University of New Hampshire - Main Campus, Fay.Rubin@unh.edu

David G. Justice University of New Hampshire - Main Campus, david.justice@unh.edu

Follow this and additional works at: https://scholars.unh.edu/prep Part of the <u>Marine Biology Commons</u>

Recommended Citation

Rubin, Fay A. and Justice, David G., "Shoreland Buffer Module for GRANIT Data Mapper" (2006). *PREP Reports & Publications*. 167. https://scholars.unh.edu/prep/167

This Report is brought to you for free and open access by the Institute for the Study of Earth, Oceans, and Space (EOS) at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in PREP Reports & Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact nicole.hentz@unh.edu.

Shoreline Buffer Module for GRANIT Data Mapper

A Final Report to

The New Hampshire Estuaries Project

submitted by

Fay Rubin and David Justice Complex Systems Research Center Institute for the Study of Earth, Oceans, and Space Morse Hall University of New Hampshire Durham, NH 03824

December 31, 2006

This report was funded in part by a grant from the New Hampshire Estuaries Project, as authorized by the U.S. Environmental Protection Agency's National Estuary Program.

Table of Contents

Executive Summary	1
List of Tables	2
List of Figures	2
Introduction	3
Project Goals and Objectives	3
Methods	4
Results and Discussion	8
Conclusions	17
Recommendations	17

Executive Summary

The Complex Systems Research Center at the University of New Hampshire enhanced the GRANIT Data Mapper (<u>http://mapper.granit.unh.edu</u>) by incorporating data describing shoreline buffers in New Hampshire. The project supports an ongoing, comprehensive New Hampshire Estuaries Project (NHEP) outreach initiative that seeks to educate municipal decision-makers about the importance of stream buffers in preserving water quality in coastal New Hampshire. It complements these existing outreach efforts by allowing coastal managers, local land use boards, and the general public to readily visualize the spatial extent of current and/or proposed shoreline regulations in their community.

The primary data source for the analysis was the high-resolution New Hampshire National Hydrography Dataset (NHHD). Using standard GIS tools, six concentric buffers incrementing in 50' widths from 50' to 300' were generated around stream and shoreline features recorded in the NHHD. To provide the greatest flexibility to users, two data sets were generated at each buffer increment – one representing shorelines and streams classified as either perennial or intermittent, and the second comprising shorelines and only streams classified as perennial. The resulting buffers were merged with the GRANIT surface water data, and acreage by town and subwatershed was calculated for each buffer category.

The shoreline buffer data sets were added to the water resources theme of the Data Mapper, thereby providing the public with the ability to view buffers of varying widths in the context of other data layers (including aerial imagery) available through the viewing tool. The associated acreage data tables were added to the water resources theme tool tab.

Findings indicated that aggregated at the HUC-12 level, almost 24,000 acres within the Coastal Basin were covered by 50' buffers when perennial and intermittent streams as well as shorelines were buffered, with over 133,000 acres covered by 300' buffers. When only perennial streams and shorelines were considered eligible for buffering, the totals declined to just under 17,000 acres (50' buffers) and over 96,000 acres (300' buffers).

List of Tables

- Table 1. Input features for perennial stream/shorelines buffering operation.
- Table 2. Town-level buffer acreage summary based on perennial/intermittent streams and shorelines.
- Table 3. Town-level buffer acreage summary based on perennial streams and shorelines.
- Table 4. HUC12-level buffer acreage summary based on perennial/intermittent streams and shorelines.
- Table 5. HUC12-level buffer acreage summary based on perennial streams and shorelines.

List of Figures

- Figure 1. Project study area Piscataqua/Coastal Basin in New Hampshire, HUC 01060003.
- Figure 2. Surface water buffers in vicinity of Newmarket, Newfields, and Epping, NH.
- Figure 3. Water resources theme in GRANIT Data Mapper zoomed to area in Exeter, NH.
- Figure 4. Summary shoreline buffer acreage report for Great Brook-Exeter River Watershed, NH.

Introduction

Protective corridors, or buffer zones, around streams, lakes, and other surface water features are an important planning tool in helping to protect stream water quality and aquatic habitat. Left in a vegetated state, buffers serve a number of important and well-documented services and functions, including filtering and removing pollutants from stream channels, controlling streambank erosion, providing wildlife habitat, providing water storage and floodplain protection measures, shading streams from excessive heat, and delivering recreational opportunities. And they provide these services in both urban and rural settings. In recognition of the importance of vegetative buffers, the NH Estuaries Project (NHEP) has launched a comprehensive campaign to educate coastal watershed towns about the need to enhance local buffer protective measures.

In response to increasing demands from municipal decision-makers, coastal managers, and the public at large for new data sets as well as tools to utilize those data sets, the Complex Systems Research Center (CSRC) at the University of New Hampshire has developed the GRANIT Data Mapper (http://mapper.granit.unh.edu), an online geospatial data viewing and query tool. The Data Mapper comprises a suite of themes, including a base theme, water resources, land conservation, transportation, floodplains, and others. Each theme provides access to a set of related data layers associated with an issue or topic encountered by municipal decision-makers. Users may select a theme, navigate to a particular location, turn on/off data layers of interest, and retrieve information about specific features in data layers. Within each theme, the interface provides users with a number of tools/utilities, including summary reports on feature acreages (where appropriate), online access to data documentation, and the ability to generate smallformat maps for download and local printing. This project enhanced the utility of the Data Mapper by incorporating shoreline buffer data sets into the water resources theme, thereby delivering the ability to view, query, and tabulate buffers in the context of associated water resources data layers.

Project Goals and Objectives

The project objectives were to:

- Develop 2 buffers at each of six 50' buffer increments ranging from 50' to 300' wide one based on perennial and intermittent streams as well as shorelines, and the second based on just perennial streams and shorelines;
- Tabulate the land acreage associated with each buffer increment and report out by town and by subwatershed; and
- Incorporate the buffer data sets as well as the tabular summaries ito a theme of the GRANIT Data Mapper.

Unlike previous buffer mapping efforts, the intent was not to generate buffers for each individual stream segment. Instead, the objective was to develop a single, continuous buffer at each increment around the set of designated surface water features.

The project complements the existing NHEP buffer outreach efforts by allowing the coastal management community to easily view and query current and/or proposed shoreline regulations. Further, it addresses the following buffer protection-related Action Plans from the NHEP Management Plan: LND-2, LND-8A, LND-14, LND-15, LND-20, LND-25, LND-25D, and LND-34.

Methods

a. Project Study Area

The project study area comprised the 48 towns that are wholly or partially within the Piscataqua/Coastal Basin of New Hampshire (Figure 1), extending across 759,673 acres in the coastal area of the state.

b. Data Sources

The project relied on three data sets archived in the GRANIT database (<u>http://www.granit.sr.unh.edu</u>) maintained by CSRC. These data sets include:

- Hydrography (1:24,000) extracted from the New Hampshire National Hydrography Dataset (NHHD);
- Political/Town Boundaries (1:24,000) derived from USGS 7.5-minute topographic quads; and
- Subwatersheds (1:24,000) based on Natural Resources Conservation Service (NRCS) HUC-12 delineations.
- c. Data Processing and Analysis

Using ArcGIS 9.x software, a series of standard GIS analyses was conducted to generate the two data sets – one for buffers around perennial/intermittent streams and shorelines and the second for buffers around only perennial streams and shorelines. First, surface water features were extracted from the NHHD based on their feature code, or FCODE. Table 1 presents a listing of the features used as a basis for the perennial stream and shoreline iteration. Note that the input features comprised both linear features (flowlines) and polygon features (water bodies and area features).

Figure 1. Project study area - Piscataqua/Coastal Basin in New Hampshire, HUC 01060003.

NHHD Feature Type	FCODE	Description
Flowlines	33600	Canal/Ditch-no attributes
	33601	Canal/Ditch-aqueduct
	33400	Connector
	46006	Stream/River-hydrographic category perennial
Water Bodies	39004	Lake/Pond-hydrographic category perennial
		Lake/Pond-hydrographic category perennial; stage average water
	39009	elevation
	43613	Reservoir-water storage-hydrographic category unspecified
	43615	Reservoir-water storage-hydrographic category perennial
Area Features	33600	Canal/Ditch-no attributes
	36400	Foreshore
	43100	Rapids
	44500	Sea/Ocean
	46006	Stream/River-hydrographic category perennial

Table 1. Input features for perennial stream/shoreline buffering operation.

For the perennial/intermittent stream and shoreline iteration, intermittent streams (FCODE 46003) were also selected for buffering.

Once the 2 hydrography input data sets were established, buffers at each of the 6 preset increments – 50', 100', 150', 200', 250', and 300' – were generated. Because buffers generated around polygons include the originating feature, an "erase" was required to eliminate the surface water area itself from the host buffer polygon. The final buffer data set included just the land area surrounding the input surface water features (Figure 2).

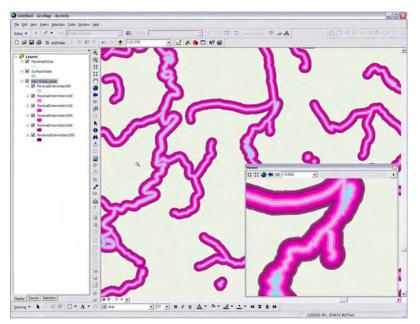


Figure 2. Surface water buffers in vicinity of Newmarket, Newfields, and Epping, NH.

The last processing step was to combine both buffer data sets with the town boundary and subwatershed data sets, and to calculate the resulting acreages by buffer width and by each geographic unit.

Finally, the buffer data sets were incorporated into the GRANIT Data Mapper in the water resources theme. (At the initiation of the project, the concept was to develop an independent buffer theme in the Data Mapper. However, subsequent discussions led to the realization that incorporating the buffer data in the existing water resources theme, and thereby providing access to the data in the context of related water resources features. would provide maximum utility to our users.) The geospatial data were symbolized and added as a layer to the theme (Figure 3), and the corresponding acreage summaries were incorporated as options in the "theme tools" (Figure 4). A basic metadata record was developed to describe the contents of the data set, and was posted to the Data Mapper metadata library.

To access the data in the GRANIT Data Mapper, point your browser to: **mapper.granit.unh.edu**

- Select the water resources theme
- Zoom in to a scale of at least 1:45,000, as buffers are not available for display at smaller scales
- Turn on the buffers of interest

(Note: In order to maintain the statewide mapping extent of data in the GRANIT Data Mapper, external resources were utilized to extend the data development to statewide coverage.)

Figure 3. Water resources theme in GRANIT Data Mapper - zoomed to area in Exeter, NH.

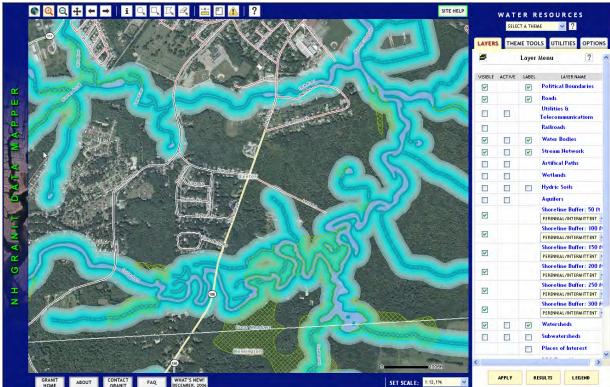


Figure 4. Summary shoreline buffer acreage report for Great Brook-Exeter River Watershed, NH.

Date Generated: 01/03/200	7		
Reporting Units: acres			
Great Brook-Exeter River Wa	tershed		
reages presented here are based on surface water features sele	atad from the New Hampshire Hur	drograph	
Dataset (see metadata for a listing of the FCODES used) and may			
WATERSHED CODE	01060003		
WATERSHED NAME	Salmon Falls-Piscataqua Rivers		
SUBWATERSHED CODE	010600030805		
SUBWATERSHED NAME	Great Brook-Exeter River		
SUBWATERSHED ACREAGE	12362.8		
SURFACE WATER ACREAGE	550.9		
PERENNIAL/INTERMITTENT STREAMS AND SHORELINE LENGTH (FEET)	335385.6		
PERENNIAL/INTERMITTENT STREAMS AND SHORELINE BUFFER AT 50FT	702.5		
PERENNIAL/INTERMITTENT STREAMS AND SHORELINE BUFFER AT 100FT	1378.9		
PERENNIAL/INTERMITTENT STREAMS AND SHORELINE BUFFER AT 150FT	2023.1		
PERENNIAL/INTERMITTENT STREAMS AND SHORELINE BUFFER AT 200FT	2643.1		
PERENNIAL/INTERMITTENT STREAMS AND SHORELINE BUFFER AT 250FT	3245.8		
PERENNIAL/INTERMITTENT STREAMS AND SHORELINE BUFFER AT 300FT	3832.8		
PERENNIAL STREAMS AND SHORELINE LENGTH (FEET)	306099.8		
PERENNIAL STREAMS AND SHORELINE BUFFER AT 50FT	436.3		
PERENNIAL STREAMS AND SHORELINE BUFFER AT 100FT	867.4		
PERENNIAL STREAMS AND SHORELINE BUFFER AT 150FT	1289		
PERENNIAL STREAMS AND SHORELINE BUFFER AT 200FT	1709.6		
PERENNIAL STREAMS AND SHORELINE BUFFER AT 250FT	2131.9		
PERENNIAL STREAMS AND SHORELINE BUFFER AT 300FT	2556.3		

Results and Discussion

Table 2 presents the town-level acreage summaries for each buffer increment (50' to 300') based on perennial/intermittent streams and shorelines. The table also reports the length of the input shoreline features, and the area of the input polygons (lakes, ponds, etc.) Note that data are presented for the entirety of any town that extends into the Coastal Basin. For these 48 towns, the perennial/intermittent and shoreline buffers cover an area of almost 32,000 acres (50' buffers) up to approximately 180,000 acres (300' buffers). At the individual town level, buffers range from less than 69 acres (50' buffers in the town of New Castle) to over 8,000 acres (300' buffers in the town of Alton).

Table 3 presents comparable data for buffers based on perennial streams only and shorelines. These buffers cover areas ranging from 69 acres (again, the 50' buffers in the town of New Castle) to almost 6,200 acres (300' buffers in the town of Barrington). Collectively, the 300' buffers cover over 127,000 acres within the 48 towns wholly or partially in the Coastal Basin.

Table 4 presents the summary data for perennial/intermittent stream and shoreline buffers at the subwatershed (HUC-12) level. Note that because this table (as well as Table 5) summarizes within the Piscataqua/Coastal Basin only, the mapped area is less than that used as the basis for Tables 2 and 3. The Upper Cocheco River (06030601) and the Middle Lamprey River (06030703) have the greatest land acreage within the 300' buffers, with 6,887 and 6,722 acres respectively. In total, these large buffers cover over 133,000 acres in the Coastal Basin.

The results for perennial streams and shoreline buffers are presented in Table 5. With the elimination of intermittent streams in the calculation, the Bellamy River (06030903) with 4,903 acres and the Middle Lamprey River (06030703) with 4,432 acres have the largest areas within the 300' buffers. The total acreage in the Coastal Basin within the 300' buffers drops to just over 96,000 acres.

These tables provide the viewer with a basis by which he or she may evaluate the impact that varying input features (e.g. perennial and intermittent streams vs. perennial streams only) and/or varying buffer sizes impose on the surrounding landscape. For example, the overall buffer area for perennial streams and water bodies within the Coastal Basin increases significantly, from 16,846 acres to 96,064 acres, when the buffer distance changes from 50' to 300'. These figures are further amplified when intermittent streams are included, as the buffered area increases from 23,853 to 133,109 acres. Recognizing the impacts associated with these changes in buffer delineations may provide an important foundation to policy makers when they consider alternate courses of action.

Table 2.	Town-level buffer acreage	summary based on per	rennial/intermittent streams and shorelines

	Input Fea		•		Output Fe					
	All Shorelines (feet)	Surface Water (acres)	Perennial/Intermittent Streams and Shorelines Buffers (acres)							
Town Name	Perennial/ Intermittent Streams and Shorelines	Water Polygons	50'	100'	150'	200'	250'	300'		
Alton	835841.4	12602.1	1396.3	2772.0	4128.6	5466.4	6784.4	8082.5		
Barrington	750320.4	1398.7	1327.8	2635.0	3920.0	5184.7	6432.9	7665.1		
Brentwood	279492.6	122.4	489.8	966.6	1430.9	1888.7	2340.6	2787.1		
Brookfield	224939.0	287.3	455.6	902.7	1341.9	1774.0	2197.3	2614.2		
Candia	404770.9	217.0	808.8	1618.1	2425.5	3228.6	4022.4	4803.0		
Chester	365230.1	99.9	764.2	1534.8	2310.1	3086.7	3864.5	4643.1		
Danville	155200.9	130.7	317.4	633.3	947.9	1258.9	1565.4	1867.6		
Deerfield	648786.3	763.8	1340.2	2683.2	4021.6	5354.4	6678.5	7987.1		
Derry	515406.6	545.6	1035.3	2080.3	3129.8	4180.3	5226.1	6264.4		
Dover	452149.0	1549.8	677.9	1346.3	2003.2	2652.9	3293.5	3924.5		
Durham	434998.2	1599.8	673.8	1334.4	1986.6	2634.7	3275.0	3909.3		
East Kingston	164524.4	62.8	339.6	673.0	998.7	1320.0	1636.2	1945.1		
Epping	465621.7	303.3	798.4	1578.7	2342.4	3091.5	3825.6	4538.9		
Exeter	387588.3	226.4	682.5	1343.0	1978.2	2594.4	3195.2	3783.7		
Farmington	496033.4	421.8	951.6	1903.8	2847.4	3777.2	4691.6	5584.8		
Fremont	257364.9	107.6	488.7	967.8	1439.5	1905.2	2361.8	2812.0		
Greenland	203552.1	1801.4	350.2	695.3	1035.1	1368.7	1697.8	2020.5		
Hampstead	223699.3	470.8	413.1	829.2	1244.9	1655.1	2060.1	2457.5		
Hampton	553371.9	785.8	894.4	1629.6	2184.5	2618.6	2988.5	3322.1		
Hampton Falls	384899.8	358.4	668.7	1239.7	1707.1	2095.0	2446.0	2779.6		
Kensington	192382.1	32.1	394.6	783.3	1164.2	1536.1	1899.6	2253.3		
Kingston	332357.7	956.5	570.9	1137.2	1694.3	2243.2	2782.9	3310.9		
Lee	301322.3	241.1	527.1	1057.8	1593.8	2132.2	2673.3	3215.3		
Madbury	204075.7	399.8	350.3	692.8	1030.4	1364.6	1696.6	2024.7		
Middleton	228101.0	284.0	467.9	931.0	1388.8	1841.3	2282.9	2714.5		
Milton	447336.4	847.3	790.2	1556.5	2310.9	3056.0	3788.9	4507.1		
New Castle	58421.4	841.4	68.9	129.3	184.3	233.8	276.8	314.8		
New Durham	572061.0	1707.9	1073.4	2131.7	3177.1	4205.1	5213.5	6200.3		
Newfields	103129.2	105.2	198.0	392.2	585.0	777.6	970.6	1163.4		
Newington	148858.0	2700.4	208.1	405.8	598.1	786.9	971.7	1152.8		
Newmarket	211379.4	1046.2	374.4	739.7	1097.2	1449.9	1797.9	2143.6		
North Hampton	262582.1	61.3	526.3	1045.5	1557.0	2053.6	2532.9	2995.7		
Northwood	461208.0	1382.7	834.6	1666.1	2494.4	3315.9	4128.2	4927.3		
Nottingham	650750.5	1117.2	1212.8	2402.9	3579.2	4744.3	5892.6	7024.8		
Pittsfield	338649.5	364.6	610.2	1219.6	1826.9	2431.1	3028.6	3620.3		
Portsmouth	251139.4	761.5	405.9	806.5	1200.4	1583.4	1958.1	2325.2		

	Input Fea	atures			Outpu	t Features		
	All Shorelines (feet)	Surface Water (acres)	Perennial/Intermittent Streams and Shorelines Buffers (acres)					
Town Name	Perennial/ Intermittent Streams and Shorelines	Water Polygons	50'	100'	150'	200'	250'	300'
Raymond	462460.5	504.5	843.7	1682.9	2514.8	3335.3	4145.3	4941.2
Rochester	833105.0	665.7	1349.2	2648.8	3913.8	5147.6	6354.5	7542.3
Rollinsford	133388.2	161.5	245.6	477.6	700.4	915.1	1125.0	1331.0
Rye	311155.4	408.4	524.4	1034.1	1513.7	1966.7	2394.2	2794.3
Sandown	238906.3	343.3	471.1	938.2	1399.3	1852.7	2298.5	2736.4
Seabrook	397582.2	494.9	681.2	1222.9	1625.4	1941.3	2215.3	2466.3
Somersworth	156747.8	179.4	269.4	534.9	797.6	1058.0	1317.1	1573.7
South Hampton	189312.7	102.5	352.5	680.0	985.9	1275.7	1553.2	1820.9
Strafford	684550.3	1627.4	1220.5	2417.0	3598.7	4763.5	5912.0	7047.1

421.8

1084.3

1027.9

31,979.5

837.8

2095.4

2025.3

63,059.6

1252.4

3053.6

2996.6

93,258.1

1666.6

3977.0

3944.5

122,735.0

2080.2

4870.0

4873.2

151,617.0

2487.9

5735.4

5787.0 179,949.6

Table 2. Town-level buffer acreage summary based on perennial/intermittent streams and shorelines (cont.)

244.8

6712.5

539.2

48,688.7

220346.7

633444.0

719311.4

17,947,855.4

Stratham

Wakefield

Wolfeboro

TOTAL

Table 3. Town-level buffer acreage summary based on perennial streams and shorelines.

	Input Fea	tures			Output F	eatures				
	All Shorelines (feet)	Surface Water (acres)	Perennial Streams and Shorelines Buffers (acres)							
Town Name	Perennial Streams and Shorelines	Water Polygons	50'	100'	150'	200'	250'	300'		
Alton	610338.2	12602.1	882.5	1753.4	2616.4	3473.8	4327.7	5179.1		
Barrington	633944.4	1398.7	1063.8	2112.7	3145.3	4164.8	5174.5	6175.6		
Brentwood	159862.6	122.4	224.6	455.1	691.8	936.6	1191.5	1457.2		
Brookfield	119179.2	287.3	215.0	427.6	639.0	850.1	1060.3	1270.4		
Candia	252757.8	217.0	463.4	934.7	1411.8	1895.4	2385.6	2878.2		
Chester	211004.3	99.9	414.8	847.0	1295.2	1757.1	2231.5	2719.1		
Danville	90327.2	130.7	168.8	338.1	507.5	675.2	841.4	1005.8		
Deerfield	392998.9	763.8	756.4	1524.2	2298.7	3080.0	3866.3	4653.4		
Derry	365238.1	545.6	695.0	1411.2	2145.7	2898.2	3666.7	4447.9		
Dover	452149.0	1549.8	677.9	1346.3	2003.2	2652.9	3293.5	3924.5		
Durham	434998.2	1599.8	673.8	1334.4	1986.6	2634.7	3275.0	3909.3		
East Kingston	97237.3	62.8	188.5	378.3	569.2	765.6	967.7	1173.0		
Epping	312745.1	303.3	456.3	912.7	1369.4	1826.3	2282.8	2734.9		
Exeter	314744.2	226.4	522.7	1039.2	1545.3	2047.0	2545.7	3043.5		
Farmington	289729.9	421.8	484.1	983.5	1494.0	2011.4	2533.3	3059.1		
Fremont	148142.6	107.6	242.9	485.6	731.6	982.8	1234.7	1488.1		
Greenland	203552.1	1801.4	350.2	695.3	1035.1	1368.7	1697.8	2020.5		
Hampstead	113754.6	470.8	164.0	337.5	519.5	709.4	906.9	1111.6		
Hampton	511697.3	785.8	804.5	1461.2	1949.4	2329.7	2655.0	2951.5		
Hampton Falls	328530.5	358.4	546.2	1007.2	1376.6	1677.8	1952.7	2222.0		
Kensington	113635.4	32.1	223.3	459.8	705.8	959.2	1217.0	1477.5		
Kingston	241931.4	956.5	368.6	741.9	1115.3	1490.8	1867.3	2242.5		
Lee	255434.2	241.1	425.1	859.9	1306.6	1761.8	2225.4	2696.0		
Madbury	204075.7	399.8	350.3	692.8	1030.4	1364.6	1696.6	2024.7		
Middleton	135811.8	284.0	257.9	515.0	772.9	1031.7	1290.5	1549.5		
Milton	327469.7	847.3	520.7	1030.1	1540.9	2055.6	2573.0	3090.9		
New Castle	58421.4	841.4	68.9	129.3	184.3	233.8	276.8	314.8		
New Durham	310985.4	1707.9	480.5	960.5	1443.2	1930.6	2422.9	2917.3		
Newfields	97086.4	105.2	184.2	364.7	543.9	722.9	902.5	1082.1		
Newington	148858.0	2700.4	208.1	405.8	598.1	786.9	971.7	1152.8		
Newmarket	202699.0	1046.2	354.8	701.3	1041.4	1377.5	1709.2	2038.3		
North Hampton	148785.3	61.3	277.2	571.6	879.6	1196.6	1517.9	1842.8		
Northwood	319606.1	1382.7	514.5	1035.6	1564.3	2100.9	2641.8	3181.5		
Nottingham	497555.2	1117.2	864.4	1712.5	2552.8	3389.2	4218.1	5038.8		
Pittsfield	249609.1	364.6	409.5	824.8	1243.4	1664.6	2086.6	2511.0		
Portsmouth	251139.4	761.5	405.9	806.5	1200.4	1583.4	1958.1	2325.2		

Table 3. Town-level	buffer acreage summary based on perennial streams and shorelines (cont.)

	Input Fea	itures			Output	Features		
	All Shorelines (feet)	Surface Water (acres)		Perennia		and Shorelir cres)	nes Buffers	
Town Name	Perennial Streams and Shorelines	Water Polygons	50'	100'	150'	200'	250'	300'
Raymond	351306.4	504.5	590.9	1182.5	1771.7	2356.4	2937.5	3514.2
Rochester	607633.5	665.7	848.4	1684.7	2523.1	3367.8	4220.9	5087.4
Rollinsford	133388.2	161.5	245.6	477.6	700.4	915.1	1125.0	1331.0
Rye	283744.4	408.4	464.2	919.0	1349.8	1760.7	2152.5	2524.0
Sandown	117448.2	343.3	196.9	398.8	604.3	812.1	1021.5	1232.5
Seabrook	373187.7	494.9	627.2	1118.1	1473.2	1746.4	1981.7	2199.1
Somersworth	138420.2	179.4	228.9	458.3	688.5	919.0	1150.4	1381.2
South Hampton	125753.0	102.5	213.5	416.4	611.5	805.0	999.1	1194.9
Strafford	495504.0	1627.4	796.5	1589.6	2388.9	3193.9	4001.2	4811.1
Stratham	192941.5	244.8	363.1	732.6	1108.9	1492.8	1883.4	2274.6
Wakefield	519238.0	6712.5	808.2	1553.0	2254.6	2931.5	3591.4	4236.1
Wolfeboro	383139.8	539.2	768.5	1512.4	2236.5	2943.9	3639.6	4325.2
TOTAL	13,327,739.9	48,688.7	22,061.2	43,640.3	64,766.0	85,632.2	106,370.2	127,021.7

Table 4. HUC12-level buffer acreage summary based on perennial/intermittent streams and shorelines

	Input Fe	atures	-		Output F	Features		
HUC-12 Code	All Shorelines (feet)	Surface Water (acres)	Perennial/Intermittent Streams and Shoreline Buffers (acres)					
and Name ¹	Perennial/ Intermittent Streams and Shorelines	Water Polygons	50'	100'	150'	200'	250'	300'
0401-Upper Branch River - Lovell Lake	345,964.4	233.1	627.9	1,235.2	1,825.3	2,401.6	2,962.6	3,510.5
0402-Junes Brook - Branch River	230,875.4	1,310.2	641.4	1,263.0	1,874.9	2,478.3	3,069.5	3,647.3
0403-Headwaters - Great East Lake 0404-Milton Pond 0405-Middle Salmon Falls	175,720.5 382,669.6	652.0 368.4	401.6 289.5	789.0 564.1	1,166.5 834.1	1,534.3 1,100.1	1,891.7 1,360.9	2,238.6 1,615.1
River 0406-Lower Salmon Falls	86,853.5	276.3	631.4	1,237.8	1,826.2	2,400.9	2,967.4	3,527.2
River 0601-Upper Cocheco River	569,674.6 155,525.7	515.8 368.3	123.2 1,175.1	243.5 2,347.7	363.0 3,512.0	481.1	597.2 5,788.0	711.5 6,887.3
0602-Axe Handle Brook	416,376.4	268.0	294.5	587.6	878.9	1,170.1	1,461.5	1,751.7
0603-Middle Cocheco River	215,915.1	1,239.6	679.4	1,342.2	1,989.4	2,615.7	3,225.2	3,820.3
0604-Bow Lake 0605-Nippo Brook - Isinglass River	347,926.6 239,246.2	272.1 351.3	341.3 672.1	664.4 1,338.7	977.1 1,998.8	1,282.5	1,582.4 3,289.4	1,880.8 3,917.3
0606-Long Pond 0607-Lower	430,596.2	512.3	426.5	851.8	1,276.7	1,700.3	2,119.3	2,534.2
Isinglass River 0608-Lower Cocheco River	397,433.5 467,017.2	421.5 211.8	672.8 665.6	1,332.6	1,979.4	2,613.0	3,233.1 3,212.0	3,842.3 3,823.4
0701-Headwaters - Lamprey River	233,589.2	139.1	947.6	1,891.9	2,828.7	3,757.8	4,678.6	5,581.7
0702-North Branch River 0703-Middle	654,506.0	617.5	454.5	911.3	1,368.3	1,823.4	2,273.9	2,714.0
Lamprey River 0704- Pawtuckaway	306,743.9	913.7	1,152.3	2,294.9	3,425.0	4,540.2	5,640.8	6,721.6
Pond	338,626.6	253.2	498.2	984.0	1,461.8	1,931.4	2,391.3	2,842.3
0705-Bean River	171,385.6 234,467.7	62.7 361.5	690.2 362.0	1,379.4 723.5	2,068.2 1,083.5	2,755.0 1,441.3	3,435.1 1,796.7	4,105.3 2,149.4
0706-North River 0707-Little River 0708-Piscassic	312,544.3	103.3	453.0	898.8	1,338.7	1,441.3	2,211.0	2,149.4 2,641.6
River 0709-Lower	385,246.4	448.3	634.7	1,257.6	1,872.3	2,483.5	3,089.5	3,691.4
Lamprey River 0801-Watson	229,915.9	97.3	574.4	1,136.3	1,689.3	2,234.0	2,773.4	3,308.4
Brook	488,782.0	222.1	475.1	949.0	1,420.3	1,888.0	2,351.0	2,808.6

Table 4. HUC12-level buffer acreage summary based on perennial/intermittent streams and shorelines (cont.)

	Input Fea	atures		Output Features					
HUC-12 Code	All Shorelines (feet)	Surface Water (acres)	Perennial/Intermittent Streams and Shoreline Buffers (acres)						
and Name ¹	Perennial/ Intermittent Streams and Shorelines	Water Polygons	50'	100'	150'	200'	250'	300'	
0802-Towle Brook - Lily Pond	355,776.8	170.1	1,018.4	2,039.5	3,060.0	4,073.6	5,078.6	6,073.9	
0803-Spruce Swamp - Little River	222,497.1	36.0	620.9	1,225.7	1,817.7	2,400.3	2,972.6	3,535.8	
0804-Little River	393,778.5	165.4	466.1	926.2	1,379.1	1,826.7	2,269.6	2,707.5	
0805-Great Brook - Exeter River	335,385.6	550.9	702.5	1,378.9	2,023.1	2,643.1	3,245.8	3,832.8	
0806-Squamscott River 0901-Winnicut	290,788.3	99.2	608.4	1,205.8	1,798.9	2,389.2	2,973.9	3,549.7	
River	432,234.3	560.6	570.4	1,131.8	1,684.6	2,227.1	2,761.1	3,285.0	
0902-Oyster River	540,996.0	1,278.4	802.3	1,600.5	2,397.3	3,192.9	3,983.2	4,767.9	
0903-Bellamy River	391,336.5	5,999.5	931.0	1,836.8	2,722.0	3,593.1	4,454.5	5,307.3	
0904-Great Bay	315,404.2	2,315.3	593.0	1,179.4	1,764.1	2,346.8	2,924.4	3,494.7	
1001-Portsmouth Harbor	325,798.8	326.1	438.5	856.4	1,256.0	1,633.1	1,991.5	2,336.4	
1002-Berrys Brook - Rye Harbor	519,182.5	270.5	622.8	1,231.2	1,808.0	2,357.6	2,881.8	3,378.3	
1003-Taylor River - Hampton River	967,479.3	1,233.0	930.2	1,777.1	2,533.2	3,228.1	3,888.9	4,526.2	
1004-Hampton Harbor	171,655.5	26.3	1,664.8	3,012.4	4,022.7	4,797.6	5,452.3	6,041.9	
TOTAL	13,079,916.1	23,250.7	23,853.8	46,944.6	69,284.3	91,019.4	112,279.5	133,109.0	

 $^1 {\rm First} \ 8 \ {\rm digits} \ {\rm of} \ {\rm HUC12} \ {\rm codes} \ (01060003) \ {\rm are} \ {\rm omitted} \ {\rm to} \ {\rm conserve} \ {\rm space}.$

Table 5. HUC12-level buffer acreage summary based on perennial streams and shorelines

	Input Fe	atures	Output Features							
HUC-12 Code	All Shorelines (feet)	Surface Water (acres)	Perennial Streams and Shoreline Buffers (acres)							
and Name ¹	Perennial Streams and Shorelines	Water Polygons	50'	100'	150'	200'	250'	300'		
0401-Upper Branch River - Lovell Lake	243,219.2	233.1	347.1	682.9	1,011.9	1,336.7	1,656.8	1,972.9		
0402-Junes Brook - Branch River	160,157.3	1,310.2	408.3	802.4	1,193.5	1,584.3	1,974.5	2,364.0		
0403-Headwaters - Great East Lake	143,799.4	652.0	242.2	477.1	708.3	937.0	1,165.1	1,391.0		
0404-Milton Pond	287,243.6	368.4	218.1	425.3	631.8	838.1	1,044.1	1,249.1		
0405-Middle Salmon Falls River	86,853.5	276.3	418.0	824.9	1,227.6	1,627.9	2,031.1	2,438.3		
0406-Lower Salmon Falls River	282,915.3	515.8	123.2	243.5	363.0	481.1	597.2	711.5		
0601-Upper Cocheco River	87,111.5	368.3	523.1	1,059.9	1,609.5	2,169.1	2,734.3	3,303.4		
0602-Axe Handle Brook	301,951.2	268.0	140.0	284.0	432.3	586.3	745.8	909.0		
0603-Middle Cocheco River	160,664.1	1,239.6	421.6	838.5	1,252.7	1,662.1	2,071.8	2,482.9		
0604-Bow Lake	266,244.0	272.1	216.5	419.4	617.1	812.4	1,007.1	1,203.2		
0605-Nippo Brook - Isinglass River	155,084.3	351.3	490.5	986.9	1,488.2	1,991.5	2,493.8	2,994.3		
0606-Long Pond	347,099.4	512.3	237.0	479.5	728.4	982.7	1,239.5	1,499.9		
0607-Lower Isinglass River	373,035.1	421.5	487.0	973.9	1,460.5	1,946.6	2,429.6	2,911.2		
0608-Lower Cocheco River	282,830.3	211.8	612.4	1,217.5	1,815.3	2,408.0	2,997.8	3,581.1		
0701-Headwaters - Lamprey River	152,872.1	139.1	528.0	1,059.9	1,594.5	2,132.8	2,674.7	3,213.9		
0702-North Branch River	466,659.4	617.5	269.8	543.2	818.6	1,094.6	1,369.9	1,641.6		
0703-Middle Lamprey River	254,567.2	913.7	729.1	1,465.9	2,206.3	2,947.6	3,690.6	4,431.8		
0704-Pawtuckaway Pond	233,208.6	253.2	378.5	744.6	1,104.4	1,460.2	1,809.0	2,151.0		
0705-Bean River	97,422.9	62.7	451.6	908.5	1,370.4	1,836.9	2,306.6	2,776.3		
0706-North River	174,831.6	361.5	195.2	394.9	598.6	806.2	1,017.7	1,231.4		
0707-Little River 0708-Piscassic	250,594.4	103.3	317.8	632.2	943.0	1,253.8	1,564.2	1,874.7		
River	343,714.6	448.3	496.8	990.6	1,484.3	1,982.5	2,481.9	2,983.3		
0709-Lower Lamprey River	153,578.4	97.3	481.9	956.8	1,428.1	1,895.0	2,360.8	2,825.6		
0801-Watson Brook	261,659.7	222.1	302.1	607.6	915.7	1,225.6	1,535.8	1,846.5		

Table 5. HUC12-level buffer acreage summary based on perennial streams and shorelines (cont.)

HUC-12 Code and Name ¹	Input Features		Output Features					
	All Shorelines (feet)	Surface Water (acres)	Perennial Streams and Shoreline Buffers (acres)					
	Perennial Streams and Shorelines	Water Polygons	50'	100'	150'	200'	250'	300'
0802-Towle Brook - Lily Pond	232,403.9	170.1	505.5	1,031.1	1,574.1	2,131.3	2,699.5	3,278.8
0803-Spruce Swamp - Little								
River	115,147.3	36.0	345.5	689.9	1,036.4	1,388.1	1,743.4	2,103.3
0804-Little River	273,842.0	165.4	226.8	462.4	705.8	957.2	1,217.1	1,483.9
0805-Great Brook - Exeter River	306,099.8	550.9	436.3	867.4	1,289.0	1,709.6	2,131.9	2,556.3
0806-Squamscott River	222,376.7	99.2	545.9	1,093.8	1,646.7	2,205.6	2,766.6	3,325.7
0901-Winnicut River	394,295.0	560.6	422.0	852.5	1,289.9	1,734.5	2,186.0	2,640.2
0902-Oyster River	511,298.8	1,278.4	715.4	1,426.9	2,137.8	2,847.9	3,553.5	4,255.3
0903-Bellamy River	391,336.5	5,999.5	863.0	1,700.9	2,518.4	3,322.5	4,116.7	4,902.5
0904-Great Bay	315,404.2	2,315.3	593.0	1,179.4	1,764.1	2,346.8	2,924.4	3,494.7
1001-Portsmouth Harbor	288,912.2	326.1	438.5	856.4	1,256.0	1,633.1	1,991.5	2,336.4
1002-Berrys Brook - Rye Harbor	407,439.3	270.5	542.3	1,078.3	1,590.6	2,083.6	2,559.4	3,015.6
1003-Taylor River - Hampton River	886,493.3	1,233.0	690.8	1,329.9	1,907.5	2,452.5	2,987.0	3,521.6
1004-Hampton Harbor	105,957.2	26.3	1,485.7	2,666.9	3,523.0	4,158.0	4,684.8	5,161.8
TOTAL	10,018,322.9	23,250.7	16,846.5	33,255.5	49,242.9	64,969.9	80,561.5	96,064.2

¹First 8 digits of HUC12 codes (01060003) are omitted to conserve space.

Conclusions

Development of stream/shoreline buffers for the GRANIT Data Mapper utilized existing data layers archived in the GRANIT database to describe areas of land within various buffer widths, ranging from 50' to 300'. The results indicate that aggregated at the HUC-12 level, almost 24,000 acres within the Coastal Basin were covered by 50' buffers when both perennial and intermittent streams as well as shorelines were buffered, with over 133,000 acres covered by 300' buffers. When only perennial streams and shorelines were considered eligible for buffering, the totals declined to just under 17,000 acres (50' buffers) and over 96,000 acres (300' buffers).

The feature data, as well as the tabular acreage summaries, were incorporated in the water resources theme of the GRANIT Data Mapper, thereby making the data viewable within the context of a host of other data sets offered. Of particular importance, users may place the buffers on top of aerial imagery, and observe the land features contained within particular buffers of interest.

The stream buffers hosted in the Data Mapper offer coastal communities the opportunity to visualize buffers based on various input features and on varying widths, and further, to calculate the land acreage associated with each buffer selection. These data may be used to inform discussions among users interested in establishing and/or extending municipal buffer protection measures.

Recommendations

While delivering the buffer data sets through the GRANIT Data Mapper offers a valuable resource to municipal decision-makers, land use boards, and the general public, we are always cognizant that additional and/or updated data sets will enhance the utility of these and other efforts. Accordingly, we recommend that resources be directed at ensuring that current and comprehensive data sets – including aerial imagery, land use, and parcel layers – be developed and maintained, and be hosted on publicly accessible web sites.

Of particular note, we recognize that evaluating the potential impact of any buffers on a local level would be significantly enhanced by the ability to overlay municipal parcel data. We recommend that efforts be specifically directed at compiling, maintaining, hosting, and providing web-based access to digital tax parcel data.