
University of New Hampshire
University of New Hampshire Scholars' Repository

Inquiry Journal 2009 Inquiry Journal

Spring 2009

Misconceptions and Computer Science
Bradford Larsen
University of New Hampshire

Follow this and additional works at: https://scholars.unh.edu/inquiry_2009

Part of the Computer Engineering Commons

This Commentary is brought to you for free and open access by the Inquiry Journal at University of New Hampshire Scholars' Repository. It has been
accepted for inclusion in Inquiry Journal 2009 by an authorized administrator of University of New Hampshire Scholars' Repository. For more
information, please contact nicole.hentz@unh.edu.

Recommended Citation
Larsen, Bradford, "Misconceptions and Computer Science" (2009). Inquiry Journal. 10.
https://scholars.unh.edu/inquiry_2009/10

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNH Scholars' Repository

https://core.ac.uk/display/72048207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholars.unh.edu?utm_source=scholars.unh.edu%2Finquiry_2009%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/inquiry_2009?utm_source=scholars.unh.edu%2Finquiry_2009%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/inquiry_journal?utm_source=scholars.unh.edu%2Finquiry_2009%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/inquiry_2009?utm_source=scholars.unh.edu%2Finquiry_2009%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=scholars.unh.edu%2Finquiry_2009%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholars.unh.edu/inquiry_2009/10?utm_source=scholars.unh.edu%2Finquiry_2009%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:nicole.hentz@unh.edu

UNH UNDERGRADUATE RESEARCH JOURNAL SPRING 2009

commentary

Misconceptions and Computer Science

—Bradford Larsen (Edited by Travis Taylor)

In any profession there is a great deal of confusion among laymen as to what its practitioners actually do. On

several occasions through the past few years, I have had run-ins with acquaintances, relatives and family friends

who inevitably want to know how I have been spending my life. When I tell them I am studying computer

science, they usually respond by telling me about their home computer problems. This is not what computer

science is about. Alternatively, they ask what I plan to do after I finish my studies. Most people find my

response of “professional research” to be as puzzling as the study of computer science itself.

The huge variety of computer fields undoubtedly causes

much of this confusion. Many people do work in

Information Technology (IT), maintaining and repairing

computers. Many people are programmers, who implement

pieces of software. Many people are software engineers,

who both implement and design software. Other people are

computer scientists, who conduct research regarding

computers. And then there are innumerable specialties in

each of these areas. (Of course, these categories are not so

cut–and–dried as I present here, but hopefully they are

illustrative.) Undergraduate computer science studies are,

for many people, a launch pad into many of these careers.

I want to conduct research professionally for three main

reasons: I will almost certainly have more freedom as a

researcher; my work will have a higher chance of being

influential; and I have great curiosity, which research will help satisfy. This desire was strengthened when I

successfully applied for an International Research Opportunities Program (IROP) grant from the University of

New Hampshire. I spent the summer of 2007 in Erlangen, Germany, where I worked alongside Ronald

Veldema, leader of a research project to make supercomputers easier to program.

Distributed Computing Research

Modern supercomputers are typically made up of thousands of individual computers, not so different from the

desktop computers found in libraries and offices, networked together. These are also called cluster computers.

Effectively programming cluster computers is much more difficult than programming a single computer; and so

to address this problem, Ronald and I experimented with an implementation of the Java programming language

that would make a cluster computer appear to the programmer as a single computer. (Java is one particular

programming language that appeared in the early nineties and quickly gained huge adoption in the industry.)

The author with Fortress Marienberg in the distance.

In order to get computers to do anything useful, they must be given precise instructions. Rather than write these

very detailed sequences of instructions directly, programmers usually use higher–level programming languages.

 The writings produced in these languages are then converted into the very detailed sequences of instructions

that computers can execute with other programs called compilers or interpreters.

Normally, any piece of data in a cluster computer will exist at only one of its individual computers. If a

computation occurring on another computer in the cluster needs to access that piece of data, the computation

and the piece of data need to be brought to the same place. To create the illusion that the many individual

computers are one, our Java implementation would have to take care of all the details of arranging a meeting

between computation and data. This is the problem of remote access.

My role in the research was to implement a performance optimization: data caching. In certain cases, a program

written for our Java implementation would run faster if often used data were copied to several individual

computers in the cluster because accessing remote data could be done faster.

Probably Not What You Think It Is

For ten weeks I spent about thirty hours per week in the lab at Friedrich-Alexander University. Understand that

a computer science lab typically is quite boring, lacking test tubes, meters, scales, rat mazes, x–ray machines, or

any of the interesting things one would expect to find in a science lab. In my case, “The Lab” was a room on

the fifth floor of a mammoth building with about ten computer terminals, a whiteboard, and plenty of windows.

The specific line of research Ronald and I were conducting could be done without special equipment; all we

needed was a cluster computer to test with and a conventional desktop or laptop computer for development.

It took me about a week in the beginning to become familiar with the existing

work of this project. I spent much of that time asking Ronald questions,

poking around through the project’s source code, and writing some simple

programs to test the project. Once I had found my bearings in the project, we

tossed ideas back and forth for a couple days, discussing my high–level

strategy, and the algorithms and data structures I would use.

The concept of algorithm is extremely important in computer science. An

algorithm is often compared to a cooking recipe: the recipe gives a sequence

of detailed instructions, which, if followed precisely, will result in a certain

food. Algorithms are sequences of instructions, which, if followed to the

letter, will take input and give output satisfying certain guaranteed

properties. Algorithms are specified in such a way that they are independent

of any particular programming language, similar to the way recipes are

written independently of a particular brand of measuring cup.

After our initial brainstorming session, I spent a few days programming what

we had discussed, stopping only when I ran into an unforeseen issue or when

I needed additional guidance. At such points we would brainstorm further.

Rather than being a solitary, elusive activity someone did in a dark room with

a computer, my work required lots of thought and interaction with others.

For several weeks we repeated this process, and I implemented many of the

features we had initially discussed. Midway through, I presented my

preliminary results to the faculty and graduate students in my group.

The building housing most of the

mathematics and computer science

departments at Friedrich–

Alexander University of Erlangen–

Nuremberg

Opposing Approaches

One thing I took away from the summer’s experience is how different two people’s work styles can be. I have a

perfectionist streak in me. I find it jarring when my programs and work are inelegant, and I will often go back

over things and rework them, even though they might perform functionally. “Obsessive” is not an entirely

inaccurate description of my work process. Speaking of a program as “elegant” may seem strange, but it is

similar to mathematical elegance, in which a simpler, more concise program is more concordant. (This idea is

similar to Ockham’s Razor.) Simply put, I don’t like clutter in my code.

Rewriting inelegant code can have practical as well as aesthetic considerations. Trudging forward and

continuing to work with a needlessly convoluted solution can be much more error prone and take more time

than redoing parts from scratch. However, it takes time and experience to realize that a program is convoluted

and how it might be better written. While in Germany, I rewrote major parts of my code twice, when the design

I had been working with proved to be no longer sufficient for further development.

Ronald, on the other hand, did not share my obsessive

perfectionist streak. He would work quickly, produce

something that performed functionally; and then maybe in

the future go back and redo it, once he was more familiar

with the task in question and the earlier prototype was

noticeably slowing down further progress. Because he

was not so concerned with elegance, he was able to

quickly prototype solutions to our problems, producing

results sooner. I, in contrast, had to be continually on

guard against my natural tendency to try to make

everything perfect all at once just to keep up with him.

He would often sit beside me when we did our work,

especially at the beginning when I was getting my

bearings, and would often tell me, “You spend so much

time formatting!” or “Don’t think so much; just type! Try

it!” or “Hands on the keyboard!” These urgings went

against my natural tendencies, but at the same time kept

me focused and helped me to make progress faster than I

would have otherwise.

However, occasionally this hands–on–the–keyboard approach slowed development down. About six weeks in,

I spent close to two weeks looking for an error in our code that only sporadically manifested itself. It was a

subtle bug involving interaction of my data cache and the garbage collector (the subsystem that frees memory

when it is no longer used) that resulted in the system crashing. With a slower, more regimented methodology,

this problem could have been avoided, saving me two weeks. Balance is hard to strike.

A Happy Medium

In programming and computer science, attention to detail is critical. It’s quite a binary distinction: your

code/algorithm/system/etc. is either completely correct, or it isn’t. In many cases, if it is not completely correct,

it is catastrophically wrong. Computer scientists must work with great concentration and focus, or they produce

rubbish.

I learned from my experience in Germany that there is a balance to be struck between elegance and progress: If

one tries to create a masterpiece right from the beginning, it will take forever to show any results. On the other

The author with students and faculty of the

Programming Systems computer science group at

Nuremberg Castle. From left to right: Dr. Michael

Klemm, Dr. Ronald Veldema, Bradford Larsen,

Alexander Dreweke, Dr. Michael Philippsen.

hand, if one is never concerned with elegance, it can result in unforeseen problems and incoherency later. My

work style leaned much more towards the former; Ronald’s was somewhat right of center.

Ultimately we published a paper on our work at an international conference. I went through an entire iteration

of the computer science research cycle with my experience in Germany: I collaborated with others, applied for

grant money, performed experiments to test my hypotheses, and shared the results. This cyclical process is

central to computer science research. Now I just need to work on my small talk so I can offer a better answer

when asked what I have been doing.

I would like to thank Philip Hatcher for his mentoring and contacts in Germany; Ronald Veldema for providing

an interesting project and overseeing my work while I was in Germany; Michael Philippsen for providing a

spot in his department and giving feedback on our work; the students of Informatik II, the students of

Rommelwood, particularly Michael Dlugosch, for their friendship outside the lab; Georgeann Murphy for

facilitating the IROP process; and, finally, my family for being supportive of me throughout this entire

experience.

Copyright 2009 Bradford Larsen

Author Bio

Bradford Larsen, originally of Nashua, New Hampshire, is a first year master’s student in computer science.

During the summer of 2007, with the aid of an International Research Opportunities Program grant from the

University of New Hampshire, Brad conducted research in Erlangen, Germany, where he worked on a project

to streamline the effectiveness of supercomputers. The project, which was large in scope and complex in its

implementation, provided more than just practical experience in the field of computer science. Based largely on

the work he produced while in Germany, Brad and the project’s leader collaborated to publish a paper that

took the “Best Paper Award” in the category of “Distributed Information and Systems” at the 2008

International Conference on Parallel and Distributed Computing and Systems sponsored by the International

Association of Science and Technology for Development. Brad continues the pursuit of his graduate degree with

his eyes set on the Ph.D., recognizing that his summer research experience and the resulting publication will be

important in his future study and grant opportunities.

Mentor Bios

Professor Philip Hatcher has worked since 1986 with students in the Department of Computer Science at the

University of New Hampshire, where he is currently chairperson. Specializing in the areas of programming

languages and compilers, parallel and distributed computing, and bioinformatics, as well as once being a

recipient of the “Outstanding Assistant Professor” award, Hatcher is no stranger to mentoring. In his time at

UNH he has advised a number of honors thesis students and six candidates for International Research

Opportunities Program (IROP) grants. Hatcher describes an IROP project as “a life–changing experience,”

one that is “always very rewarding” for a student. In Brad’s case, Hatcher was particularly happy to see Brad

working side by side with “a very intense and very bright foreign mentor,” and how exciting it was to see him

“rise to the occasion and meet that high standard.”

Brad’s foreign mentor, Dr. Ronald Veldema, has been at the University of Erlangen–Nuremberg for the last six

years, where he teaches and conducts research in programming language and parallelization. As well as being

Brad’s foreign mentor and co–author, Dr. Veldema also introduced Brad to a new work methodology, one of

fast–paced, hands–on–the–keyboard programming. While this break–neck approach didn’t always mesh with

Brad’s work style, it forced him out of his comfort zone and helped him see the values (and shortcomings)

inherent in any approach to solving a problem. When asked about his time spent with Brad and the work they

performed together, Dr. Veldema replied simply: “Satisfactory, not difficult, fun and interesting.”

	University of New Hampshire
	University of New Hampshire Scholars' Repository
	Spring 2009

	Misconceptions and Computer Science
	Bradford Larsen
	Recommended Citation

	Microsoft Word - 335078-text.native.1364909640.docx

