
University of New Hampshire
University of New Hampshire Scholars' Repository

Master's Theses and Capstones Student Scholarship

Fall 2014

Gradual Generalization of Nautical Chart
Contours with a B-Spline Snake Method
Dandan Miao
University of New Hampshire - Main Campus

Follow this and additional works at: https://scholars.unh.edu/thesis

This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been
accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For
more information, please contact nicole.hentz@unh.edu.

Recommended Citation
Miao, Dandan, "Gradual Generalization of Nautical Chart Contours with a B-Spline Snake Method" (2014). Master's Theses and
Capstones. 7.
https://scholars.unh.edu/thesis/7

https://scholars.unh.edu?utm_source=scholars.unh.edu%2Fthesis%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/student?utm_source=scholars.unh.edu%2Fthesis%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis?utm_source=scholars.unh.edu%2Fthesis%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/thesis/7?utm_source=scholars.unh.edu%2Fthesis%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

GRADUAL GENERALIZATION OF NAUTICAL CHART CONTOURS

WITH A B-SPLINE SNAKE METHOD

BY

 DANDAN MIAO

BS in Geographic Information Systems, Wuhan University, 2009

THESIS

Submitted to the University of New Hampshire

in Partial Fulfillment of

the Requirements for the Degree of

Master of Science

in

Ocean Engineering

September, 2014

ALL RIGHTS RESERVED

© 2014

Dandan Miao

This thesis has been examined and approved.

Dr. Brian Calder,

Associate Research Professor of Ocean Engineering

Dr. Kurt Schwehr

Affiliate Associate Professor of Ocean Engineering

Dr. Steve Wineberg

Lecturer, Mathematics and Statistics

Date

 v

 vi

ACKNOWLEDGMENTS

 This study was sponsored by NOAA grant NA10NOS400007, and supported by the

Center for Coastal and Ocean Mapping. Professor Larry Mayer introduced me to the world of

Ocean Mapping, and taught me new information about geological oceanography; Professor Brian

Calder initiated this study and has always been able to selflessly help me with any questions;

Professor Steven Wineberg gave me many insights of how to transfer math concepts to graphic

behavior; Professor Kurt Schwehr helped me with many intelligent thoughts and suggestion about

computer programming implementation. I am grateful for all their selfless help and patience, and

I would like to thank all of them for their guidance, encouragement and proof-reading of this

thesis: without them and CCOM’s support, this work would not have happened.

 Finally, I would like to thank my parents and friends, for encouragement and trust. Your

love and faith gave me the strength to keep holding on and finally make it work! Love you all!

With greatest thankfulness,

Dandan Miao

 vii

TABLE OF CONTENTS

ACKNOWLEDGMENTS .. vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES .. xi

ACRONYMS ... xv

ABSTRACT .. xvi

CHAPTER PAGE

I. INTRODUCTION ... 17

1.1 Problem Statement .. 17

1.2 Research Background .. 26

1.2.1 Contours and Nautical Charts .. 26

1.2.2 Shoal-biased Rule of Nautical Chart Contours .. 28

1.3 Prior Work ... 29

1.4 Contribution of This Thesis ... 37

II. Background Theory .. 38

2.1 B-spline Curve ... 38

2.1.1 B-spline Curve Definition .. 38

2.1.2 Cubic B-spline Curve ... 39

2.2 Snake Method .. 40

2.2.1 Snake Method Definition ... 40

2.3 B-spline Snake Method ... 42

2.3.1 B-spline Snake Energy Terms for Polylines .. 42

2.3.2 B-spline Snake Energy Terms for Polygons .. 47

2.3.3 Smoothing Operator ... 48

 viii

 2.3.3.1 Smoothing Operator Implementation.. 50

2.3.4 Simplification Operator ... 50

 2.3.4.1 Simplificatioin Operator Implementation ... 51

2.3.5 Shoal-biased Operator .. 53

 2.3.5.1 Shoal-biased Operator Method ... 54

 2.3.5.2 Shoal-biased Operator Implementation .. 54

III. OPERATORS, AUXILIARY FUNCTIONS AND WORKFLOW DESIGN 56

3.1 Operators ... 56

3.1.1 Aggregate Operator .. 56

 3.1.1.1 Aggregate Operator Method ... 58

 3.1.1.2 Aggregate Operator Implementation .. 60

 3.1.1.2.1 Aggregate Operator Case One Implementation 60

 3.1.1.2.2 Aggregate Operator Case Two Implementation 63

 3.1.1.2.3 Aggregate Operator Case Three Implementation 67

 3.1.1.2.4 Aggregate Operator Case Four Implementation 69

 3.1.1.2.5 Two Polylines .. 70

3.1.2 Exaggerate Operator .. 71

 3.1.2.1 Exaggerate Operator Method .. 74

 3.1.2.2 Exaggerate Operator Implementation ... 75

 3.1.1.2.1 Polygon Exaggerate Operator Implementation 75

 3.1.1.2.2 Polyline Exaggerate Operator Implementation 76

3.2 Auxiliary Functions ... 77

3.2.1 B-spline Snake calculation ... 78

3.2.2 Preprocess Polygon Contour Function ... 79

3.2.3 Maintain Minimum Distance Between Neighbor Contours Function 80

3.2.4 Polygon Group Intersection Prevention Function .. 80

 ix

3.2.5 Self Intersection Removal Function ... 81

3.3 Workflow .. 82

3.3.1 Workflow for Single Polyline Contour Generalization ... 82

3.3.2 Workflow for One Polyline and Multiple Polygons On One Side 83

3.3.3 Workflow for A Group of Polygon Contours Exaggeration and Aggregation 85

3.3.4 Workflow for Concentric Polygon Contours Exaggeration and Aggregation 86

3.3.5 Workflow for Polyline and Polygon Contour Exaggeration and Aggregation 87

 3.4 Summary ... 89

IV. TEST EXAMPLES.. 90

4.1 Test Scenario One: One Line Example ... 90

4.2 Test Scenario Two: Polyline Contour and Polygon Contour Aggregation 97

4.3 Test Scenario Three: A Group of Polygon Contours Exaggeration and Aggregation..... 103

4.4 Test Scenario Four: Concentric Polygon Contours Exaggeration and Aggregation 110

4.5 Test scenario Five: Polyline and Polygon Contours Exaggeration and Aggregation 115

V. DISCUSSION AND FUTURE WORK ... 124

5.1 Discussion ... 124

5.2 Future Work ... 125

LIST OF REFERENCES ... 127

APPENDICES ... 129

A.0 Distance Unit Definition ... 130

A.1 Parameter in Algorithm 3-2 .. 130

A.2 Parameter in Algorithm 3-4 .. 132

A.3 Parameter in Algorithm 3-13 .. 133

A.4 Point Adding Parameter in Algorithm 3-14 ... 134

A.5 Neighbor Points Parameter in Algorithm 3-14 and 3-9 .. 135

 x

A.6 Delete Points Parameter in Algorithm 3-14 and 2-1 .. 135

A.7 Parameter in Algorithm 3-8 .. 135

A.8 Parameter in Algorithm 3-10 .. 136

A.9 Parameter in Algorithm 3-11 .. 136

A.10 Parameter in Algorithm 3-13, 3-14, 3-16, 3-17 .. 137

 xi

LIST OF FIGURES

Figure 1-1: Generalization of paper nautical chart .. 17

Figure 1-2: Generalization result of a B-spline Snake Method .. 18

Figure 1-3: One 60 foot contour on a 1:20,000 scale raster chart .. 20

Figure 1-4: One 30 foot contour on a 1:80,000 scale raster chart .. 21

Figure 1-5: One 60 foot polyline contour and several 60 foot polygon contourson 22

Figure 1-6: One 60 foot contour from the 1:80,000 scale raster chart 13286 23

Figure 1-7: Polygon contours on 1:20,000 scale raster chart ... 24

Figure 1-8: Polygon contours on 1:80,000 scale raster chart ... 25

Figure 1-9: Example illustrating the shoal-biased rule .. 29

Figure 1-10: Operators of generalization ... 30

Figure 1-11: Example of simplification process .. 31

Figure 1-12: The Douglas-Peucker algorithm ... 32

Figure 1-13: Example of smoothing process ... 32

Figure 1-14: Example of aggregation process ... 33

Figure 1-15: Example of exaggeration process .. 34

Figure 1-16: Example of how each Shea and McMaster operators works..................................... 35

Figure 2-1: Control points (0 1 7,Q Q Q  ) of a B-spline curve (grey solid line) 39

Figure 2-2: First three degrees of basis functions for B-spline curves .. 40

Figure 2-3: Curvature definition at parameter i ... 43

Figure 2-4a: Internal and external forces in the generalization process ... 46

Figure 2-4b: Internal and external forces in the generalization process .. 46

Figure 2-4c: Internal and external forces in the generalization process ... 47

Figure 2-5: Sample spatial transformation of smoothing operator .. 48

 xii

Figure 2-6: Sample contour line from 1:20,000 scale raster chart ... 49

Figure 2-7: Sample contour line from 1:40,000 scale raster chart ... 49

Figure 2-8: Sample spatial transformation of simplification operator ... 51

Figure 2-9: Sample of contours in 1:40,000 scale and 1:80,000 scale raster chart 51

Figure 2-10: Example of shoal-biased principle .. 53

Figure 3-1: Sample spatial transformation of aggregate operator .. 56

Figure 3-2. Sample of aggregation of a polyline and polygons ... 57

Figure 3-3: Sample of aggregation of two polygons .. 58

Figure 3-4: Sample of aggregation of a group of simple polygon contours 58

Figure 3-5: Samples of aggregate operator Cases One - Four ... 59

Figure 3-6: Two steps of aggregate operator in Case One ... 60

Figure 3-7: Finding the starting and ending index for the selected segment of the polyline

and polygon .. 62

Figure 3-8: Check if line 1 2S S and line 1 2E E intersect with the polygon 62

Figure 3-9: Aggregate operator Case One result ... 63

Figure 3-10: Aggregation Case Two .. 64

Figure 3-11: Angles formed by the supporting line and neighbor segment should be obtuse 64

Figure 3-12: Aggregate operator Case Two result ... 67

Figure 3-13: Aggregate operator Case Three step one .. 68

Figure 3-14: Aggregate operator Case Three step two .. 68

Figure 3-15: Aggregate operator Case Three result .. 69

Figure 3-16: Two steps of aggregate operator in Case Four .. 69

Figure 3-17: Sample spatial transformation of exaggerate operator .. 71

Figure 3-18a: Sample of exaggeration of simple polygon contour0 .. 71

Figure 3-18b: Sample of exaggeration of simple polygon contour .. 72

 xiii

Figure 3-19: Sample exaggeration of simple polygon contour .. 72

Figure 3-20: Sample of exaggeration of one complex long polyline ... 73

Figure 3-21: Illustration of balloon force at one vertex of a polygon contour 74

Figure 3-22: Illustration of a polygon contour after exaggeration ... 76

Figure 3-23: Illustration of when polyline exaggeration is needed .. 76

Figure 4-1: Original input with background of raster chart 13283 .. 91

Figure 4-2: Original input on raster chart 13278 ... 92

Figure 4-3: Original input contour line with star symbol at each vertex 93

Figure 4-4: Intermediate stage of the generalization process... 94

Figure 4-5: Generalization result of one simple polyline contour generalization 95

Figure 4-6: Original input line versus gradual generalization results .. 96

Figure 4-7: Original input contours with background of raster chart .. 97

Figure 4-8: The input contours on the background of raster chart ... 98

Figure 4-9: Original input of one polyline and nine polygon contours .. 99

Figure 4-10: An early stage of generalization at about 10% of the whole iteration 100

Figure 4-11: Intermediate stage of generalization at about 30% of the whole iteration 101

Figure 4-12: The final state of generalization .. 102

Figure 4-13: Input polygon contours on a background of raster chart 13283 103

Figure 4-14: Input polygon contours on a background of raster chart 13286 104

Figure 4-15: Input of a set of simple polygon contours ... 105

Figure 4-16: Intermediate stage of the generalization process at 18th iteration 106

Figure 4-17: Intermediate stage of the generalization process at 68th iteration 107

Figure 4-18: Intermediate stage of the generalization process at 140th iteration 108

Figure 4-19: Generalization result of test scenario 3 at 244th iteration .. 109

Figure 4-20: Input polygon contours on a background of raster chart 13283 110

Figure 4-21: Selected area on raster chart 13286 ... 111

 xiv

Figure 4-22: Input concentric contours in depth coded color at iteration 0 112

Figure 4-23: Intermediate stage of the generalization process at 44th iteration 113

Figure 4-24: Generalization result of test scenario four at 251st iteration 114

Figure 4-25: Input data with a background of raster chart 13283 .. 115

Figure 4-26: Input data on the background of 1:80,000 scale raster chart 116

Figure 4-27: Initial input data at iteration 0 ... 117

Figure 4-28: Intermediate stage of the generalization process at 11th iteration 118

Figure 4-29: Intermediate stage of the generalization process at 17th iteration 119

Figure 4-30: Intermediate stage of the generalization process at 150th iteration 120

Figure 4-31: Intermediate stage of the generalization process at 900th iteration 121

Figure 4-32: Generalization result at 1600ht iteration .. 122

Figure 4-33: Generalization result comparison .. 123

FIGURES IN APPENDICES

Figure A.1: Location of vertices in algorithm 3-2 .. 132

 Figure A.4: Location of vertices in algorithm 3-14 .. 134

 xv

ACRONYMS

ECDIS ---------- Electronic Chart Display and Information System

ECS --- Electronic Chart System

ENC ------------------------------------ Electronic Navigational Charts

NOAA --------- National Oceanic and Atmospheric Administration

 xvi

ABSTRACT

GRADUAL GENERALIZATION OF NAUTICAL CHART CONTOURS

WITH A B-SPLINE SNAKE METHOD

By

Dandan Miao

University of New Hampshire , September, 2014

 B-spline snake methods have been used in cartographic generalization in the past

decade, particularly in the generalization of nautical charts where these methods yield good

results with respect to the shoal-bias rules for the generalization of chart contours. However,

previous studies only show generalization results at particular generalization (or scale) levels,

and show only two states of the algorithm: before and after generalization, but nothing in

between. This thesis presents an improved method of using B-spline snakes and other auxiliary

functions and workflows for generalization in the context of nautical charts which can generalize

multiple nautical chart features from large scale to small scale without creating any invalid

intermediate features that require special processing to resolve. This process allows users to

generate charts at any intermediate scale without cartographic irregularities, and is capable of

extension to include more specialized generalization operators.

 17

CHAPTER I

 INTRODUCTION

1.1 Problem Statement

 Generalization is a branch of cartography which studies the process of how the contents of

a map change when the scale of the map changes (Figure 1-1). The generalization process is

traditionally done by cartographers manually, even though computers are widely used in the map

production process. Generalization, due to its complex nature, remains a procedure that requires

large amounts of manual processing.

Figure 1-1: Generalization of paper nautical chart

Selected area of paper nautical charts of Duck Island (coastal New Hampshire) at various

scales. All of the images represent the same geographic area.

 18

 Although generalization is a complex process, many studies have been done in this field.

For land maps, studies have been conducted to establish principles of generalization (Shea and

McMaster, 1989; Wang and Muller, 1998; Ware, 2003). However, the studies listed here focus on

land maps. A nautical chart, on the other hand, is another type of map; it is a graphic

representation of a maritime area and adjacent coastal regions. The contents of a nautical chart are

different from a land map, and the purposes are different too, which leads to distinct generalization

rules for nautical charts. Studies on nautical chart generalization are not as frequent as for land

maps. Guilbert and collaborators (Guilbert and Lin, 2007; Guilbert and Saux, 2008) used a B-

spline Snake method to generalize the contours of a nautical chart. However, their method only

showed the starting and finishing status of contours after the generalization process (Figure 1-2).

Figure 1-2: Generalization result of a B-spline Snake Method

The figure on the left side is the selected nautical chart before generalization; the figure on

the right side is the generalized result (Guilbert and Saux, 2008).

 Generalization should be a gradual process between scales: when the scale gradually

changes the contents should change gradually too. This study focuses on finding generalization

tools, operators, and workflows to make generalization a gradual process, and to carry out

generalization without causing cartographic difficulties in the process.

 19

 Current generalization processes are mostly done by cartographers manually. With their

previous knowledge and experience, cartographers draw new contours on a smaller scale chart

based on contours and sounding data from larger scale charts. By examining how cartographers do

generalization, two rules can be summarized as principles of chart contour generalization:

1) From a large scale chart to a small scale chart, contours are simplified and smoothed, and

when their shape is changed, they are only moved to the deeper side of the original curve

(Figure 1-3 and Figure 1-4).

From Figure 1-3 and Figure 1-4, compared to the 30 foot contour on the 1:20,000 scale

chart, the 30 foot contour on the 1:80,000 scale chart is simplified and smoothed, and when

it is smoothed, its shape is changed such that the 30 foot contour on the 1:80,000 scale

chart is moved to the deeper side of the 30 foot contour on the 1:20,000 scale chart. The

reason why smoothing is only done by shifting the contour to the deeper side (primarily

navigational safety) is discussed in section 1.2.2.

 20

Figure 1-3: One 30 foot contour on a 1:20,000 scale raster chart

The green contour in this figure is a 30 foot contour from raster chart 13283 (scale 1:20,000)

of Portsmouth Harbor, NH. Together with Figure 1-4, these two figures show how the

contour representing the same depth has different shapes in charts of different scales.

 21

Figure 1-4: One 30 foot contour on a 1:80,000 scale raster chart

The grey line indicated by the green arrow is the 30 foot contour from raster chart 13278

(scale 1:80,000) of Portsmouth Harbor, NH. The green line is the 30 foot contour on the

1:20,000 scale chart. The grey line does not overlap with the green line, it moves to the

deeper side of the original green 30 foot contour, and the shape of the grey contour is less

complex than the green contour.

2) From a large scale chart to a small scale chart, polyline (open contours) and polygon

contours (enclosed contour) will be aggregated; polygon contours will aggregate with each

other and eventually be aggregated with the polyline contour. Figure 1-5 and Figure 1-6

demonstrate how cartographers aggregated polygon contours with a polyline contour

during generalization: in the 1:80,000 scale chart, the polygon contours are deleted and

 22

aggregated into the 60 foot contour line. Figure 1-7 and Figure 1-8 show that cartographers

aggregate small polygon contours from the 1:20,000 scale chart with large polygon

contours from the 1:80,000 scale chart.

Figure 1-5: One 60 foot polyline contour and several 60 foot polygon contours

The green contours are the selected 60 foot contours from the 1:20,000 scale raster chart 13283 of

Portsmouth Harbor, NH. This figure shows how one 60 foot polyline and several 60 foot polygon

contours on the 1:20,000 scale chart aggregate with each other. Together with Figure 1-6, these

two figures show how polygon contours are aggregated in cartographers' manual process of

generalization.

 23

Figure 1-6: One 60 foot contour from the 1:80,000 scale raster chart 13286

The green contours are the 60 foot polyline and polygon contours from the 1:20,000 scale chart;

the blue contour (indicated by the green arrow) is the 60 foot contour from the 1:80,000 scale

raster chart 13826 of Portsmouth Harbor, NH. In this figure, all these 60 foot green contours,

which are originally from the 1:20,000 scale chart, are all deleted. There is only one 60 foot

contour on the 1:80,000 scale chart. All polygon contours are aggregated with the polyline

contour, and the generalized result is only one polyline contour (the blue curve). Note: the pink

“Chart 13283” label means the detail information at this area can be found on chart 13283.

 24

Figure 1-7: Polygon contours on 1:20,000 scale raster chart

The green contours are the selected 30 foot polygon contours from raster chart 13283 of

Portsmouth Harbor, NH. This figure and Figure 1-8 show how polygon contours aggregate

with each other in cartographers' generalization.

 25

Figure 1-8: Polygon contours on 1:80,000 scale raster chart

The grey polygon contours with blue tint inside are the corresponding contours to Figure 1-7 on

raster chart 13826 of Portsmouth Harbor, NH. The green contours are the contours with the same

depth on the 1:20,000 scale chart. Compared to the green contours, the grey contours are larger

and each grey polygon covers several green polygon contours. This figure and Figure 1-7 show

that in the generalization process, the cartographers exaggerate each polygon, and aggregate

neighbor polygon when they get too close.

 However, in the manual process of generalization of raster charts, cartographers only

provide contours at certain scales, for example at the 1:20,000 and 1:80,000 scales in Figure 1-5 to

Figure 1-8. In reality, users might want more scales in between, as it is a large scale change from

1:20,000 to 1:80,000. The question is how to create a process that does generalization similar to

the way cartographers do it manually with the ability to show contours at intermediate stages. This

 26

study will focus on developing algorithms that simplify and smooth the contours, and exaggerate

and aggregate contours when needed. These algorithms will be combined into workflows that

generate a gradual generalization process, such that the intermediate stages of generalization will

be available, and large scale nautical chart features can be generalized into small scales without

creating any invalid intermediate cartographic errors.

1.2 Research Background

1.2.1 Contours and Nautical Charts

 Contours are one of the primary bathymetric features on nautical charts. They depict the

geomorphologic shape of the seafloor, indicate the shallow areas, and provide safety of navigation

information for mariners. Nautical charts make a distinction between isobaths (i.e., a line that

connects all points with the same depth) and contours (i.e., a line that contains all points shallower

[shoaler] than a given depth). This thesis is concerned with contours, as they are a more general

description of a depth boundary, and required for maintenance of navigational safety when

constructing a chart.

A nautical chart is a different form of map; it is a graphic representation of a maritime

area and adjacent coastal regions. Unlike a map, which is oriented to terrestrial use, the nautical

chart provides information relevant to marine navigation (NOAA, 1997). The focus of the

nautical chart is on water areas, providing data on water depths, aids to navigation (ATONs),

hazards, etc. (NOAA, 1997).

 Charts are generally constructed from multiple sources of bathymetric data (e.g.,

soundings from various sources, contours, indications of obstructions) and non-bathymetric data

(e.g., floating aids to navigation, shore-line constructions, tides currents). Traditionally, charts

were constructed at a particular scale of representation in order to depict the information at a level

of detail suitable for the intended use (e.g., very large scale, perhaps 1:5,000, for docking charts,

 27

through to very small scale, perhaps 1:1,000,000 or less, for planning an ocean crossing). Most

often, the source surveys for the charts were conducted at a scale twice that of the largest scale

charts for the area being surveyed and smaller scale charts were constructed from the larger scale

charts by a process of generalization. As the scale of the chart changes, the contents shown on the

chart are necessarily different, as the space available to represent any given physical area is

smaller. The detail available at the largest scale cannot be shown clearly at smaller scales. Clarity

of representation is essential in a chart in order to provide a useful working document, and to

promote navigational safety for surface vessels. Generalization is the process of choosing which

contents should been shown and how they will be represented on the chart to achieve these goals.

 More recent practice has been to construct fully electronic charts (i.e., Electronic

Navigational Charts [ENCs]) for use in computer-based bridge navigation systems. These systems

allow the user to zoom in and out essentially continuously and therefore require that the display

system (either an Electronic Chart System [ECS] or Electronic Chart Display and Information

System [ECDIS]) provide generalized data to the user on demand. Currently, navigation systems

select the best chart available for the region from a set of charts (typically the chart with the closest

scale match to that required), and display it, generalizing only within the limits of the scale

minimum and maximum information coded into the chart’s source data. These systems are

essentially autonomous of the cartographer. Once the source data is supplied, automatic methods

for generalization are even more important than they are in the traditional paper-based chart

construction pipeline: here they need to be usable for safe navigation, and preferably aesthetically

pleasing, without human intervention.

 Nautical charts differ from land maps in that they do not intend to faithfully represent the

true nature of the seafloor in the area of interest, or, necessarily, all of the other components in the

region. Rather, the goal, is to provide a representation of the area that is as faithful to the known

true configuration of the seabed as possible (in as much as the – usually limited – source data

provides information on the true configuration of the seabed), modified such that the information

 28

is inherently safe for surface navigation. For example, the nautical cartographer might move an

indicated sounding in order to improve the clarity of the display, or intentionally modify the

representation in order to suggest to the mariner that an area of the chart is unsuitable for transit. In

all cases, the nautical chart must obey shoal-bias rules, meaning that the chart always shows the

shallowest depth at a given position, or a modification of the known configuration of the seafloor

such that the depth indicated on the chart is shallower than the cartographer knows where the water

to be. This difference requires the process of nautical chart generalization to be very different from

land map generalization.

1.2.2 Shoal-biased Rule of Nautical Chart Contours

 A contour in a nautical chart is different from a contour in a topographic map. A nautical

chart contour has another property due to the navigation purpose of a nautical chart.

 For ships, one of the largest dangers when cruising in the water is running aground.

Mariners always want to ensure the water they are in is deeper than the vessel’s draft. For that

reason, the depths on the chart always represent the shallowest water depth at that location. That

is why the chart datum is chosen to be the mean lower low water level, and hydrographic survey

data is traditionally processed by selecting the shallowest value. These practices all follow the

shoal-biased rule. For contours, the shoal-biased rule is also applied, which means if a contour

represents a depth of 30 feet, it will only be drawn around the positions where the real depths are

the same as or deeper than 30 feet. This characteristic of chart contours leads to another rule in

chart contour deformation: if a contour needs to be moved to another position due to

generalization, it can only be moved to a position deeper than that contour’s depth.

As shown in Figure 1-9, the five meter contour cannot be moved toward the inside of its

original polygon, as the real depth will be shallower than five meters. It can only be moved

toward the outside of its original polygon, as the real depth at those positions will be deeper.

 29

Figure 1-9: Example illustrating the shoal-biased rule

The left sub-figure shows the seafloor geomorphology, the right sub-figure shows

nautical chart contours at the corresponding position (Guilbert and Saux, 2008). In the

right sub-figure, the five meter contour cannot move toward the shallow side (shrinking

towards label three), as if it shrinks its shape, people will think the area immediately

outside the contour is deeper than five meters, but in reality it is not, which will be a

hazard to vessels: ships might run into the shallower area, and cause damage to the

vessel. However, it is safe for the contour to move to the deeper side. If the five meter

contour expands towards the sounding label seven, it will be safe, as the real water depth

in the expanded area is deeper than the contour value, and mariners will not have the risk

of running aground.

1.3 Prior Work

 Generalization has been mainly studied on land maps in prior work. Although land maps

are different from nautical charts, a subset of research results on land map generalization can be

applied to nautical charts.

 Generalization in GIS contains two main aspects: database generalization and view

generalization (Peng, 2000). Database generalization is also called model generalization, and is

generalization through changes in the conceptual model, which consists of “manipulating the

geometric and thematic descriptions of spatial objects and their relationships with respect to

certain changes of the uncertainty application model” (Harrie, 2001). View generalization is also

called graphic generalization or cartographic generalization, and is “mapping/transforming the

digital description of spatial objects and their relationships into a graphic description, which is

confined to graphic legibility and cartographic principles” (Harrie, 2001).

 30

 Shea and McMaster (1989) proposed a complete concept of operators for generalization.

They divided the generalization process into several operators. The generalization process has long

been a subjective process: by dividing generalization functions into operators, the generalization

process can be described more objectively. The operators are summarized in Figure 1-10.

 The Shea and McMaster operators are not all applicable to both types of generalization.

Some operators can only be applied to graphic generalization, while some can only be applied to

model generalization. This thesis research is focused on graphic generalization, so only certain

operators will be studied.

Figure 1-10: Operators of generalization

 This figure shows 12 types of operators (Shea and McMaster, 1989).

 Shea and McMaster decompose generalization into 12 types of operators. In this work,

however, only four operators (simplification, smoothing, aggregation, and exaggeration) will be

considered.

 The simplification operator produces a reduction in the number of derived data points by

selecting a subset of the original coordinate pairs, retaining those points considered to be the most

representative of the line (Shea and McMaster, 1989). It is useful when the input data are complex.

It increases the calculation speed and reduces the space required for storage. Figure 1-11 is an

 31

example of the simplification process. The original line has seven vertices. The simplification

operator selects four of them, such that those four points represent the original shape best.

Figure 1-11: Example of simplification process

 The simplification operator is also the operator that been studied most, and several widely

used algorithms have been developed to implement the simplification operator.

 The Douglas-Peucker algorithm (Douglas and Peucker, 1973) is by far the most used

simplification algorithm. The algorithm begins by defining the first point on the line as an anchor

and the last point as a floating point (Figure 1-12). These two points then define a line segment and

the orthogonal distance to the other points on the line is computed. If the distance is longer than the

threshold distance, the point lying furthest away becomes the new floating point (Harrie, 2001).

This cycle is repeated and the floating point moves towards the anchor point. When all the

distances (from the line segment between the anchor and the floating point and intervening points)

are less than the threshold distance, the anchor is moved to the floating point and the last point is

reassigned as the new floating point. The algorithm ends when the last point becomes the anchor

(Harrie, 2001).

 32

Figure 1-12: The Douglas-Peucker algorithm

If the maximal perpendicular distance is longer than the threshold value, the splitting point will

become the new floating point and the procedure is repeated. If the maximal perpendicular

distance is shorter than the threshold value, the line segment between the anchor and the floating

point is set to represent that part of the line (Harrie, 2001).

 The smoothing operator acts on a line by relocating or shifting coordinate pairs in an

attempt to plane away small perturbations and capture only the most significant trends of the line

(Shea and McMaster, 1989). The smoothing operator reduces the angularity of lines. Figure 1-13

shows how the smoothing process works: all vertices are preserved, but some of them are

relocated.

 Figure 1-13: Example of smoothing process

 Smoothing is another operator that has been studied in detail. Since it is not deleting any

points but shifting the position of the vertices, it is mostly implemented by using a mathematical

model such as a smoothing kernel, or spline functions. Gaussian smoothing is one of the common

smoothing method, where the line is convolved with a Gaussian kernel. B-splines are used

 33

frequently too due to their continuity and smoothness properties. In this study, a B-spline

smoothing method is used. The detailed properties of B-splines are explained in Chapter II.

 The aggregation operator is used to combine several features into one feature to symbolize

the feature when the space on the map is limited and the features are important and need to be

shown (Figure 1-14). There are few studies specially focusing on the aggregation operator. For

different generalization objects, the aggregation operator may be implemented differently: if point

features are to be aggregated, algorithms might be related to point elimination. In this study, the

aggregating objects are polyline and polygon features, so a computer graphic approach is

developed to implement the aggregation operator, details of which are in Chapter III.

Figure 1-14: Example of aggregation process

In the left sub-figure, there are six polygon features representing ruins; in the right sub-figure,

there are just two figures representing the ruins, each one of these two polygons represents three

small ruins in the left sub-figure. This aggregation process provides more space on the map to

clearly draw the features, but still shows the two distinct group of ruins from the original (Shea and

McMaster, 1989).

 The exaggeration operator is used in the generalization process such that the shapes and

sizes of features can meet the specific requirements of a map (Shea and McMaster, 1989). Figure

1-15 shows an example of exaggeration of an inlet. Inlets need to be opened and streams need to

be widened if the map must depict important navigational information for shipping (Shea and

McMaster, 1989). As with the aggregation operator, exaggeration has not been studied much in

previous research. In this work, a method to implement an exaggeration operator is developed;

details of the exaggeration operator are in Chapter III.

 34

Figure 1-15: Example of exaggeration process

In the left sub-figure the entrance of the inlet is relatively narrow. In the right sub-figure, the

entrance is enlarged, such that it is not closed if the whole contour shrinks. This process maintains

a legible size of the inlet feature such that it will be visible when the whole shape shrinks due to

the scale change (Shea and McMaster, 1989).

 Other operators are widely used in the generalization process. In this study, only the four

operators discussed above are used, the remaining operators will not be illustrated. Figure 1-16

illustrates how the remaining Shea and McMaster operators work.

 An operator is just a concept that represents the transformation of geographic features, but

to accomplish generalization automatically, algorithms are needed to implement those

transformations. Many studies of generalization algorithms and workflows have been done. One

algorithm from this research is to use a snake method to do line simplification, smoothing and

displacement (Steiniger and Meier, 2004; Burghardt, 2005). The reason this method is superior to

traditional line simplification method such as the Douglas-Peucker (1973) or Li-Openshaw (1993)

methods is that it can combine several operators (such as simplification, smoothing, and

displacement) together (Steiniger and Meier, 2004), and also preserve the compound shape of

linear features better (Burghardt, 2005).

 35

Figure 1-16: Examples of how each Shea and McMaster operator works

Eight other operators are illustrated in this figure. Amalgamation is similar to aggregation but is

only applied on polygon features. Merge is when two polylines do not have enough space in

between when the scale decreases, then one of the polylines is deleted, and only one polyline

feature is retained. Collapse is to change polyline or polygon features' shapes when the shapes are

too complicated, and the details will not be maintained in the new smaller scale map. Refinement

is to select random features from a group of features, and use these symbols to represent the

original group of features. Typification is similar to Refinement, but the process of selecting sub-

set features follows certain rules instead of random selection. Enhancement is similar to

exaggeration, but it deals with more than one feature. Displacement is similar to exaggeration, but

it deals with the condition when two features are already in conflict. Classification is the process of

grouping features into categories with respect to certain rules.

 Besides the large amount of research on land maps, there is also some research specifically

on nautical charts. NOAA has conducted several studies about nautical chart cartographic

generalization (Shea, 1988), and nautical chart production (NOAA, 1996). Shea’s cartographic

generalization study provided a system that was made of several generalization operators, but

those operators can only be applied one by one, and the user cannot generate a globally controlled

 36

generalization result. Besides that, the study did not take the special characteristics of chart

features into account; those generalization operators may produce incorrect results. The 1996 study

is preliminary research focused on proposing a new concept of how the future chart production

procedure should be. Not much was mentioned about generalization.

 Besides the above NOAA conducted research, Guilbert and Lin (Guilbert and Lin, 2007)

introduced a B-spline snake method to nautical chart contour generalization. This method

demonstrates several generalization operators, and takes the shoal-bias rule into consideration.

However, this process only creates results at a given level of generalization, and there is no

intermediate result between the original chart scale and the generalized scale. In reality, when a

chart with a generalization function is being displayed on an ECS or ECDIS screen, it is more

appropriate to have the generalization happen smoothly as the user zooms in and out between

scales. Current generalization studies all provide generalization results at some given

generalization level, but no research has shown gradual generalization on a nautical chart; this

thesis addresses that question.

 In summary, the current generalization process has limitations. It is a very subjective

process done by cartographers manually, which is time consuming, and cannot be included in

ENCs (Electronic Nautical Chart, which have to rely on pre-generalized contours). It limits the

generalization to fixed scale bands, which means it cannot readily deal with a continuously

variable scale. The methods that have been attempted for this allow mistakes to happen, and then

resolve them, which is sub-optimal and leads to special rules that make the process complex. The

problem here is to find a scheme that will allow for automated generalization that maintains

nautical cartography rules, while allowing for generalization to any scale from a high resolution

source of survey data and avoiding the creation of invalid intermediate solutions that would require

special processing to resolve.

 37

1.4 Contribution of This Thesis

 This thesis presents an improved method of using B-spline snakes and other operators,

auxiliary functions and workflows for generalization in the context of nautical charts, where the

generalization process is done gradually, and large scale nautical chart features with more details

are generalized into smaller scales without creating any invalid intermediate features that require

special processing to resolve. During the generalization process, multiple contours are aware of

each other, and follow appropriate cartographic rules. This workflow also allows a user to

generate chart features at any scale, and it is capable of adding more operators, functions and

forces into its current structure.

 38

CHAPTER II

 BACKGROUND THEORY

 In this chapter, a B-spline snake method will be discussed which implements the

simplify and smoothing operators while following the shoal-biased rule. Section 2.1 introduces

the background and method of construction for a B-spline curve; section 2.2 introduces

background on Snake methods; and section 2.3 discusses how a B-spline Snake method works,

and how it acts as a simplify and smoothing operator while obeying the shoal-bias rule.

2.1 B-spline Curve

2.1.1 B-spline Curve Definition

A spline is a piecewise polynomial function. A B-spline is a spline function consisting of

a sum of B-spline basis functions (see Equation (2) below).

 A two-dimensional B-spline curve is a parametric function
2()f u  defined on an

interval: [,]u I a b   :

0

() ()
m

k

i i

i

f u Q N u


 (1)

 The points 2

iQ  are the control points of the curve (Figure 2-1); they define the

control polygon of .f

 39

Figure 2-1: Control points (0 1 7,Q Q Q  ) of a B-spline curve (grey solid line)

Source: Guilbert and Lin, 2007.

k

iN are the B-spline basis functions. They are piecewise polynomial functions of degree

1k  defined on I . To define them, we need a series of real values, which are called the knot

vector 0 1().i m ku a u u u b       The basis functions are defined recursively

(Guilbet and Lin, 2007):

11

1 1

1

1 1

1 if u
()

0 otherwise

() () () for2

i i

i

i jj j ji
i i i

i j i i j i

u u
N u

u uu u
N u N u N u j k

u u u u



 



   

 
 



   

 

 (2)

 k is the order number, and k-1 is the degree of the polynomial pieces. Degree three is the

most widely used, and the B-spline with degree three is also called a cubic B-spline.

2.1.2 Cubic B-spline Curve

A curve with a continuous first derivative is called 1C continuous, and a curve with a

continuous second derivative is called 2C continuous. Figure 2-2 illustrates basis functions for

degrees 1, 2 and 3..

 40

Figure 2-2: First three degrees of basis functions for B-spline curves

The ku are the knot vector values that determine the shape and differentiability of the basis

functions. When the knots ku are all distinct, a B-spline basis function of degree k is k times

continuously differentiable. When the degree is one, the curve is continuous at points ku , 1ku  and

2ku  , but not differentiable. When the degree is two, the curve is differentiable at the points ku ,

1ku  , 2ku  and 3ku  , but does not have a continuous second derivative. When the degree is three,

the curve has continuous first and second derivatives at points ku , 1ku  , 2ku  , 3ku  and 4ku  .

Degree three (cubic) B-splines have
2C continuity at each knot, and requires a relatively small

amount of calculation.

2.2 Snake Method

2.2.1 Snake Method Definition

 Snakes, also called active contours, were first used in image processing by Kass et al.

(1987). In image processing, a snake is a curve defined within an image domain that can move

under the influence of internal forces that describe the curve itself and external forces computed

linear quadratic cubic

basis

function

first

derivative

second

derivative

degree=1 degree=3 degree=2

ku 1ku  2ku  ku 1ku  2ku  3ku  ku 1ku  2ku  3ku  4ku 

ku 1ku  2ku  ku 1ku  2ku  3ku  ku 1ku  2ku  3ku  4ku 

ku 1ku  2ku  ku 1ku  2ku  3ku  ku 1ku  2ku  3ku  4ku 

 41

from the image data (Xu and Prince, 1998). The snake is defined as a two-dimensional parametric

curve () [(), ()], [0,1]X u x u y u u  , on which the forces are defined through an energy-like term:

 (()) (())total int extE E X u E X u  (3)

(())intE X u is the internal energy of the curve, describing the smoothness, and (())extE X u is the

external energy, which expresses external constraints on the system. In the system defined here,

these external constraints are used to represent the shoal-bias rule such that when the external

energy is minimized, the shoal-bias rule has been satisfied. The snake in use here is an

optimization algorithm that attempts to find the ()X u that minimizes .totalE In general, the

algorithm seeks a shape of the curve to balance the effects of the internal and external energies

such that the resultant curve is as smooth as possible while still satisfying the external constraints,

which may be either hard constraints – i.e., that must be satisfied – or soft constraints that express

a degree of preference.

 In the most common snake method, the internal energy is represented as:

2 2
1

0

('() ''())

2
int

X u X u
E du

 
  (4)

'()X u and ''()X u are the first and second derivative of ()X u with respect to ,u  and  are

weighting parameters that control the balance between the snake’s tension and rigidity

respectively (Xu and Prince, 1998), and are adjusted to emphasize the required features for the

given problem. The exact expression of internal energy and external energy can be different

according to the particular purpose of the snake curve. Here, both terms have different definitions

for contour generalization purposes. The details of the definition are in the next section.

 42

2.3 B-spline Snake Method

In this study, input data points representing the original contour are approximated by a

cubic B-spline curve as in (1), where ()k

iN u are the piecewise approximating polynomials and

the
iQ are the control points, i.e. the weights of the polygon. So, before the generalization starts,

the input contour is seen as a B-spline curve. Points on that B-spline curve are designated

 0 jX u . Because these points are an approximation of the original contour, a polygonal line

(polyline) with the  0 jX u as its vertices can be viewed as an approximation of the original

contour defined by the input data points. Then a “curvature” of this polyline can be defined at its

vertices as in section 2.3.1 below.

Because this approximation is only used on input contours with complex shape and large

numbers of vertices (more than 1000 vertices), the control points are normally so close to the

original contour that the human eyes cannot distinguish between them and the points 0().jX u

As a consequence, generalizations in this paper use the control points themselves as proxies for

the  0 jX u , so the polyline formed with the control points as vertices is the line to be simplified

and smoothed. For future work, using the correct approximation points  0 jX u , and the correct

spline curvature at those points, would give greater accuracy and flexibility, especially in cases

where the number of points is not so large.

At the end of the iterative generalization process, the result is a final polyline, and a final

B-spline is fitted to its vertices.

2.3.1 B-spline Snake Energy Terms for Polylines

 For use in this work, the geomorphologic constraints depend mainly on the rigidity of the

snake, and therefore the value of  is set to zero. Guilbert et al. (2006), show that the  value

 43

has little influences on the final result, so it has been set to zero to simplify the calculation. In

this work a cubic B-spline is fitted to the data points representing the original contour. Points on

that B-spline, designated 0(),jX u are used for the subsequent contour generalization. A

polygonal line is drawn with the  0 jX u as vertices, and then a curvature of this polygonal line

is defined at its vertices (Figure 2-3) by finding the internal angle j between three consecutive

points on the curve, ,

      1 0 1 0 1 0 1, , and j j j j j jP X u P X u P X u     

and then approximating the curvature (Guilbert et al., 2006) as

1 1

sin()
()

1

2

j

j

j j

k u

P P


 

 




 (5)

A more accurate approximation is outlined in Chapter V.

Figure 2-3: Curvature definition at parameter j

This figure illustrates how the curvature of the polyline is approximated at one of its vertices.
The curvature at point

jP is deduced by estimating the radius of the osculating circle from

vertices
1jP 
,

jP ,
1jP 
. As the curvature does not depend on the length of the segments

1j jP P
 , we

introduce two points
1

ˆ
jP 

,
1

ˆ
jP 

 such that each point belongs respectively to lines
1j jP P

 and
1j jP P 

and that
1 1

ˆ ˆ 1j j j jP P P P   (Guilbert et al., 2006).

 44

With approximated curvature ()jk u the internal energy (Guilbert et al., 2006) is:

2

0

()
2

J

int j

j

E k u




  (6)

 In E(4), the internal energy is represented as the sum of first derivative and second

derivative, but as  is set to zero, the internal energy here is only the second term, which

represents the curvature. In (6), the curvature is calculated by the approximation with k instead

of the second derivative in (4).

 In image processing applications, snakes are often used to match contours in the image

(Kass et al., 1987). The external energy term, therefore, often uses distance between the current

location and some image-derived contour information. In the case of contour generalization,

however, there is no definite target as the ENC contours move continuously offshore as the scale

of the chart decreases. The primary constraint, therefore, is that the generalized snake should be

on the seaward side of the original curve, and the external energy can be set to a one-sided

function (Guilbert et al., 2006),

2

0

0 2

0

() ()
 if () on the shoal side

(())

0 otherwise (=0)

j j

j
ext j vis

X u X u
c X u

E X u

c



 


 



 (7)

where  0 jX u is on the original curve,  jX u is on the contour generalization, and
0c is a

coefficient used in the calculation. When ()jX u is on the shoal side,
0c is 1, but if ()jX u is not on

the shoal side,
0c is set to 0 such that there is only a penalty when the constraint is broken. The

penalty term here increases according to the severity with which the generalized curve crosses to

the wrong side of the original (how far it is on the wrong side), but uses a normalization term to

represent the ‘minimum visualizable distance’ set according to the target scale of generalization.

2

vis reflects the fact that lines on the chart display are non-ideal, and have a defined thickness. The

 45

snake used here is made up of finite points. The energy of the whole snake is the summation of the

energy at each point:

2
2

02
0

1 1
() () ()

2

J

total j j j

j vis

E k u X u X u


 
   

 
 (8)

 Here ()jk u is the curvature at point  jX u .

 When
totalE is minimized, the curve will be moved to the desired position. The () jX u that

minimizes
totalE are the coordinates of the vertices of the desired polyline. One way to calculate the

minimum of a function is to calculate the gradient; when the gradient of
totalE is zero,

totalE might

reach its maximum or minimum value. However, as the curvature of a curve can be infinitely

large, there is no upper bound for the total energy, so there is no maximum
totalE . That means,

when the gradient is zero,
totalE reaches a minimum (although it may be only a local minimum).

The gradient of the function is:

 total int extE E E   (9)

that is:

2

02

2

() ()1
() ()

2

j j

total j j

vis

X u X u
E u k u



       
 

 (10)

 Here,
intE and

extE are the gradient of the internal and external energy, but they can

also be considered as forces on the curve. A solution of (9) can be seen either as realizing the

equilibrium of the forces (Figure 2-4) in the equation or reaching the minimum of the energy

(Cohen, 1991). The curve that minimizes (9) is formed by numerically approximating the

gradient terms. The details of the solution are in section in section 2.3.3.1.

 46

Figure 2-4a: Internal and external forces in the generalization process

In this figure, the black line is the straight line connecting the contour SE’s end points. It also

represents the position where the curvature is zero.

Figure 2-4b: Internal and external forces in the generalization process

At the beginning of generalization, at point A of the contour, as its curvature is larger than zero,

an internal force (brown arrow) is applied on it. Point A is on the original line, so there is no

external force applied on it. In the intermediate stage of generalization, point A moves to A’, as

A’ is on the same side of the zero curvature line, the internal force keeps its direction. For point

 47

B, at the beginning, as its curvature is very large, so the internal force is applied, and there is no

external force, so it is moving towards the black dashed line. But during the generalization, as

other parts of the contour have all moved (the green dashed line), the curvature at point B’ is

smaller, and at this time, the external energy is relatively larger, so point B’ is then moved

towards the deeper side of the original contour.

Figure 2-4c: Internal and external forces in the generalization process

Eventually, the curve stops at the green solid line where the total forces are all balanced, and the

total energy is minimized. The green dashed line in Figure 2-4b and Figure 2-4c is a hypothetical

line, which this generalization will never get to due to the effect of the external forces.

2.3.2 B-spline Snake Energy Terms for Polygons

 The internal energy term for polygons is the same as the polyline term (6). For polygon

features, however, there will be an exaggeration operator in the generalization process. For the

exaggeration operator, another force term is introduced in the energy equation. This new force

(Cohen and Cohen, 1993) is represented as:

 ()balloon jF bn u

(11)

 48

The ()jn u is the unit vector normal to the curve at point ()X u , and b is the amplitude of this

force (Cohen and Cohen, 1993). This term generates a pressure force to push the polygon curve

outward, as if air is introduced inside; the curve will be inflated like a balloon, so this force is

called a balloon force. This new term gives the polygon curve a force to expand when it is

exaggerated during the generalization.

 By adding the new balloon force to the external energy, the total force becomes:

 int ext balloonE E F   (12)

which is represented as:

2

02

2

() ()1
(() ()
2

j j

j j

vis

X u X u
k u b n u




       

 

 (13)

2.3.3 Smoothing Operator

 The smoothing operator has been studied extensively. The most commonly used smoothing

method is to apply filters on polylines. Figure 2-5 illustrates how the smoothing operator works

on a polyline feature. Figure 2-6 and Figure 2-7 shows an example of smoothing in a

cartographer’s manual process of generalization.

Figure 2-5: Sample spatial transformation of smoothing operator

The left sub-figure is the sample polyline; the right sub-figure is the result after smoothing

operator is applied. The number of the total vertices of the curve remains the same, but the

positions of these vertices are changed, such that the curve is smoothed (Shea and McMaster,

1989).

 49

Figure 2-6: Sample contour line from 1:20,000 scale raster chart

The grey contour line pointed to by the green arrow is the 30 foot contour line from raster

chart 13283 of Portsmouth Harbor, NH. This grey contour has a relatively complex

shape.

Figure 2-7: Sample contour line from 1:40,000 scale raster chart

The contour line pointed to by the green arrow is the 30 foot contour line from raster chart

13274 of Portsmouth Harbor, NH. Compared to the 30 foot contour in Figure 2-6, the 30 foot

contour in this figure has fewer details, and is smoother.

 50

2.3.3.1 Smoothing Operator Implementation

 The smoothing operator is implemented by calculating the gradient of internal energy,

which is:

  () (,)int j i iE k u k x y   (14)

where (,)i ix y is a vertex of the polyline

  (,)i ik x y is not calculated at the end points, only at the internal points :

 polygonal line vertices, (1 1)
i

i

x
i m

y

 
    

 

 The gradient
1 1 1 1

, ,
m m

k k k k
k

x y x y 

    
   

    
,

For the curvature at vertex i , (,)
i i ik k x y , the derivatives are approximated by the central

difference method :

1 1

1 1

1 1

1 1

1

2

1

2

i i i i

i i i i i

i i i i

i i i i i

k k k kk

x x x x x

k k k kk

y y y y y

 

 

 

 

  
  

   

  
  

   

 (15)

This gradient approximation is used for the internal energy in each iterative step (the gradient of

external energy will be discussed in section 2.3.5.2)

2.3.4 Simplification Operator

There is research on simplification operators in previous studies. For example, the

Douglas-Peucker algorithm (illustrated in section 1.3; 1973) is the most widely used algorithm to

simplify linear features. Other researches prefer the bend detect algorithm developed by Wang

(1998). However, both these method do not consider the shoal-bias rule of nautical chart features,

 51

and they cannot be used in this study. Figure 2-8 illustrates how the simplification operator works

on a polyline.

Figure 2-8: Sample spatial transformation of simplification operator

The figure on the left side is the sample polyline, the figure on the right side is the result after the

simplification operator is applied. The number of points is reduced after the simplification

operator is applied, and the new line contains fewer details than the previous line. (Shea and

McMaster, 1989).

Figure 2-9: Sample of contours in 1:40,000 scale and 1:80,000 scale raster chart

The grey contour on the left sub-figure is a 60 foot polyline contour on the 1:40,000 scale raster

chart, 13274, of Portsmouth Harbor, NH. The blue polyline contour on the right sub-figure is the

same 60 foot contour on the 1:80,000 scale raster chart, 13278, of Portsmouth Harbor, NH. The

blue polyline contains fewer details and is more simplified than the grey contour on the left.

2.3.4.1 Simplification Operator Implementation

 The simplification operator can be implemented by two methods. One is to reduce the

number of control points of the B-spline curve before the generalization process at the data

preprocess step, the other method is to reduce the number of points on the polyline.

 B-spline approximation is the first step of the generalization workflow. In Chapter II,

 52

section 1, a B-spline is defined by control points and basis functions:

0

() ()
m

k

i i

i

f u Q N u


 (18)

iQ are the control points and u is a series of real values are called parameters or the knot vector

 0 1().i m ku a u u u b       When approximating a polyline with a B-spline,

the number of the B-spline parameters is the same as the number of data points on the polyline,

but the number of control points can be smaller than the number of parameters. As the basis

function can be calculated recursively, the only unknowns of each B-spline are the locations of

the control points. To approximate the original contour curve with a B-spline curve, instead of

storing all the data of original polyline, only the control points need to be stored (Saux and

Daniel, 1998).

 The second method is to reduce the number of data points in a polyline. This method has

been used during the generalization process in this thesis. When neighbor points are closer than a

threshold during deformation, points will be deleted. The pseudo code is as follows:

Algorithm 2-1:

Input: one polyline (a set of control points of an approximating B-spline)

1. Calculate the distance between adjacent control points

2. Select all the indices for which the neighbor distance (Cartesian distance between two

adjacent vertices) is smaller than a threshold

 3. Iterate through the selected indices of step 2

 3.1 If there are three or more continuous indices in the selected indices(like index 4, 5,

6 and 7)

 3.1.1 Divide this continuous segment into small segments such that each contains

three continuous indexes

3.1.2 For each segment

 53

3.1.2.1 Keep the first point; delete the second and third point

3.1.3 End for

 3.2 End If

 4. End Iterate

Note: The rational for using three points in step 3.1 is illustrated in Appendix A.6.

2.3.5 Shoal-biased Operator

The shoal-biased rule is a special generalization rule for nautical charts features. As

introduced in the previous section, contours of a nautical chart can only be moved to a deeper

position (Figure 2-10). This shoal-biased constraint operator has always been used together with

other operators like the smoothing operator.

 Figure 2-10: Example of shoal-biased principle

The blue lines are the example contour lines, the blue dots on them are the vertices. The red and

green arrows point out the direction of the movement of the vertices during the generalization

process. The red arrow in the left side means that vertex cannot move to the shallower side. It

should stay in its current position as the yellow point and yellow circle in the right side shows.

The green arrows in both lines means the vertex can move to the deeper side. The vertex in

orange with orange dash line circle around it means that this vertex must stay stationary if there

are forces attempt to move it to the shallower side..

 54

2.3.5.1 Shoal-biased Operator Method

The shoal-biased operator has been implemented as an external energy in the total energy

equation. By calculating the gradient of external energy, the shoal–biased operator is

implemented. As in section 2.3.1, this external energy is defined as:

2

0

2

() ()
 if () on the shoal side

()

0 otherwise

j j

j
ext j vis

X u X u
X u

E u 

 


 



 (19)

Where X0(uj) is the original curve. Adding this energy term in the total energy ensures that an

affected vertex will always be maintained on the original curve or move to the deeper side. The

details of the calculation are in the next section.

2.3.5.2 Shoal-biased Operator Implementation

Using the notation  0 0 0() (,) and () ,j j j j j jX u x y X u x y  , (19) can be

rewritten as:

2 2

0 0

2

() ()
()

j j j j

ext j

vis

x x y y
E u



  


(20)

So the gradient of external energy

() ()
() ,

ext j ext j

ext j

E u E u
E u

x y

  
  

  
 is

 02

() 2
()

ext j

j j

vis

E u
x x

x 


 


 (21)

 02

() 2
()

ext j

j j

vis

E u
y y

y 


 


 (22)

By adding these terms, the new point will obey the shoal-biased rule.

 55

Now defining a vector of all vertex points on the polyline at step n:

      1 1, , , 0 step number
n

n n n n

m mX x y x y n   
 

with      0 0

0 0 0, , ,j j j j jx y x y X u  the initial contour,

the iterative step is
1

 new old
guess guess

n n

int extX X E E


  

 In this thesis, the iteration stops at a point when the input contours are generalized to a

very simplified line. For different input contours, the iteration number varies, but it is generally a

number larger than 1000. In section 5.2 of future study, there is more discussion of the iteration

number.

 56

CHAPTER III

 OPERATORS, AUXILIARY FUNCTIONS AND WORKFLOW DESIGN

In this thesis, generalization is being done by using operators; each operator has its

specific generalization purpose. By combining different operators together in particular

workflows, a generalization process can be achieved with respect to holistic and aesthetic

purposes. The first part of this chapter introduces all of the generalization operators’ purposes and

how they are implemented; the second part of this chapter is about the workflow for how these

operators are combined in the overall generalization process. The operators are defined

phenomenologically, and so the best way to describe them is through pseudo code. The unit of the

distance values used in the following calculations is 1/100,000 degree (see Appendix A.0).

3.1 Operators

3.1.1 Aggregate Operator

 An aggregate operator is used to combine two or more features into one. As shown in

Figure 3-1, three small Ruins features in the left figure are aggregated into two large features in

the right figure.

Figure 3-1: Sample spatial transformation of aggregate operator

In the left sub-figure, there are six polygon features representing ruins; in the right sub-figure,

there are just two figures representing the ruins, each one of these two polygons represents three

small ruins in the left figure. This aggregation process provides more space on the map to clearly

draw the features, but still shows the two distinct group of ruins from the original (Shea and

McMaster, 1989).

 57

The features being aggregated should be in the same category. In this research, the

research objects are just contours, but they are at various depths. Only contours with the same

depth can be aggregated.

In cartographers’ manual process of generalization, aggregations are done in many

circumstances. As Figure 3-2 to Figure 3-4 demonstrate, aggregation is done between polylines

and polygon contours, two polygon contours, and a group of polygons.

Figure 3-2: Sample of aggregation of a polyline and polygons

The left sub-figure is a selected area of the 1:40,000 scale raster chart, 13274; the right sub-

figure is the same area of the 1:80,000 scale raster chart, 13286. In the left sub-figure, there

is an 18 foot polyline contour and also an 18 foot polygon contour (indicated by green

arrows), which is the outside-most contour of the concentric polygon group. In the right sub-

figure, these two contours are aggregated into one long complex polyline contour (green

arrow), which still has the depth value of 18 feet. In the left sub-figure, there are two six foot

polygon contours (indicated by yellow arrows), in the right sub-figure, they are aggregated

into one large six foot contour (indicated by the orange arrow).

 58

Figure 3-3: Sample of aggregation of two polygons

The left sub-figure is a selected area from the 1:40,000 scale raster chart, 13274; the right

sub-figure is the same area from the 1:80,000 scale raster chart, 13286. In the left sub-figure,

there are two 30 foot polygon contours; in the right sub-figure, these two polygons are

aggregated into one large 30 foot polygon contour.

Figure 3-4: Sample of aggregation of a group of simple polygon contours

The left sub-figure is a selected area from the1:20,000 scale raster chart, 13283; the right sub-

figure is the same area of the 1:40,000 scale raster chart, 13274. In the left sub-figure, there

are six polygon contours with a depth of 30 feet. In the right sub-figure, there are just four

polygon contours of 30 feet. Four of these contours are aggregated into two larger polygons.

3.1.1.1 Aggregate Operator Method

 There are four cases for the aggregate operator. The first is aggregating a polyline with a

polygon contour (Figure 3-5, One). The second case is aggregating two polygon contours (Figure

3-5, Two). The third case is aggregating two groups of contours, where each group has a set of

 59

polygon contours inside it (Figure 3-5, Three). The fourth case is aggregating two contours when

they have intersected with each other (Figure 3-5, Four). In this last case, the intersected contour

can be either a polygon or a polyline. This case may happen during the generalization process

when the step size of the last generalization was too large: the polyline moved a large step, and

intersected with the neighbor feature. The biggest difference between the first two cases is the

aggregation result. For Case One, the aggregated result is a polyline, but for the second case the

aggregation result is a polygon. The conditions are treated in order of complexity; the first and

second conditions are relatively simple, the third condition has more steps and is more

complicated.

Figure 3-5: The four cases of the aggregate operator

Case One: one polyline and one polygon; Case Two: two polygons; Case Three: two

polygon groups; Case Four: aggregation when two contours intersect. These four cases

represent different possible conditions in aggregation; the detail explanation of how each

case is implemented is in section 3.1.1.2.

 60

3.1.1.2 Aggregate Operator Implementation

3.1.1.2.1 Aggregate Operator Case One Implementation

 The basic goal of the aggregate operator is to find two supporting segments that connect

the two features, and then to remove the segments of the two features between the contours. For

example, the brown lines in Figure 3-6A are the supporting lines for these two features; the green

line in Figure 4-6B is the aggregated result of those two features.

Figure 3-6: Two steps of aggregate operator in Case One

A: find two supporting segments; B: connect the remaining part of the two features and the

supporting segments. The aggregate operator here finds the supporting segments (the brown

lines in the left figure) and combines them with the selected part of polyline and polygon, and

forms a new feature (the green line in the right figure). The dashed lines will be deleted.

Pseudo code for aggregating a polyline and a polygon is as follows:

Algorithm 3-1

Input: one polyline and one polygon contour

1. Calculate the minimum distance between the polyline and polygon

2. If the minimum distance is smaller than a threshold

 2.1 Find the proper supporting segments for the polyline-polygon case

 2.2 Combine the supporting segments with the rest of the features

3. End If

 61

Pseudo code for finding supporting segments is as follows:

Algorithm 3-2

Input: one polyline and one polygon contour.

1. Find two points polygonP and lineP (Figure 3-7) of the polygon and polyline that are

closest to each other.

2. Get the starting index 1S and ending index 1E of the selected section of the polygon.

1S ’s index is the index of polygonP plus N, 1E ’s index is the index of polygonP minus

M (point index increases clockwise from an arbitrary point, and should be considered

modeling the number of points in the polygon).

3. Get the starting index 2S and ending index 2E of the selected section of the

polyline. Calculate the minimum distance from each vertex of the polyline to the

polygon. The vertex which has minimum distance smaller than a threshold will be

selected. For example in Figure 3-7, the segment from index 2S to index 2E is the

selected segment of the polyline. Then line 1 2S S and line 1 2E E will be the supporting

segments of this polyline and polygon.

4. Check if line 1 2S S and line 1 2E E intersect with the original polygon contour. If they

do, the point closet to the intersection point will be the new starting or ending point

of the polygon contour, and the algorithm will use the new starting and ending point

as the
1S and

1E index (Figure 3-8). Then the new line 1 2S S and 1 2E E will be the

valid supporting lines.

5. Connect the valid supporting lines and remaining segments of the polyline and the

polygon. Delete the original polyline and polygon. This new polyline will be the

aggregated result (Figure 3-9).

 62

 Note: The value of N and M are discussed in Appendix A.1.

Figure 3-7: Finding the starting and ending index for the selected segment of the

polyline and polygon

1S is the starting index and 1E is the ending index of the selected segment of the polygon;

2S is the starting index and 2E is the ending index of the selected segment of the polyline.

This step finds the starting and ending indices of the selected segment.

Figure 3-8: Check if line 1 2S S and line 1 2E E intersect with the polygon

If the line 1 2S S and line 1 2E E intersect with the polygon (left), calculate the intersection

points 1I and 2I , then (right) the new starting index 1S and ending index 1E will be shifted

to the closest index to the intersection points.

 63

Figure 3-9: Aggregate operator Case One result

The remaining segments of the polyline are all the parts of the polyline except the section

from index 2S to index 2E .The remaining segment of the polygon is from index 1S to index

1E . The green line is the aggregated result.

3.1.1.2.2 Aggregate Operator Case Two Implementation

 The second case is to aggregate two polygon contours (Figure 3-10). The method is similar

to Case One, but as there are two polygon features, the intersection checking steps should be used

for both polygons. In addition, another constraint is added to the supporting segment: the angle

formed by the supporting line and the neighbor segment of either polygon should be obtuse

(Figure 3-11). If that angle is acute, there will be numerical blunders in the subsequent calculation

of the energy equation.

 64

Figure 3-10: Aggregation Case Two

The left sub-figure shows the first step: find two supporting segments; the right sub-figure

shows the second step: connecting the remaining part of the two features and the supporting

lines.

Figure 3-11: Angles formed by the supporting line and neighbor segment should be

larger than 90 degrees

The points 2S and 2E are the starting and ending indices of the selected segment of the polygon

on the left side, points 1S and 1E are the starting and ending indices of the selected segment of the

polygon on the right side. 2P , 1P , 2Q , and 1Q are the neighbor points of 2S , 1S , 2E , and 1E

respectively. Angles 2 1 1S S P , 2 2 1P S S , 2 2 1Q E E , 2 1 1E E Q should all be larger than 90

degrees.
1cP and

2cP are the two closet points on polygon 1C and 2.C

 65

Pseudo code for aggregating two polygons is as follows:

Algorithm 3-3

Input: two polygon contours.

1. Calculate the minimum distance between the two polygons.

2. If the minimum distance is smaller than a threshold

2.1 Find the proper supporting segments (one on each polygon) for the two

polygons condition (Algorithm 3-4).

 2.2 Combine the supporting lines with the remainder of the points from each

polygon.

3. End If

Note: The value of the threshold is discussed in Appendix A.8.

Pseudo code for finding supporting segments for the two polygons is as follows:

Algorithm 3-4

Input: two polygon contours.

1. Find the two points
1CP and

2CP of the polygon on the right side and the polygon on

the left side that are closest to each other by calculating distances between all points

in the two polygons.

2. Find the starting point 2S and ending point 2E of the selected section of the left side

polygon
2C .

 2.1 If the total number of vertices of the left polygon is larger than 20

2.1.1 2S ’s index is the index of
2CP minus a constant value 1N ,

2E ’s

index is the index of
2CP plus 1N (point index increases clockwise from

an arbitrary point).

 66

 2.2 Elseif the total number of vertices is less than or equal to 20

2.2.1 2S ’s index is the index of
2CP minus a constant value 2N ,

2E ’s

index is the index of
2CP plus 2N

 2.3 End If

3. Repeat step 2 for polygon
2C

4. If line 1 2S S or line 1 2E E intersect with the left polygon, replace point 2S or 2E with

the point on the left polygon nearest the intersection points.

5. If the updated line 1 2S S or line 1 2E E intersect with the right polygon, replace point 1S

or 1E with the points that are closest to the intersection points.

6. If angle 2 1 1S S P or 2 2 1P S S is acute

 6.1 While any of 2 1 1S S P or 2 2 1P S S is acute

6.1.1 If 2 1 1S S P is acute, shift point 1S by one index clockwise.

6.1.2 If 2 2 1P S S is acute, shift point 2S by one index counter

clockwise.

 6.2 End While

7. If angle 2 1 1E E Q or 2 2 1Q E E is acute

 7.1 While any of 2 1 1E E Q or 2 2 1Q E E is acute

 7.1.1 if 2 1 1E E Q is acute, shift point 1E by one index counter

clockwise,

7.1.2 if 2 2 1Q E E is acute, shift point 2E by one index clockwise.

 7.2 End While

 67

8. Repeat step 4-7 until connecting lines are valid (2 1 1S S P , 2 2 1P S S , 2 1 1E E Q

and 2 2 1Q E E are larger than 90 degree, and 2 1S S , 2 1E E are not intersecting

with either polygon).

9. Connect the valid supporting lines and remaining segments of the two polygons.

Delete the original two polygons. This new larger polygon will be the aggregated

result (Figure 3-12).

 Note: The reasons for the values of 1N and 2N , and why the value of 20 were chosen are

discussed in Appendix A.2.

Figure 3-12: Aggregate operator Case Two result

The remaining segment of polygon 2C is from point 2S counter clockwise to 2.E The

remaining segment of polygon 1C is from point 1S clockwise to point 1E . The green line is

the aggregated result of Case Two.

3.1.1.2.3 Aggregate Operator Case Three Implementation

Case Three is similar to Case Two except that the sequence of desired contours here must

be considered as a group and processed in sequence. The pseudo-code is:

Algorithm 3-5

Input: two groups of polygon contours 1G and 2G , each group with several contours inside each

other.

1. Select the current target features as the outer-most polygons of each group.

 68

2. While there are more polygon contours inside the current aggregated feature

2.1 Aggregate the most exterior polygon of each group with the method of

 Case Two, and find a new aggregate polygon (green circle in the right figure

of Figure 3-13).

2.2 Change the current target polygon contour to the interior neighbor polygon

contours of the previously aggregated polygons (Figure 3-14 and

Figure 3-15).

3 End While

Figure 3-13: Aggregate operator Case Three step one

Start with the most exterior two polygon contours; apply the same aggregation method as in

Case Two.

Figure 3-14: Aggregate operator Case Three step two

Process the inner polygon contours, using the method of Case Two.

 69

Figure 3-15: Aggregate operator Case Three result

Finally, when there are no more polygon contours inside the current target polygon, the

aggregation ends. The new contour group is the aggregate result of this case.

3.1.1.2.4 Aggregate Operator Case Four Implementation

Case Four is when two polygons have already intersected with each other (Figure 3-16). The

algorithm attempts to avoid this, but this condition can occur when, before exaggeration, the

distance between two polygons is larger than the minimum distance (defined in (19)), this

distance maintains suitable distance between two lines that human eyes can distinguish), but, after

one exaggeration, the exaggeration step-size might be larger than their previous distance at some

vertices, causing the two polygons to intersect. The method to solve this situation is similar to

Case Two, but instead of finding the closest vertices, the intersected vertices are found:

Figure 3-16: Two steps of aggregate operator in Case Four

A: find two supporting segments; B: connecting the remaining part of the two features and

the supporting segments. The green polyline is the aggregated result. The dashed lines are the

deleted segments. This case is similar to the Case One. Only the step of finding supporting

segments is different.

 70

Pseudo code for aggregating polyline and polygons when they intersect is as follows:

Algorithm 3-6

Input: two contours.

1. Detect the intersection points of the two contours. Use the end vertices of the segment

where the intersection point at as the point with minimum distance as defined in the

previous three cases (points
2S ,

1S ,
2E , and

1E in Figure 3-16).

 2. If the input data are one polyline and one polygon

2.1 Find the proper supporting segments (segment
1 2S S in Figure 3-16) for the

polyline-polygon condition using Algorithm 3-2.

 2.2 Combine the supporting lines with the rest of the features (the green line

covered polygon in Figure 3-16) using Algorithm 3-2.

 3. Elseif the input data are two polygon contours

3.1 Find the proper supporting segments for the polygon–polygon condition

using Algorithm 3-2.

3.2 Combined the supporting lines for the polygon-polygon condition using

Algorithm 3-2.

 4. End If

3.1.1.2.5 Two Polylines

 In this thesis, when two polylines are within a minimum distance or intersect, an

algorithm is used to make sure that they will not be aggregated. Instead, one of them will be

deleted or they will be forced to separate, thereby maintaining a minimum distance between these

two polylines. This “minimum distance maintain” method is illustrated in Algorithm 3-7.

 71

3.1.2 Exaggerate Operator

Figure 3-17 shows a bay inlet which is exaggerated during generalization. If it is not

exaggerated, this feature will disappear when the scale becomes smaller. As this feature is

significant to the map user, it should be maintained.

Figure 3-17: Sample spatial transformation of exaggerate operator

In the left sub-figure the entrance of the inlet is relatively narrow; in the right sub-figure, the

entrance is enlarged, such that it is not closed if the whole contour shrinks (Shea and

McMaster, 1989).

In manual generalization, exaggeration is a tool that is used to maintain significant features.

Figures 3-18 to 3-20 show examples of cartographic use of exaggeration.

Figure 3-18a: Sample exaggeration of simple polygon contour

The left sub-figure is a selected area from the 1:20,000 scale raster chart, 13283, the right sub-

figure is the same area from the 1:40,000 scale raster chart, 13274. In the left sub-figure, there are

two 30 foot polygon contours, in the right sub-figure, these two 30 foot contours increase their

size, and still keep their 30 foot depth. The reason why these two 30 foot contours in the right

sub-figure need to be exaggerated is because as the scale decreases, the chart display area for the

same real geographic feature also decreases. The right sub-figure in Figure 3-18a looks like the

right sub-figure of Figure 3-18b, as the scale changes from 1:20,000 to 1:40,000, the display area

shrinks to ¼ of the left figure. If these two polygon contours retain their same spatial extent, they

would be too small to have numbers written inside them.

 72

Figure 3-18b: Sample of exaggeration of simple polygon contour

The left sub-figure is a selected area from the 1:20,000 scale raster chart, 13283; the right sub-

figure is the same area from the 1:40,000 scale raster chart, 13274, at the correct display scale.

This example shows how exaggeration is used during generalization.

Figure 3-19: Sample exaggeration of simple polygon contour

The left sub-figure is a selected area from the 1:20,000 scale raster chart, 13283; the right sub-

figure is the same area from the 1:40,000 scale raster chart, 13274. In addition to the two 18 foot

contours being aggregated with each other, the 12 foot polygon contour (around the sounding

number “11”, indicated by the green arrow) increases in size from the 1:20,000 scale chart to

1:40,000 scale chart. This example shows that during generalization, aggregation and

exaggeration are often used together.

 73

Figure 3-20: Sample exaggeration of one complex long polyline

The left figure is a selected area from the 1:10,000 scale raster chart, 13283_2; the right figure is

the same area of the 1:20,000 scale raster chart, 13283_1. In the right figure, the length of the bay

shape decreases, the polyline moves to the deeper side, but the width of this bay shape did not

decrease significantly; the width of this bay shape is exaggerated, such that the user can recognize

this inlet feature better.

 In this study, the exaggeration operator is used on both polygon and polyline contours. In

nautical charts, polygon contours usually represent a knoll on the seafloor or a depression. In the

former there is always one or more shallow peaks inside the polygon (Figure 3-18). During the

generalization process, if the polygon gradually becomes smaller and is eventually removed, this

shallow depth value will be deleted, and becomes an unrepresented hazard to navigation. The

polygon contour should therefore be exaggerated during generalization. The exaggeration of

polylines is primarily used to maintain a minimum display distance between adjacent vertices of

the polyline itself, such that this polyline will not be intersect with itself during generalization

(Figure 3-20). The geographic meanings of that kind of feature are usually inlet or bay features.

They are important features to mariners, as they usually are used as traffic routes for ships. By

maintaining the minimum distance of these parts of the polyline contours, these important

navigational features will be retained and strengthened.

 74

3.1.2.1 Exaggerate Operator Method

 There are two methods for exaggeration: one to exaggerate a polygon contour, expanding

its shape, the other to exaggerate a section of a long complex polyline. The exaggeration of a

polygon contour is implemented by adding an extra force to the force equation ((9) in Chapter II),

and forming a new equation ((11) in Chapter II). The exaggeration method for a complex

polyline works to maintain a minimum distance from the polyline itself. The exaggeration for a

polyline is implemented by using an algorithm specifically for this condition (Algorithm 3-7).

For the exaggeration operator, this extra force keeps the polygon contour growing

outwards. As introduced in section 2.3.2 of Chapter II, this new extra “balloon” force is defined

as:

 balloon jF bn


 (22)

where jn


 is the unit vector normal to the curve at point jP (Figure 3-21) and b is the amplitude

of this force (Cohen and Cohen, 1993). The details of this calculation are covered in the next

section.

Figure 3-21: Illustration of balloon force at one vertex of a polygon contour

The balloon force jn


at vertex jP is perpendicular to the line 1 1j jP P  .

 75

3.1.2.2 Exaggerate Operator Implementation

3.1.2.2.1 Polygon Exaggerate Operator Implementation

The polygon exaggerate operator is implemented by adding the balloon force to the total

forces:

 int ext balloonE E F   (23)

The force is applied on both the x and y coordinate of each point for all points on polygon:

 (,)balloonF px py (24)

For each point (,)j jx y , the force (,)j jpx py is:

 i ixpx b n  (25)

 i iypy b n  (26)

ixn , iyn are the unit normal in x, y direction, which are defined as:

1 1

2 2

1 1 1 1

()

() ()

i i
ix

i i i i

x x
n

x x y y

 

   




  
 (27)

1 1

2 2

1 1 1 1

()

() ()

i i
iy

i i i i

y y
n

x x y y

 

   




  
 (28)

By adding ipx and ipy to each original vertex (,)i ix y , the polygon contour will be exaggerated

(Figure 3-22).

 76

Figure 3-22: Illustration of a polygon contour after exaggeration

Each vertex is given a balloon force, it is moved outward, and the total polygon has been

exaggerated. The balloon force points towards the outside of the polygon. By adding this force,

the polygon is expanded, and the shape is exaggerated.

3.1.2.2.2 Polyline Exaggeration Operator Implementation

Some sections of one polyline can get very close to each other during the generalization

process (Figure 3-23), and this will further lead to a self-intersection problem. So these close

sections will be exaggerated during the generalization, they will not be moved until their position

in the next iteration is not going to move them closer.

Figure 3-23: Illustration of when polyline exaggeration is needed

The total force at vertices A, B and C are in the directions shown by the red arrows; if B and C

move in the direction shown by the red arrow, they will get too close. In order to maintain a

legible distance between segment AB and segment BC, in the next iteration, vertex A keeps

moving, vertices B and C stay stationary.

 77

In contrast to the polygon exaggeration operator, polyline exaggeration is not

implemented by adding an extra force. It is implemented by identifying the segments that are too

close to each other, then avoid moving these points in the next iteration, so that they will not get

closer, and such that these segments are exaggerated. The pseudo code is as follows:

Algorithm 3-7

Input: One polyline contour; and this polyline contour prior to adding the B-spline snake step

size (polyline contours in two different states, refer to section 2.3.1).

1. Iterate through all points of the polyline

1.1 Calculate the distance between each point and all the other points on this polyline

except itself and its neighbor points.

 1.2 Record the indices of the points for which the distance to the current point is smaller

than a threshold (the threshold is set to the average value of all distances between the

polygon vertices and their neighbor points).

 1.3 Replace the recorded points’ coordinate values with the coordinates before adding

the previous B-snake step size (such that the minimum distance between different

parts of the polygon is maintained).

 2. End Iterate

3.2 Auxiliary Functions

This section illustrates all important auxiliary functions used in the workflow, that have

not been mentioned in the operator section. The purpose of these functions is explained and

pseudo code is shown.

3.2.1 B-spline Snake Calculation

The B-spline snake calculation function is the implementation of the B-spline snake. The

 78

explanation of B-spline snake and how to approximate the gradient of the curvature have been

described in Chapter 2 ((5) to (10) and (14) to (15)). Algorithm 3-8 shows the pseudo code of

this B-spline calculation.

Algorithm 3-8

Input: one control points polyline that approximates the input contour line, and the original

contour line.

1. Iterate through all points of the control points polyline (the ith point has coordinates

(,)i ix y).

1.1 Calculate the curvature k of the current point (see (5)).

1.2 Calculate the gradient value
, ,k xg

,k yg of the curvature at this point in x and y

directions (see (15)).

 1.3 Calculate the step-size
, ,i x

,i y of just the internal energy:
, , ,i x k xk g   

, ,i y k yk g    (the first part of (10) in Chapter II) in x and y directions.

1.4 If
, 15i x  or

, 15i y  (See Appendix A.7)

 1.4.1 Add
,i x or

,i y to the coordinate of current point:
,'i i i xx x   or

,'i i i yy y   .

 1.5 Else

 1.5.1 The new coordinate of the current iterating vertices is the average of the

coordinate of its two neighbor points: 1 1'
2

i i
i

x x
x  

 , 1 1'
2

i i
i

y y
y  

 .

 1.6 End If

1.7 Calculate the gradient
,d xg and ,d yg of the external energy at this current vertex in x

and y directions ((21) and (22)).

 1.8 If the current point is on the shoaler side of the original contour

 1.8.1 Coefficient oc =1

 1.9 Else

 1.9.1 Coefficient oc = 0

 79

 1.10 End If

 1.11 Calculate the step size
, ,e x

,e y of the external energy:
, , ,e x d x og c  

, , ,e y d y og c  

in x and y directions.

 1.12 If
, 15e x  or

, 15e y  (See Appendix A.7)

 1.12.1 Add
,e x or ,e y to the coordinates of this current iterating vertex:

,'i i e xx x   or
,'i i e yy y  

 1.13 Else Maintain the current location of the point

 1.14 End If

2. End Iterate

3.2.2 Preprocess Polygon Contour Function

 The preprocess polygon contour function cleans the polygon contours before they are

generalized. The raw polygon contour data from the ENC have indices that randomly increase

clockwise and counter-clockwise, which will cause a problem in polygon aggregation. The raw

polygon data have a duplicated point at the beginning of each polygon, and this duplicated point

will lead to noise in the exaggeration result. Therefore, the duplicated points are deleted, and the

sequences of the indices of all polygons are set to increase clockwise.

The pseudo code is as follows:

Algorithm 3-9

Input: one polygon contour selected from the ENC data with x, y coordinates and depth value at

each point.

1. Delete the duplicated point at the beginning of the polygon.

2. If the indices increase counter clockwise, reverse the indexing direction of the

polygon.

3. Add points to the polygon, if the distance between neighboring points is larger than

six (See Appendix A.5), adding at most one point to each segment.

 80

3.2.3 Maintain Minimum Distance Between Neighbor Contours Function

 The maintain minimum distance between neighbor contours function is used to maintain

a minimum distance between two neighbor contours. It is used when there is more than one

contour being generalized at the same time. A minimum distance between two neighbor contours

is maintained such that the neighbor contours can be distinguished by human eyes. The contours

can be either polyline contours or polygon contours. The pseudo code is as follows:

Algorithm 3-10

Input: two contours and the minimum value the user wants these two contours to maintain.

1. Calculate the distance between each pair of points on the two contours.

2. If the distance between any two points is less than the minimum value N (See

 Appendix A.8)

2.1 Move the contour with deeper depth value to the deep direction with a step size of the

minimum value that neighbor contours should maintain minus the current distance.

 3. End If

3.2.4 Polygon Group Intersection Prevention Function

 The polygon group intersection prevention function is used to prevent, any intersection in

groups of concentric polygon contours. In a concentric polygon group, after exaggeration, some

inner polygon might intersect with its neighbor polygon. This algorithm is used to prevent this

situation from happening, and to also maintain a minimum distance M between the concentric

polygons. The pseudo code is as follows:

Algorithm 3-11

Input: a group of concentric polygons and the minimum distance, M, that the user want to

maintain between the neighbor concentric polygons.

 81

1. Iterate through all polygons in this group of concentric polygons(sequence does not

matter)

1.1 Calculate the distance between the current polygon and its neighbor polygons. If the

current polygon is at a boundary (inner boundary or outer boundary), it has just one

neighbor.

 1.2 If the distance is smaller than the minimum value M (See Appendix A.9)

 1.2.1 Call Algorithm 3-10 (maintain minimum distance).

 1.3 End If

 2. End Iterate

3.2.5 Polyline Self Intersection Removal Function

 The polyline self intersection removal algorithm is used after each aggregation or

exaggeration step to detect and delete any self intersection of the newly aggregated or

exaggerated contour. This step is important in the generalization because it keeps the

generalization result stable during the generalization. The pseudo code is as follows:

Algorithm 3-12

Input: one control points polyline (the aggregated or exaggerated result from a previous step).

1. Iterate through all line segments on the contour

1.1 Check if the line segment
1i iS S 
 (

1, i iS S 
 are the starting and ending vertex of current

iterating line segment) and its neighbor points intersects with any other segment of

this contour; record the intersection segments
1 'i iS S 

 s first vertex’s index i in a list

A and the segment
1 'i iI I 

s first vertex’s index j in a list B (
1, j jI I 
are the line segment

intersected points, j is the index of the point closest intersection point).

 1.2 If list A is not empty

 1.2.1 Delete the points with the indices between i and j in step 1.1.

 1.2.2 The new contour is made of the remaining vertices.

 82

 1.3 End If

 2. End Iterate

3.3 Workflow

 In this section, five workflows for different generalization scenarios are illustrated. They

are listed from the simplest scenario to the most complex one. The scenarios include:

 1. The simplest condition: one contour line generalization, which is how one contour line

is smoothed and simplified and is prevented from moving to the shoaler side of the original

position.

 2. One polyline and several polygon contours: the polyline contour aggregates with the

polygon contours when it is generalized, which is a more complex.

 3. Similar to scenario 2, except that the polygons are also exaggerated, as is sometimes

required.

 4. Exaggerations of multiple concentric polygon contours, with aggregation.

 5. A combination of scenarios 1 and 3, which is close to the full generalization problem.

3.3.1Workflow for Single Polyline Contour Generalization

 If the generalization object is just one line, which is the simplest case of generalization,

the workflow is as follows:

Algorithm 3-13

Input: one polyline contour with (x, y) coordinates, and the number R of iterations (see Appendix

A.10).

1. Repeat (repeat R times)

1.1 Apply the simplification operator: represent this contour as a B-spline curve with

about 80% (see Appendix A.3) of the original curve points (section 2.3.4.1 of

 83

Chapter II).

1.2 Apply the smoothing and exaggeration operators. Set the internal and external energy

terms (section 2.3.3.1 of Chapter II).

1.3 Solve the energy equation. Calculate the step size of the current contour, and move

the current contour to the next step (section 2.3.1 of Chapter II).

 2. End Repeat

3.3.2Workflow for One Polyline and Multiple Polygons On One Side

 The one polyline and multiple polygons scenario is more complex than the first case; it

contains two types of contour features: a polyline and polygon contours. Simplification,

smoothing, shoal-biasing, and the aggregate operators will be added in this generalization

process. In this scenario, when approximating the original contour with B-spline, a least square

method may be used, if too many control points are specified.

Algorithm 3-14

Input: A set of polyline and polygon contours, and the number R of iterations (see Appendix

A.10).

1. Represent all polyline contours as B-spline curves with 80% or less of the original curve

points (section 2.3.4.1 of Chapter II).

2. Preprocess polygon contours: equally distribute the points on the polygon contour by

distance, and add points to the polygon, such that the distance between each point is

smaller than 1/100 of the distance between the furthest two points of that polygon.

3. Repeat R times

3.1 Calculate the distance between the current snake position and all other polygons in the

data, and find the feature that is closest to the current snake, and the closest approach

distance for that feature.

 84

 3.2 If the closest approach distance is smaller than a threshold (4 here due to the line

thickness observed) indicating that the two features are too close and need to be

aggregated, and this feature has not been aggregated before:

 3.2.1 Mark the closest feature as having been aggregated.

 3.2.2 Find the two segments that connect the current curve and closest feature.

 3.2.3 Add the two segments and the remaining part of the closest feature into the

current snake (Algorithm 3-1).

 3.3 End If

 3. 4 If the distance between any two neighbor points on the current snake is larger than a

suitable threshold (1/60 of the total length of current contour was chosen empirically):

 3.4.1 Add points to all segments where two original points are too far away from

each other (similar but opposite to the process of Algorithm 2-1, add extra

points to segments where start and end points are too far from each other).

 3.5 End If

 3.6 If the distance of any two neighbor points on the current snake curve is smaller than a

suitable threshold (1/600 of the current snake length was chosen empirically):

 3.6.1 Find the set of all points that are within the threshold distance of their

neighbors.

 3.6.2 Find the sub-set of the set found in step 3.6.1 of all groups of at least three

consecutive points in sequence.

 3.6.3 Delete the first point in each group of three continuous points.

 3.7 End If

 3.8 Calculate the step size of the current snake, and move the current snake to the next step

(Algorithm 3-8).

4 End Repeat

 85

Note: See Appendix A.4 to A.6 for detail of the parameters in this function.

3.3.3 Workflow for A Group of Polygon Contours Exaggeration and Aggregation

 The group of polygon contours exaggeration and aggregation workflow deals with the

scenario of generalization of a group of polygon contours. As illustrated by the cartographer’s

manual process of generalization results (Figure 3-4 and 3-18), in order to maintain shallow

features on the chart, all polygon contours must be exaggerated on a smaller scale chart. As they

expand their size, close pairs of polygon contours are aggregated into one polygon. This

workflow implements this process, and the workflow is as follows:

Algorithm 3-15

Input: a group of simple polygon contours.

1. Preprocess all polygon contours, such that all of their indices are increasing clockwise

(Algorithm 3-9)

 2. Iterate through all polygons:

 2.1 Exaggerate current polygon (Algorithm 3-7).

 2.2 Apply Algorithm 3-6 to correct any self intersections

 2.3 Check if this polygon intersects with or is too close to any other polygons in this

polygon array. If there is intersection

 2.3.1 Store the index number of the pairs of intersection polygons, and close

polygons.

 2.3.2 If there are close polygons, but no intersection polygons

 2.3.2.1 Aggregate the close polygons with the current polygon one by one using

Algorithm 3-5.

 2.3.2.2 Check if the aggregated polygon has any self intersection, and delete the

self intersections if there are any (Algorithm 3-12)

 86

 2.3.3 If there are intersected polygons but no close polygons

 2.3.3.1 Aggregate the intersected polygons with the current polygon one by one

with the aggregate function for two intersected polygons (Algorithm 3-

6).

 2.3.3.2 Check if the aggregated polygon has any self intersection, and delete the

self intersection if there is any (Algorithm 3-12).

 2.3.4 Else there are both intersected polygons and close polygons

 2.3.4.1 Aggregate the close polygons with method in step 2.3.2

 2.3.4.2 Aggregate the intersected polygons with method in step 2.3.3.

 2.3.5 End if

 2.4 End If

 3. End Iterate

3.3.4 Workflow for Concentric Polygon Contours Exaggeration and Aggregation

 The concentric polygon contours exaggeration and aggregation workflow deals with the

scenario when the generalization object is a complex set of multiple polygon contours and

multiple sets of concentric polygons with various depth values.

Algorithm 3-16

Input: Multiple polygons and multiple sets of concentric polygon contours, and number R of

iterations (see Appendix A.10).

1. Preprocess all polygon contours using Algorithm 3-9, such that the indices are increasing

clockwise.

2. Divide polygons into two groups: concentric polygons in one group, and simple polygons

in another.

3. Repeat R times

 87

 3.1 Maintain a minimum distance between the most outside polygon and its neighbor

by using Algorithm 3-10.

 3. 2 Aggregate neighbor concentric polygon groups with Algorithm 3-5.

 3.3 Aggregate the polygon and the outer-most polygon of the concentric polygon

groups with Algorithm 3-3 and 3-4.

 3.4 Delete any self intersections of the aggregated polygons using Algorithm 3-12.

 3.5 Maintain a minimum distance between the outer-most polygon and its neighbor by

using Algorithm 3-10.

 3.6 Aggregate neighbor single polygons if they are close (Algorithm 3-3 and 3-4).

 3.7 Delete any self intersections of the aggregated polygons.

 3.8 Maintain a minimum distance between any polygon contour and its neighbor

(Algorithm 3-10).

 3.9 Exaggerate all polygons one by one, for each polygon; if there is self intersection

 3.9.1 Delete the self intersection if it exists (Algorithm 3-12).

4. End Repeat

3.3.5 Workflow for Polyline and Polygon Contour Exaggeration and Aggregation

 The polyline and polygon contour exaggeration and aggregation scenario is different from

the second scenario (workflow 3.3.2) because not only does the line aggregate with the polygon

during generalization, but the polygons themselves exaggerate their shape and aggregate with

neighbor polygons when they get too close. The workflow is as follows:

Algorithm 3-17

Input: One long complex polyline contour and multiple simple polygon contours, and the

number R of iterations (see Appendix A.10).

1. Preprocess all polygon contours using Algorithm 3-9.

 88

2. Approximate the polyline contours with B-spline Snakes with about 80% (see Appendix

A.3) of the original curve points, reduce the points on the polyline contour.

3. Repeat R times

 3.1 Calculate the step size of the polyline, and move the polyline to the next step.

 3.2 Delete any self intersection using Algorithm 3-12.

 3.3 Call workflow 3.3.3, exaggerate and aggregate all the single polygon contours.

 3.4 If any polygon contours are too close to the polyline or if any polygon contours

intersect with the polyline

 3.4.1 If there are polygon contours close to the polyline and no intersected

polygon

 3.4.1.1 Aggregate the line with the polygon using Algorithm 3-1 and 3-2.

 3.4.2 Elseif there are polygons intersecting with the polyline but no polygon

detected close to the polyline

 3.4.2.1 Aggregate the line with the polygon with Algorithm 3-1and 3-2.

 3.4.3 Elseif there are polygons intersecting with the polyline and polygons

close to the polyline

 3.4.3.1 Aggregate close polylines and polygons with the method in

 step 3.4.1.

 3.4.3.2 Aggregate intersecting polylines and polygons with the

method in step 3.4.2.

 3.4.4.4 End If

 4. End Repeat

3.4 Summary

 This chapter illustrates algorithms that implemented exaggeration and aggregation

operators, and auxiliary functions that are used in the generalization process. This chapter

 89

illustrates five scenarios that might occur in generalization process, and the workflow of how they

can be simulated with the functions and operators developed in this thesis work. The next chapter

shows one example of each these five scenarios and how the cartographer’s manual generalization

results compare.

 90

CHAPTER IV

 TEST EXAMPLES

 In this chapter, five test examples are shown to illustrate how the B-spline Snake method

is used to generalize contour features. All of the examples progress while keeping the shoal-

biased rule enforced. Test scenario one is a simple line example, showing how one single line is

gradually simplified and smoothed. Test scenario two is an example of one simple polyline

contour and a set of polygon contours. The polyline is generalized with the same behavior as in

example 1, and meanwhile the polygons are being aggregated with the polyline. Test scenario

three is an example of using the exaggeration operator on a group of polygon contours. During

the generalization, each polygon exaggerates its shape, and neighbor contours are aggregated into

one large polygon when they get close. Test scenario four is an example of a set of polygon

contours, the difference is that there are concentric polygon contours (algorithm 3-15 in chapter

III) whereas previous scenarios only deal with simple polygons. This scenario occurs in manual

generalization too, and the process is different than scenario three. Test scenario five is an

example of a long, complicated polyline and a set of simple polygon contours. The polyline

contour is simplified and smoothed while the polygons are exaggerated. The polygons and

polylines aggregate each other in the generalization process. The ENC data used in the following

scenarios are downloaded from NOAA website (NOAA, NOS website).

4.1 Test Scenario One: One Line Example

 Scenario one shows the generalization results of one contour line. The simplification

operator, smoothing operator and shoal-bias constraint are tested in this example. Figure 4-1

shows the shape of the original ENC input contour on a background of a 1:20,000 scale raster

 91

chart. Figure 4-2 shows the same ENC contour on a 1:80,000 scale chart, where the same depth

contour has changed its position. It has moved to the deeper side, and become smoother. Figure

4-3 to Figure 4-6 show the intermediate stages of the generalization result.

Figure 4-1: Original input with background of raster chart 13283

This polyline is selected from the ENC US5NH02M of Portsmouth Harbor, NH; the

background chart is paper chart 13283 (scale 1:20,000). The selected ENC 60 foot contour

overlays with the 60 foot contour line in this background raster chart.

 92

Figure 4-2: Original input on raster chart 13278

Green contour is the original input 60 foot contour, the yellow arrow points to the contour

which is the same depth on the 1:80,000 scale raster chart 13278.

 93

Figure 4-3: Original input contour polyline with a star symbol at each vertex

This figure shows the shape of the original input contour in this test scenario. The original

contour has 787 points. In the next step, the original contour is represented by a B-spline curve.

This decreases the total points that need to be stored, and increases the processing speed.

 94

Figure 4-4: Intermediate stage of the generalization process

The blue curve is the result of B-spline simplification, which now contains only 607 points.

The green curve is the intermediate stage of the generalization. The generalized curve is

smoother than the input, and contains less detail. The curve has shifted to the deeper side of

the input, which obeys the shoal-bias principle.

Input Polyline

Intermediate
Polyline

 95

Figure 4-5: Generalization result of one simple polyline contour generalization

The green polyline is the generalization result after smoothing and simplifying. Compared to

the result of cartographer’s manual process of generalization in Figure 4-2, the algorithm

provides a similar result in that the new curve is simpler and smoother than the original input,

and has been shifted to the deeper side of original curve.

Resulting
Polyline

Input Polyline

 96

Figure 4-6: Original input line versus gradual generalization results

The blue line is the original input contour; the green curves are the middle stages of gradual

generalization.

The result of this algorithm (Figure 4-6) is similar to what the cartographer did manually

(Figure 4-1). The polyline contour is smoothed and simplified, and the new polyline moves to the

deeper side of the original input polyline contour.

Resulting
Polyline

Input Polyline

Intermediate
Polylines

 97

4.2 Test Scenario Two: Polyline Contour and Polygon Contour Aggregation

 Scenario two shows the generalization results of one polyline contour aggregating with a

set of polygon contours. Figure 4-7 shows the original input contours: one polyline contour and

nine polygon contours. All nine polygon contours are on the deeper side of the polyline contour.

Figure 4-7: Original input contours with background of raster chart

Background is the 1:20,000 scale raster chart 13283. The green contours are the selected 60

foot contours from the ENC US5NH02M of Portsmouth Harbor, NH. The selected ENC 60

foot contour overlays with the 60 foot contour line in this background raster chart. In this test

example, the aggregation operator is tested for how the polyline contour aggregates the other

nine polygon contours.

Shallower

Deeper

 98

 Figure 4-8: The input contours on the background of raster chart

Background is the 1:80,000 scale raster chart 13286. The green contours are the input 60 foot

ENC polyline and polygon contours; the blue contour indicated by the green arrow is the 60 foot

contour on this 1:80,000 scale raster chart. In this figure, cartographers generalized by deleting all

of the 60 foot green contours, which are on the 1:20,000 scale chart, and aggregated all polygon

contours with the polyline contour, such that the generalized result is only one polyline contour

(the blue curve (not the thinner blue straight line) indicated by the green arrow).

Figure 4-8 shows the cartographers’ manual process of generalization. The polygon

contours are deleted, and a new polyline is created. This manual process can be simulated as a

polyline aggregating with polygon contours when it is moved to the deeper side during

generalization. This example shows the generalization results of using the aggregation, line

smoothing, and simplification operators. Figure 4-9 to Figure 4-12 show the contours at

progressive iterations through the generalization process.

Deeper

Shallower

 99

Figure 4-9: Original input of one polyline and nine polygon contours

Both the blue polyline contour and the grey contours are of 60 foot depth. The polygon

contours are located seaward of the polyline contour. In this example, the blue polyline

contour will aggregate the grey polygon contours.

 The progressions of the generalization algorithm are shown in Figure 4-9 to Figure 4-12.

Figure 4-10 shows an early stage of generalization. The light blue target contour has been

generalized from the original dark blue line, but has yet to encounter any of the other closed

contours. Figures 4-11 to 4-12 illustrate the situation where a number of contours have been

aggregated into the target polyline contour as it has been increasingly generalized. The shape of

the contours being aggregated can be seen as jumping seaward when the polyline contour

encounters the landward-most point of each contour. After generalization (Figure 4-12), all of the

contours are aggregated, the result is a smooth contour that maximizes the outer hull of all of the

contours, while the segments between the promontories are smoothed.

Shallower

Deeper

 100

Figure 4-10: An early stage of generalization at about 10% of the whole process

No polygon contours have been encountered. Only the polyline contour is generalized.

A B

Shallower

Deeper

Shallower

Deeper

Input polyline

Intermediate polyline

C

C

C

 101

Figure 4-11: Intermediate stage of generalization at about 30% of the whole process

The generalized result after two polygon contours have been aggregated (A and B). The seaward

shape of the contour currently being aggregated (B) has been preserved. Three polygons have

been aggregated (C). The polygon contour is moving towards the deeper side, and aggregates

polygon features when they are close.

Figure 4-12: The final state of generalization
All of the polygon contours have been aggregated and generalized, such that the result (at much
lower scale) preserves only the outer promontories of the originals, with smooth transitions
between them. All polygons are deleted, such that only one polyline remains. This polyline is
located seaward of where the most seaward points of the old polygons were.

The polygon features are not exaggerating their own size or aggregating with each other

in this test example.

The result of this algorithm (Figure 4-12) is similar to what the cartographer did manually

(Figure 4-8). The polygon contours are all deleted, and the new polyline moves to the deeper side

of all previous polygon contours.

Input polyline

Intermediate polyline

 102

4.3 Test Scenario Three: A Group of Polygon Contours Exaggeration and

Aggregation

 This section shows the generalization result of a group of single polygon contours. Other

than just aggregating with neighbor contours, in this example the polygon contours also

exaggerate themselves during the generalization process.

Figure 4-13: Input polygon contours on a background of raster chart 13283

The green contours are the selected 30 foot polygon contours from the ENC US5NH02M

of Portsmouth Harbor, NH. Background is raster chart 13283 of the same area. The

selected ENC 30 foot contour overlays with the 30 foot contour line in this background

raster chart.

 103

 Figure 4-13 shows the input contour data on the background of a 1:20,000 scale raster

chart. The green contours are the selected polygon contours from the ENC of Portsmouth Harbor,

NH. There are 12 polygon contours in the input. Similar to the previous test scenarios, the ENC

data has the same shape as the polygon contours on the 1:20,000 scale raster chart, 13283 (Figure

4-13).

Figure 4-14: Input polygon contours on a background of the raster chart 13286

The green contours are the input contours (selected from ENC); the background is raster chart

13286 with scale of 1:80,000. The five grey polygon contours with blue fill inside are the

corresponding contours on raster chart 13826 of Portsmouth Harbor, NH. Compared to the green

contours, the grey contours (except the one on the upper left corner) are larger and each grey

polygon covers several green polygon contours. This figure shows how the cartographers

exaggerate each polygon and aggregate neighbor polygon when they get too close.

 104

All polygons have the same depth value of 30 feet. During the generalization, all contours

can be aggregated into one large polygon. Figure 4-15 shows the input data. Figure 4-16 to Figure

4-19 show the generalization process.

Figure 4-15: Input of a set of simple polygon contours

All polygon contours have depth value of 30 feet. Polygons of the same depth will be

aggregated in the following generalization process.

 105

Figure 4-16: Intermediate stage of the generalization process at 18th iteration

In the generalization process, all polygon contours have been exaggerated; two polygon

contours have been aggregated (arrow A).

A

 106

Figure 4-17: Intermediate stage of the generalization process at 68th iteration

All polygon contours are exaggerating; two more polygon contours have been aggregated

(arrows A). The aggregation process is gradual, and no self intersection has happened in the

generalization process.

A
A

A

 107

Figure 4-18: Intermediate stage of the generalization process at 140th iteration

All polygon contours are exaggerating; five polygon contours have been aggregated, resulting

in two polygons. As the generalization goes further, the size of the polygons increases,

although they look relatively large in this figure, but as their scale decreases, so the actual

size that they will be displayed at in the chart is smaller.

 108

Figure 4-19: Generalization result of test scenario 3 at 244th iteration

All polygon contours with 30 foot depth are aggregated into one polygon. The aggregation

stops when all contours at the same depth are aggregated into one polygon. The stopping

condition can be altered to use other criterion according to different generalization purposes.

The intermediate status result in Figure 4-18 is very similar to the cartographers’ manual

process of generalization in Figure 4-14: all polygons are exaggerated, and neighbor polygons are

aggregated into one large polygon. The generalization stops when the distance between the 60

foot contour (green) and the one large 30 foot contour (blue) reaches the minimum neighbor

distance. The final generalization result in figure 4-19 is a further generalization based on the

intermediate status of Figure 4-18. All polygons with 30 foot depth are aggregated into one.

 109

4.4 Test Scenario Four: Concentric Polygon Contours Exaggeration and

Aggregation

 This section shows the generalization result of a group of polygon contours where some

of the polygons are concentric polygon contours. The operators used in this example are the same

as in test scenario 3, but the geometry type of the input polygon features is different. In this case,

the contour set is not just a group of simple polygon contours, but includes concentric polygon

contours. The algorithms for aggregating simple polygon contours and aggregating concentric

contours are different (as illustrated in Algorithm 3-3).

Figure 4-20: Input polygon contours on a background of raster chart 13283

Nine polygon contours are selected from the ENC US5NH02M of Portsmouth Harbor area, NH;

eight of them are concentric contours. This example tests the aggregation operator for the

concentric polygon contours group.

In this test scenario, some of these contours have the same depth value, while some have

different depth values. During the generalization, each polygon contour exaggerates and increases

Deeper
Shallower

 110

its size. When two neighbor contours get too close, and if they have same depth value, they will

be aggregated. Figure 4-20 shows the original input data with the background of the 1:20,000

scale raster chart (13283).

Figure 4-21: Selected area on raster chart 13286

These are the contours of the same area as Figure 4-21 on a 1:80,000 scale chart using manual

generalization. Compared to Figure 4-20, all contours have smoother and simplified shapes.

Contours with same depth are aggregated into one polygon contour.

Deeper

Shallower

 111

Figure 4-22: Input concentric contours in depth coded color at iteration 0

The input contours have varied depths from 30 foot to 6 foot. In the following generalization

process, only contours of the same depth can be aggregated, while all contours are exaggerated.

The green polygons (A2) and the blue polygons (A1) will be aggregated in Figure 4-23.

During the generalization, all contours will be exaggerated. If two neighbor contours get too

close, and they have the same depth value, they will be aggregated; if they have different depth

value, they will not be aggregated, and a minimum distance will be maintained between them.

Figure 4-23 to Figure 4-24 shows the gradual generalization process.

A2

A1

30 feet
18 feet

12 feet
6 feet

 112

Figure 4-23: Intermediate stage of the generalization process at 44th iteration

The two 30 foot contours aggregated in to one large polygon (A1). Two 18 foot contours are

also aggregated into one large polygon (A2). All polygons are exaggerated.

A2

A1

30 feet
18 feet

12 feet
6 feet

 113

Figure 4-24: Generalization result of test scenario four at 251st iteration

All contours with same depth are aggregated; minimum distances between contours with different

depth are maintained (arrow D). The generalization stops when a particular iteration number is

reached. If no stopping point is set, the contours can keep exaggerating to infinitely large size.

For different generalization purposes, other stopping criterions can be set.

Compared with Figure 4-21, the generalization result of this algorithm (Figure 4-24) is

similar to the cartographers’ manual process of generalization. The outline of the polygon contour

is simplified and smoothed, the shapes of the contours are enlarged, and contours with the same

depth are aggregated.

D

30 feet
18 feet

12 feet
6 feet

 114

4.5 Test scenario Five: Polyline and Polygon Contours Exaggeration and

Aggregation

 This section shows the generalization result of one complex long polyline and a set of

single polygon contours. It is a scenario combining all previously discussed operators and the

input data is more complex than previous scenarios. It is closer to a real generalization problem.

All contours have the same depth value of 60 feet. Figure 4-26 shows the input data. Figure 4-28

to Figure 4-34 shows the generalization process.

Figure 4-25: Input data with a background of raster chart 13283

The green contours are the input data, which are selected 60 foot contours from ENC

US5NH02M of Portsmouth Harbor, NH. Input data include one long polyline contour and 11

polygon contours. The input ENC data overlay with the contours in the background 1:20,000

scale raster chart 13283.

Polyline

 115

Figure 4-26: Input data on the background of 1:80,000 scale raster chart

The grey line (indicated by the blue arrow) is the 60 foot contour on the 1:80,000 scale raster

chart 13278. The 60 feet contour of 1:80,000 scale raster chart is on the deeper side of all

input polyline and polygon contours, and its shape is much more simplified and smoothed.

Note: the pink label “chart 13283” means for detail information at this area, refer to chart

13283.

 116

Figure 4-27: Initial input data at iteration 0

In this test scenario, the input data is one long polyline and a set of single polygon contours.

The polygons are all on the deeper side of the polyline contour. The depth value of all these

contours is 60 foot. In this example, all polygon contours will exaggerate their shape, and

aggregate with each other when they are close. The polyline will move to the deeper side, and

aggregate the polygon features when it gets close to the polygon contours.

Polyline

 117

Figure 4-28: Intermediate stage of the generalization process at 11th iteration

The polyline contour is smoothed and simplified and moved to the deeper side (S); all

polygon contours exaggerate their shape; the neighbor polygon contours are aggregated (A).

A

S

 118

Figure 4-29: Intermediate stage of the generalization process at 17th iteration

In this test scenario, aggregation not only occurs between pairs of polygon contours, but also

during the generalization, when a polyline moves too close to a polygon (A1). A2 shows two

polygons’ aggregation. Besides aggregation, all polygon contours are exaggerating their size, and

the polyline is smoothed and simplified (S).

A2

S A1

 119

Figure 4-30: Intermediate stage of the generalization process at 150th iteration

Further aggregation of the polyline and polygon. Polygons are aggregated (A). The generalization

process consists only of smoothing, simplifying and moving the polyline contour in the sea-ward

direction from this iteration forward.

A

 120

Figure 4-31: Intermediate stage of the generalization process at 900th iteration

After all polygon contours are aggregated and deleted, the generalization is only applying the

simplification, smoothing and shoal-bias operators. The polyline gets smoother and simpler.

 121

Figure 4-32: Generalization result at 1600th iteration

The polyline is smoothed and simplified and moved to the deeper side of original input contours.

Similar to the previous example case, the generalization stops when an iteration number reached.

 122

Figure 4-33: Generalization result comparison

The left sub-figure is the same as Figure 4-26, the grey polyline pointed by the blue arrow in the

left sub-figure is the generalized 60 foot contour by a cartographer; the right sub-figure is the

same as Figure 4-32, the blue line in the right sub-figure is the generalized contour using the

algorithms developed in this thesis.

Figure 4-33 shows, compared to the cartographers’ manual process of generalization

result in Figure 4-27, the algorithm’s result simulates the generalization process of deleting all

polygon contours and moving the polyline to the deeper side of input contours.

 123

CHAPTER V

 DISCUSSION AND FUTURE WORK

5.1 Discussion

This thesis has demonstrated several algorithms implementing the smooth, simplify,

exaggeration, and aggregation operators, and obeying the shoal-bias constraint of chart contour

generalization. It developed workflows to combine these operators to create gradual

generalization of a group of contours, such that there are continuous intermediate stages from the

start of the generalization to the final result of generalization. This study is useful because current

generalization processes only produce results at certain scales, and there are no representations

available for intermediate scales. This study provided a framework and implementation methods

to generate gradual continuous generalization with five different contour combination scenarios.

The contour features from these five scenarios are generalized from large scale to small scale

without creating any intermediate features that require special processing to resolve.

In the smoothing and simplification operators, the starting and ending points keep their

position, and only interior vertices of polyline contours are moved. This is acceptable because, in

real charts, a polyline contour’s start and end points are usually on the edge of the chart. When

doing the generalization, it is reasonable to keep those two points stable. They need to match up

with the extension of the contour of the adjacent chart.

In this study, there is no clear stopping point for the generalization. This means that if the

iteration is continued, the polygon contours can be exaggerated to an infinitely large polygon. In a

future study, a stopping criterion could be set to the area of the polygon with respect to the

desired scale value and the distance to the neighbor polyline features. A scale value could be

added to the stopping criterion. The minimum distance between neighbor features can be

 124

calculated from the visible threshold of distance between two lines divided by the scale.

During the generalization process, points are constantly added to the contours in order to

maintain the accuracy of aggregation, exaggeration and smoothing operators. However, at the end

of the generalization, the contours can be examined, and the redundant points can be deleted, such

that the total number of points is reduced after the generalization.

The operators developed in this study can be applied to different input contours, and the

B-spline Snake method, aggregation, and exaggeration operators create result similar to manual

generalization. The different scenarios represent some conditions that might occur in chart

generalization. However, there are more complex conditions in chart generalization, and more

operators and workflows that stimulate more generalization scenarios can be developed based on

this study to address them.

5.2 Future Work

Future research on this topic could include the following options:

 The further study can develop a deletion operator for the features that need to be deleted in

the generalization process, as the deletion is more of a model generalization instead of the

graphic generalization this thesis is focused on. Beside, a workflow for the complex input

feature conditions can also be created. In this study, only five examples are tested, but there

are other conditions which might occur in real chart generalization that have not been

included in this study: the complex condition when a polyline, a group of concentric polygon

contours, and several polygon contours on both shallow and deep sides of the polyline

contour.

 There might be a relationship between the parameters and the geographic size of input data,

which could be investigated further. The functions developed here use parameters that are set

to certain numbers that work best for the test data used here. However, the parameters have

 125

not been developed for universal usage, so for some other input contour data that are

significantly different than the test data used here (much longer polyline contour, or much

larger polygon contour), the parameters in the functions might vary.

 The curvature calculation in this study does not calculate with the second derivative, but in

future work, the second derivative of the contour B-spline curve could be used to calculate

the curvature, such that the curvature value will be more accurate.

 How to relate the exact scale number with the iteration step: this study only generates the

continuous intermediate status of the generalization; however, it did not indicate which scale

those intermediate states are. Future study could focus on making the calculation more scale

related.

 126

LIST OF REFERENCE

D. Burghardt. 2005. "Controlled Line Smoothing by Snakes." GeoInformatica 9:3, Pages 237-

252.

L. D. Cohen, Issac Cohen, 1993. “Finite Element Methods for Active Contour Models and

Balloons for 2D and 3D Images.” IEEE Transactions on Patten Analysis and Machine

Intelligence, PAMI-15 November.

D. H. Douglas, T. K. Peucker. 1973. "Algorithm for the Reduction of the Number of Points

Required to Represent a Digitized Line or its Caricature." The Canadian Cartographer.

E. Guilbert, and Hui Lin. 2007. "Isobathymetric Line Simplification with Conflict Removal Bases

on a B-spline Snake Model." Marine Geodesy, 20 :169-195.

E. Guilbert, E, Saux. 2008. "Cartographic Generalisation of Lines Based on a B-spline Snake

Model." International Journal of Geographical Information Science, Vol 22, No. 8, August,

2008

E. Guilbert, E. Saux, and M. Daniel. 2006. "Conflict Removal between B-spline Curves for

Isobarthymetric Line Generalization Using a Snake Model." Cartography and Geographic

Information Science, Vol. 33, No.1 Pages 37-52.

L. Harrie. 2001. "An Optimisation Approach to Cartographic Generalisation." Doctoral Thesis,

Department of Survey, Lund Institute of Technology, Lund University.

M. Kass, A. Witkin, and D. Terzopoulos, 1987. “Snakes: active Contour Models”, International

Journal of Computer Vision, 321-331.

Z. Li, S. Openshaw. 1993, "A Natural Principle for the Objective Generalization of Digital

Maps." Cartography and Geographic Information Systems, Vol. 20, No. 1.

W. A. Mackaness, Anne Ruas. 2007. Generalisation of Geographic Information: Cartographic

Modeling and Applications.

W. Peng. 2000. "Database Generalization: Concepts, Problems, and Operations." International

Archives of Photogrammetry and Remote Sensing. Vol. XXXIII, Part B4, Amsterdam 2000.

R. B. McMaster, K. S. Shea. 1992. "Generalization on Digital Cartography."

NOAA, 1996. "Technical Issues in NOAA's Nautical Chart Program." National Academy Press,

Washington, DC, 1996.

NOAA, 1997. "The Nautical Chart User's Manual" U.S. Department of Commerce, National

Oceanic and Atmospheric Administration (NOAA), National Oceanic Service, Washington,

DC, 1997.

NOAA, NOS website http://www.nauticalcharts.noaa.gov/mcd/learn_diffRNC_ENC.html

http://www.nauticalcharts.noaa.gov/mcd/learn_diffRNC_ENC.html

 127

K. Stuart Shea. 1988. "Cartographic Generalization." NOAA Technical Report NOS 127 CGS 12.

K. Stuart Shea, Robert B. McMaster. 1989. "Cartographic Generalization in a Digital

Environment: When and How to Generalize".

S. Steiniger, S. Meier. 2004. "A Technique for Line Smoothing and Displacement in Map

Generalisation." ICA Commission on Generalisation and Multiple Representation Workshop,

Leicester, Aug. 2004.

Z. Wang, J-C Muller. 1998. "Line Generalization Based on Analysis of Shape Characteristics"

Cartography and Geographic Information Systems, Vol. 25, No.1.

J. Mark Ware. 2003. "Automated map generalization with multiple operators: a simulated

annealing approach." INT. J. Geographic Information Science, Volume 17, No. 8, Pages 743-

769.

C. Xu, and J. L. Prince, 1998. “Snakes, shapes, and Gradient vector Flow” IEEE Transactions on

Image Processing, 7(3) 359-369.

 128

APPENDICES

 129

APPENDIX A

PARAMETER DISCUSSION

A.0 Distance Unit Definition

The unit of the distance used in this thesis is not meters or feet. The original coordinates

of input contours are decimal degrees in latitude and longitude, and they are processed before

used in the calculation in this thesis work. The conversion and the unit of the numbers used in this

thesis are defined as follows:

Example input coordinate: (-70.6094, 43.1143), the coordinate is decimal degree in geographic

coordinates, and the unit here is degrees. Then multiply both x and y coordinate by 100,000, so

the coordinate becomes (-706094, 431143), and the unit is 1/100,000 degree. All the following

calculations use these coordinates. If there are no specific notifications of the unit, all the

numbers and parameters of distance discussed in this thesis are using the unit of 1/100,000

degree.

A.1 Parameter in Algorithm 3-2

In algorithm 3-2, in the pseudo code for finding supporting segments,
1S ’s index is

calculated by the index of
polygonP plus N ,

1E ’s index is calculated by the index of
polygonP minus M .

N and M are parameters used to determine the index of the starting and ending vertex
1S and

1E

of the supporting segment on the polygon. As all polygons’ indices are set to increase

clockwisely, and the polygon is to the right of polyline, the start index
1S is always on the

clockwise side of vertex
polygonI , and

1E is on the counter clockwise side of vertex
polygonI . The

N and M are set to create a small distance between
1S and

1E . Basically,
1S is defined as

polygonI

 130

plus a small number, and
1S is defined as

polygonI minus a small number, however, the end vertex

might be within the range of these small number, so the end situations are processed separately by

assigning the end vertex (length of the polygon) or start vertex (1) to
1S and

1E . The N and M

are defined as follows:

polygonI is the index of the vertex in the polygon that is closest to the polyline;

len is the total number of vertices in the polygon;

If 3polygonI len 

13, 3polygonN S I  

Else

1 1S 

If 2polygonI 

12, 2polygonM E I  

Else

1E len

All polygon contours that have been used in the polyline-polygon sample test scenarios

have total numbers of vertices are mostly in the range of 20 to 50. In addition, in the

preprocessing for the polygon before generalization starts, vertices are processed such that they

are mostly evenly distributed, meaning that 2-3 points are about 4% to 10% of the total length of

the polygon. The purpose to finding support segments for aggregation is to create two

appropriate segments that connect the polyline and polygon, such that the aggregated feature will

not have sharp angles, or intersect with itself. After testing with several other numbers, 2-3

samples turned out to best generate the support segments. They are small steps along the polygon

contour, such that the basic shape of the polygon can be maintained. If N and M are too small,

for example one sample, then the distances between
1S and

1E will be just two samples, that is

too close, and the aggregation result will look unnatural; If N and M are set to too large a

number, then line
1 2S S and

1 2E E will intersect with the polygon, so
1S and

1E will still be

 131

replaced with the intersection points.

Figure A.1: Location of vertices in algorithm 3-2

A.2 Parameter in Algorithm 3-4

In Algorithm 3-4, in the pseudo code for finding supporting segments for the aggregation

of two polygons, if the total number of vertices of the left polygon is larger than 20,
2S ’s index is

the index of
2CP minus

1N ,
2E ’s index is the index of

2CP plus
1N ; otherwise, if the total number

of vertices is less than 20,
2S ’s index is the index of

2CP minus
2N ,

2E ’s index is the index of

2CP plus
2N .

1N ,
2N are defined as follows:

polygonI is the index of the vertex on the first polygon that is closest to the other polygon, len is

the total number of vertices on the left polygon.

If 20len 

1 2 210, 10, 10polygon polygonN S I E I    

ElseIf 20len 

2 2 23, 3, 3polygon polygonN S I E I    

As in the two polygon aggregation test scenario, the input polygon contours are mostly of

 132

medium size, with total numbers of vertices mostly in the range of 50 to 140. Therefore an offset

of 10 samples is used here, for reasons similar to those of selection of offset in section A.1.

However, in this test scenario, there are a few small polygon contours that have less than 20

vertices, and for these polygon contours, as they are considered small polygons, an offset of three

samples is used, for reasons similar to those in section A.1 for smaller polygons.

 The reason why 20 is chosen here to separate the polygons is as follows: most input

polygons are in the size of 50 to 140 vertices, there are a few small polygons that have less than

16 vertices, and here 20 is used as a threshold to separate the polygons.

A.3 Parameter in Algorithm 3-13

In step two of Algorithm 3-13, a new contour is created that has total vertices of about

80% of the original curve points. There are two reasons why 80% is picked: one is because the

purpose of this step is to simplify the contour, so the fewer vertices the better. The second reason

is if there are too few vertices, the new curve will not be able to depict the basic shape and some

of the significant detail of the original curve. Several other percentages (50% to 100%) were

tested, but a figure of 80% yielded the best result, depicted the basic shape and the significant

detail of the original with fewer vertices, and it is a relatively subjective process to determine

whether the basic shape and significant detail is well depicted or not. For interpretation purposes,

the number of samples closest to 80% of the total is used as a sample where a fractional sample

count would be practical.

 133

A.4 Point Adding Parameter in Algorithm 3-14

In step 2 of Algorithm 3-14, points are added to the polygon, such that the distance

between each point is smaller than 1/100 of the distance between the furthest two points of that

closed polygon. The reason for choosing this number is because the purpose of adding points to

the polygon is to make the polygon have more evenly distributed vertices, such that in the

following aggregation step, when finding the support segment, if the distance between neighbor

vertices is very large and uneven, then the result of aggregation will looks unnatural (Figure A.4).

Figure A.4: Location of vertices in Algorithm 3-14

2E is two points from polygonP , and 1S is two points from polygonP too, the support segment

1 2S S and 1 2E E should ideally be same length and look symmetric to each other. However as

the vertices of polygon are not evenly distributed, 1E is much closer to polygonP , and 1 2E E is

much shorter than 1 2S S , such that the aggregation result looks unnatural.

The value of 1/100 is used because it is a small value, which makes sure that the polygon

get enough vertices on it. Similar to the choice of 80% in Appendix A.4, the 1/100 here is not an

absolute value. If the distance between the furthest two points of that closed polygon is 120, then

 134

the distance between each point can be rounded to two, to allow for integer calculation. Other

values were tested, but 1/100 was found empirically to give the most useful result.

In step 3.4, 1/60 of the length of the current contour is used as the threshold of whether

new points should be added to the contour. 1/60 is chosen empirically from tests with values

ranging from 1/100 to 1/10. When the value is too small, there are too few points added, so the

line will not have enough more points; if the value is too large, too many points are added, which

are not necessary for the calculation.

A.5 Neighbor Points Parameter in Algorithm 3-14 and 3-9

In step nine of Algorithm 3-14, the threshold of the distance between two neighbor points

on the snake curve is set to be 1/600 of the current curve length. Similar to the 1/100 in A.4, the

1/600 is the lower bound of the neighbor points distance, at 1/6 of the 1/100. That is, if there are

six points in a normal neighbor vertices segment. That is considered too crowded and points need

to be deleted. Six is used based on experiments with different numbers, and generates the best and

most stable results: points are deleted and the basic shape of the line is still maintained; no large

change of the shape occurred during the generalization.

A.6 Delete Points Parameter in Algorithm 3-14 and 2-1

In step 9.2 and 9.3 of Algorithm 3-14, and step 3.1 of Algorithm 2-1, three continuous

points are deleted if their neighbor distances are all smaller than 1/600 of the total contour length.

Since the purpose of the deletion is to reduce the redundant points in the segments which

have six more vertices than a normal segment’s vertices (as in section A.5), a target of these

samples were chose as half of this range. Other values in the range 1 to 10 were tested, but three

 135

samples gives, empirically, the most stable results during generalization. If a larger number is

used, the shape of the contour will be changed more, and the deformation will look unnatural. If

value is set too small, the deletion will be not effective enough. .

A.7 Parameter in Algorithm 3-8

In Algorithm 3-8, step 1.4 and 1.10, a value of 15 is used as a threshold to determine

whether a step size is used or not. Tests have been done with values ranging from 5 to 50. When

using a small threshold value such as 5, very few of the stepsizes that were calculated with the

gradient method were used, and the polyline was not generalized in a smooth and shoal-biased

fashion. Most points were moved to the middle of its adjacent two points (step 1.5), which is

meaningless. However, the gradient method is an approximate way to solve the energy equation;

there are numerical spikes in the stepsize value during the calculation. If the threshold is set to a

large value like 50, these spikes are used, and the polyline has zig-zag shape during the

generalization. In order to delete these spikes and meanwhile maintain a smoothing and shoal-

biased generalization result, after tests with different value, 15 turned out to generate the most

desirable smooth, shoal-biased result while no spikes occurred during the generalization.

A.8 Parameter in Algorithm 3-10

The minimum distance N in step 2 is set to 10. In principle, the minimal distance should

be related to the scale and width of minimal visible line size. Here, in empirical tests, values from

5 to 20 were tested, and 10 yielded a subjectively good result: lines can be seen as separate lines.

However, in further studies, this value can be set to a more mathematically and geographically

accurate value.

 136

A.9 Parameter in Algorithm 3-11

The minimum distance M in step 1.2 is set to19. Similar to section A.8, this value 19 is

chosen by empirical tests. As in section A.8, the minimum distance here ideally should be

calculated by using the scale and minimum visible line width on the screen, however, after tests

with values ranging from 5 to 30, 19 gives a good result (19 is the minimum value that ensures

that neighbor polygons can be seen as separate polygons). Similar to section A.8, in further

studies, this number should be set to a more mathematically and geographically accurate value.

A.10 Parameter in Algorithm 3-13, 3-14, 3-16, 3-17

The iteration number R in Algorithms 3-13, 3-14, 3-16, and 3-17 is set to a large number

(usually larger than 1500), so that the iteration can keep going on. The algorithms are stopped

manually when the contours are generalized to a level that no significant changes will happen, for

example at Algorithm 3-13, that means the single input polyline contour cannot be further

smoothed, all curvatures are smoothed, or the curvatures should be kept for shoal-bias purposes.

At Algorithm 3-14, that means all polygon contours are aggregated, and the polyline contour is

much smoothed, and there are no more curves to be smoothed, or curves should be kept for shoal-

biased reasons. For Algorithm3-16, that means all polygons with same depth have been

aggregated, and all left polygons are all very smooth. For Algorithm 3-17, that means all

polygons are exaggerated and aggregated, and the polyline cannot be further smoothed.

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Fall 2014

	Gradual Generalization of Nautical Chart Contours with a B-Spline Snake Method
	Dandan Miao
	Recommended Citation

	tmp.1438794969.pdf.TJcts

